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Abstract

One of the most enduring, broadly applicable and widely used theoretical results of electrokinetic theory is the Smoluchowski
expression for the electrophoretic mobility. It is a limiting form that holds for any solid particle of arbitrary shape in an electrolyte
of any composition provided the thickness of the electrical double layer is ”infinitely” thin compared to the particle size and the
particle has uniform surface potential. The familiar derivation of this result that is a simplified version of the original Smoluchowski
analysis in 1903, considers the motion of the electrolyte adjacent to a planar surface. The theory is deceptively simple but as a
result much of the interesting physics and characteristic hydrodynamic behavior around the particle have been obscured. This paper
provides a derivation of this key theoretical result by starting from Smoluchowski’s original 1903 analysis but brings out overlooked
details of the hydrodynamic features near and far from the particle that have not been canvassed in detail. The objective is to draw
together all the key physical features of the electrophoretic problem in the thin double layer regime to provide an accessible and
complete exposition of this important result in colloid science.

Keywords: Colloid, Smoluchowski theory, Thin double layer, Electrophoretic hydrodynamics, Electrophoresis, Electrophoretic
mobility

1. Introduction

A well-established method to characterize the state of charge
on colloidal particles in electrolyte is to deduce the so called
zeta (ζ) potential, of colloidal particles by measuring the elec-
trophoretic velocity, U, due to a constant applied electric field,
E. The ratio between these two quantities is the electrophoretic
mobility, µ. The Smoluchowski formula [1, 2, 3, 4] for the mo-
bility takes the form1

U = (εζ/η)E ≡ µE (1)

where ε = ε0εr is the product of the permittivity of free space,
ε0 and the relative permittivity of the solvent, εr, and η is the
shear viscosity of the electrolyte. This result is applicable to
particles with a uniform ζ-potential and to particles of any shape
so long as the Debye length, 1/κ of the electrolyte (of any com-
position) is negligible compared to the characteristic dimen-
sion, a of the particle, that is, κa → ∞, i.e. the thin double
layer limit. These conditions have been subject to recent de-
tailed experimental verification, see for example Bakker [5].

The derivation of the Smoluchowski result (1) given in many
standard text and monographs on the subject (for example
[6, 7, 8, 9, 10, 11]), is based on analysing the tangential flow of
the thin layer of fluid adjacent to a planar charged surface that

1Smoluchowski worked in CGS units where ε = ε0εr (SI) = εr/4π (CGS)

contains the electrical double layer. A conclusion of this anal-
ysis is that the tangential fluid velocity varies monotonically
from zero at the planar surface to the electrophoretic velocity,
U just outside the double layer. Furthermore, the analysis does
not make contact with known general results about the velocity
field outside the double layer [12]. However, a recent investiga-
tion of the electrophoretic velocity field around a spherical par-
ticle [13] that is based on the general theory of Overbeek [14],
shows that the tangential velocity always has a maximum at
some intermediate distance from the sphere for all values of κa.
The value of this maximum exceeds the electrophoretic veloc-
ity that is attained many radii from the sphere. As κa increases,
this maximum velocity approaches a limiting value that is (3/2)
times the Smoluchowski velocity, U (1).

In characterizing the state of charge using electrophoresis,
one generally also studies variations of the mobility with ionic
strength and with the concentration of potential determining
ions. Comparison with such data will generally require the
construction of models to describe how the particles develop
a surface charge. This may include consideration of a Stern
layer, surface conductivity and perhaps particle porosity. Theo-
ries of such detailed modeling are well established in the litera-
ture [6, 7, 8, 9, 10, 11].

The aim of this paper is undertake a consistent analysis of
the electrostatic and velocity fields near and far from the parti-
cle surface. The starting point is the same as Smoluchowski’s
original 1903 analysis of the electrophoretic problem in the thin
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double layer limit but we take into account details in the spatial
variation of the electrostatic potential and the velocity field near
and far from the particle that has a uniform ζ potential. This al-
lows us to draw together all the key physical features of the
electrophoretic problem in the thin double layer regime to pro-
vide a complete and accessible exposition of the Smoluchowski
theory. The discussion will include insight as to whether the ap-
plied field can be assumed to be tangential to the surface when
the particle can have any shape and why the mobility is inde-
pendent of the dielectric properties of the particle.

The standard derivation of the Smoluchowski results will be
reproduced in the next section to recapitulate a number of open
questions about this approach. Technical results needed for this
development are given in the appendices and a glossary of sym-
bols is provided for easy reference.

2. The Smoluchowski result

2.1. The standard derivation
The common derivation of the Smoluchowski result pre-

sented in textbooks and monographs [6, 7, 8, 9, 10, 11] con-
siders a planar surface with a uniform ζ-potential adjacent to an
electrolyte. The applied electric field, E, assumed to be parallel
to the surface, drives a tangential flow of the electrolyte because
the double layer adjacent to the surface is not neutral. Within
the double layer the charge density, ρ and electrostatic potential,
ψ vary only in the direction normal to the surface with ρ and ψ
related by the Poisson equation. In the reference frame in which
the surface is stationary, the electrolyte just beyond the double
layer is assumed to move with the constant electrophoretic ve-
locity, U parallel to the surface but in the direction opposite to
the applied field, E.

The flow of the electrolyte is described by the Stokes equa-
tion: η ∇2u − ∇p = −ρE for the fluid velocity, u and pressure,
p with a body force, −ρE that accounts for the effect of the ap-
plied electric field on the net charge in double layer. The planar
geometry is depicted in Fig. 1 in which the tangential, t and
the normal, s coordinates are defined. By symmetry, the pres-
sure does not vary in the tangential direction and the velocity is
tangential so it is only necessary to consider the Stokes equa-
tion for the tangential velocity, ut(s) that depends solely on the
normal coordinate, s:

η
d2ut

ds2 = ε
d2ψ

ds2 E. (2)

where we have used the Poisson equation: ρ = −ε(d2ψ/ds2) to
express the charge density, ρ in terms of the electrostatic poten-
tial, ψ.

A first integral of (2) with the condition that far from the
surface, s→ ∞, dut/ds→ 0 and dψ/ds→ 0, gives

η
dut

ds
= εE

dψ
ds
. (3)

An immediate consequence of (3) is that if the potential gra-
dient, dψ/ds is monotonic, then so is the tangential velocity
gradient, dut/ds.

Figure 1: The planar geometry of the charged surface with surface potential ζ
(assumed > 0) and the adjacent electrical double layer in the classic derivation
of the Smoluchowski result in an applied electric field, E. The indicated fluid
velocity, u is in the reference frame in which the surface is stationary. The local
co-ordinates s and t are, respectively, normal and tangential to the surface. The
outer edge of the electrical double layer is indicated by the dashed line.

A second integral from s = 0 to∞ then gives

η
[
ut

]∞
0

= η
[
− U − 0

]
= εE

[
ψ
]∞
0

= εE
[
0 − ζ

]
(4)

since the tangential fluid far from the surface is (−U), the neg-
ative of the electrophoretic velocity and ψ = ζ at the surface
s = 0. This then gives the Smoluchowski formula for the elec-
trophoretic velocity (1) as found in standard textbooks2.

2.2. Questions relating to the standard derivation
This standard derivation of the Smoluchowski result has a

number of unresolved issues:

1. Is the assumption that the applied field being tangential
to the surface valid for particles of any shape in the thin
double layer limit?

2. Is the field just outside the double layer equal to the applied
field, E for a particle of any shape? And if not, why is the
Smoluchowski theory still valid?

3. Why is the electrophoretic velocity and hence the mobility
independent of the dielectric properties of the particle?

4. The standard derivation implies that the fluid velocity ap-
proaches the constant electrophoretic value, U monotoni-
cally just outside the double layer. However, this behav-
ior does not agree with general theoretical result that the
fluid velocity, relative to the particle, should approach the
electrophoretic value, U with an inverse distance cubed
law [12].

5. Recent theoretical results [13] based on the Overbeek
model of electrophoresis [14, 15] show that the tangen-
tial velocity always attains a maximum value outside the
double layer that exceeds the electrophoretic value, U.
However, this velocity maximum does not exceed (3/2)U
and its occurance is a general consequence of the fact that
a particle in electrophoretic motion experiences zero net
force. Is the observed maximum in the tangential velocity
in disagreement with the standard derivation of the Smolu-
chowski result in which the velocity near the surface is
monotonic?

2In original articles in French, Polish and German [1, 2, 3, 4], Smoluchowski
derived (1) in a slightly different manner. He started off with the Stokes equa-
tions with an electric body force: η∇2u − ∇p = −ρE (written in our notation).
He then subtracted the osmotic pressure from the total pressure and argued that
the resulting pressure made a negligible contribution. Integration over the other
terms resulted in the electrophoretic velocity.
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Figure 2: A solid sphere with radius a and uniform (positive) ζ-potential in an
external electric field, E. The sphere surface is denoted as S . The extent of the
thin double layer is indicated by the dotted spherical surface, S ∗ with radius,
a∗, with (a∗ − a) � a. Inset: A portion of the surface at angular position, θ
with local coordinates that are tangent, t and normal, s to the surface. At the
outer limit of the double layer at normal coordinate, s∗ (dashed line), the fluid
velocity is −U∗ (in the reference frame in which the surface is stationary) and
the electric field, E∗, is tangential to the surface (see text for details).

In the next section, we resolve these issues by analysing the
fluid velocity field outside a spherical particle in the thin double
layer regime. This keeps the mathematical details simple and
explicit although the conclusions can be extended to particles
of general shape.

3. Mobility of a sphere in the thin double layer limit

In this section we derive the expression for the elec-
trophoretic velocity in the thin double layer limit that not only
gives the mobility, but also the corresponding form of the veloc-
ity field in the fluid beyond the extent of the electrical double
layer around the particle. To make the development explicit,
we will consider a solid spherical particle with a uniform ζ-
potential. In the thin double layer limit, we follow the orig-
inal 1903 approach of Smoluchowski [1] by focusing first on
the fluid flow near the surface and within the electrical double
layer that has a net charge. However, we go beyond the Smolu-
chowski analysis by matching this result to the velocity field
outside the double layer where the electrolyte is neutral. In this
manner, we provide clarity and resolution to the various points
about the standard Smoluchowski derivation raised in the pre-
ceding section.

In Fig. 2, we show a sphere, S of radius, a in an applied
electric field, E in the z-direction. The sphere has a uniform
ζ-potential and the extent of the thin electrical double layer
around the sphere is indicated by the dotted sphere, S ∗ of ra-
dius, a∗. A portion of the sphere surface and the associated
electrical double layer is given in the inset of Fig. 2 with the
indicated local coordinates tangent, t and normal, s = (r − a) to
the surface.

3.1. Electric field outside the electric double layer

Outside the double layer, the electrolyte is neutral and so the
electrostatic potential, φ in r > a∗, obeys by the Laplace equa-
tion: ∇2φ = 0 with the condition that φ→ −Er cos θ, as r → ∞,
where θ is the polar angle measured with respect to the z-axis
(see Fig. 2). In the thin double layer limit, we can regard the
solid sphere and its electrical double layer inside the sphere of

radius a∗ as effectively neutral so that by Gauss’ Law, the nor-
mal component of the electric field at r = a∗ vanishes. This
then results in the boundary condition: ∂φ/∂r = 0 at r = a∗.

From Appendix A, we see that the potential and the electric
field outside the double layer, r ≥ a∗, have the form

φ = −Er cos θ
(
1 +

a∗3

2r3

)
(5a)

E = −∇φ = E cos θ
(
1 −

a∗3

r3

)
nr − E sin θ

(
1 +

a∗3

2r3

)
nθ (5b)

where nr and nθ are unit vectors in the direction of the spherical
coordinates r and θ. Therefore, the electric field at the outer
edge of the double layer, r = a∗, is

E(r = a∗) = −(3/2)E sin θ nθ ≡ −E∗nθ. (6)

In other words, the field at the spherical surface S ∗ just outside
the electrical double layer, defined by r = a∗, is tangential to
the sphere since the field there only has a nθ component. The
magnitude of this tangential field, E∗ ≡ (3/2)E sin θ, defined
in (6), varies with position, θ along the surface of the sphere
and has a maximum of (3/2)E at θ = π/2. The tangency of the
electric field follows from the boundary condition: ∂φ/∂r = 0
at r = a∗, which expresses the fact that the normal component
of the field is zero. This reflects the assumption that the sur-
face S ∗, being just outside the double layer, encloses zero net
charge. As this is the only electrical property assumed about the
material enclosed by S ∗, the result of this derivation is therefore
independent of the dielectric property of the sphere.

3.2. Velocity field inside the electric double layer
We now consider the velocity field near the sphere surface,

inside the electrical double layer by focusing on a small seg-
ment of the sphere at angular position, θ as shown in Fig. 2. As
seen from the previous subsection, the electric field at the outer
edge of the electric double layer at the local normal coordinate,
s is tangential to the surface with magnitude, E∗ given by (6).

In the frame of reference in which the surface is stationary,
we can integrate the tangential component of the Stokes equa-
tion as in the standard derivation of the Smoluchowski results in
Section 2.1 to obtain the velocity, U∗ at the edge of the double
layer as

U∗ = −(εζ/η)E∗. (7)

Note that U∗ and E∗ will in general vary with the angular po-
sition of the surface element. For a sphere, we see from (6)
that E∗ = (3/2)E sin θ and so the magnitude of U∗ can be up to
(3/2) times larger in magnitude than the Smoluchowski veloc-
ity, U = (εζ/η)E.

3.3. Velocity field outside the electric double layer
In the reference frame in which the sphere is stationary, the

electrophoretic velocity is the fluid velocity far from the parti-
cle. To find this in the far field, we have to determine the veloc-
ity variation outside the electrical double layer that is consistent
with the velocity at r = a∗ given by (7). In addition, the system,
comprised of the sphere and it surrounding electrical double
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layer, moves at a constant velocity under electrophoretic mo-
tion and moreover experiences no net external force. These are
the physical conditions that determine the velocity, u and pres-
sure, p in a∗ < r < ∞ that obey the Stokes equation without a
body force: η ∇2u−∇p = 0, together with the incompressibility
condition: ∇ · u = 0.

From Appendix B, we find that the required solution for the
velocity and pressure in this frame of reference with a vanishing
radial velocity at a∗ is

u = U cos θ
(
1 −

a∗3

r3

)
nr − U sin θ

(
1 +

a∗3

2r3

)
nθ (8a)

p = 0 (8b)
Fh = 0 (8c)

∇ × u = 0. (8d)

The zero net force condition: Fh = 0 that can be verified by
integrating the stress tensor, see Appendix B, gives the limit
u → −Uk as r → ∞, which is the electrophoretic velocity as
given by the Smoluchowski formula (1).

The solution (8) has the unique property that the pressure is
identically zero. Such a flow is generally referred to as a zero
pressure, zero vorticity (or curl free) Stokes flow.

3.4. Remarks
There are a number of similarities and differences between

the standard derivation of the Smoluchowski results as given in
Section 2 and the derivation in this Section. In particular, the
present treatment resolves issues about the standard derivation
that were raised in Section 2.2.

• Both derivations lead to the same expression for the elec-
trophoretic velocity for a particle in the thin electrical dou-
ble layer limit (1), though the present derivation addresses
key physical aspects of the problem from the region near
the surface to well outside the electrical double layer.

• In the standard derivation of the Smoluchowski result,
an equilibrium electrostatic potential whose magnitude
decays monotonically away from the surface will imply
that the tangential component of the fluid velocity varies
monotonically from zero relative to the solid surface to a
constant fluid velocity at the outer edge of the electrical
double layer. This velocity is the Smoluchowski value (1)
and the fluid retains this constant value far into the bulk
electrolyte. In contrast, the present derivation shows that
the tangential fluid velocity increases from zero at the solid
surface to a value at the outer edge of the electrical double
layer that varies with the position on the sphere surface.
In particular, at the equators of the sphere at θ = π/2 the
fluid velocity at the edge of the double layer is (3/2) times
the Smoluchowski value and then it decays to the Smolu-
chowski value far from the sphere3.

3Smoluchowski, in his 1903 paper [1], also mentioned the electrophoretic
velocity of a sphere in his §8. He gave the classical formula for the electric
potential in his Eq. (18) resulting in a (3/2)E term on the equator of the sphere
and then gave, without further proof, the electrophoretic velocity in his Eq. (19)
corresponding to our Eq. 1

• By analysing and matching the flow field inside the elec-
trical double layer with that outside the electrical dou-
ble layer we establish that the velocity field association
with electrophoresis decreases towards the Smoluchowski
value with a 1/r3 decay [12] rather than with 1/r, as in
say the velocity field surrounding a steadily sedimenting
particle. The physical reason is that electrophoresis is
driven by a body force in the fluid which is exactly coun-
teracting the force on the sphere rather than an external
force (such as gravity) acting on the sphere. This faster
decay of the velocity field has important implications on
the hydrodynamic interaction between particles undergo-
ing electrophoresis: since the decay is now 1/r3 the hy-
drodynamic interaction between neighboring particles is
much weaker.

• The zero force condition also means that the pressure out-
side the double layer is identically zero and the flow is
irrotational in contrast to the flow associated with say a
sedimenting sphere. So the velocity field around a sphere
undergoing electrophoresis corresponds to a special case
of zero pressure, irrotational Stokes flow and is quite pe-
culiar.

• The velocity field outside the double layer appears to have
a ”slip velocity” boundary condition given by (7) at r = a∗,
just outside the electrical double layer. This should not
be confused with the traditional ”slip plane” in the equi-
librium theory of the electrical double layer where the
ζ-potential is defined and where continuum electrostatics
and hydrodynamic boundary conditions are applied [11].

• By considering a sphere, we see explicitly why the electric
field is tangential to the surface in the thin double limit be-
cause outside the double layer, at the radius a∗, the particle
and the double layer, when taken together, enclose no net
charge within the sphere of radius a∗. However, this tan-
gential field is not equal to the applied field, E but has a
magnitude that varies with the position on the surface and
can be up to (3/2) times larger than E.

4. Comparison with finite κa results and generalizations

4.1. Finite κa results for a sphere

Recently the Overbeek theory of the electrophoretic motion
of a spherical particle [14, 15] has been used to calculate the
spatial variation of the fluid velocity, pressure and vorticity for
a range of κa values [13]. For comparison with the present
large κa results we will adopt the Henry [16] approximation
that uses the linear Debye-Hückel result for the equilibrium
electrostatic properties of the double layer. We note that ion
convection effects are omitted in the Henry approximation and
also in the Smoluchowski approximation. However, the Henry
approximation is valid for all values of κa, albeit limited to low
ζ-potentials, nonetheless, it contains the essential information
related to variations in κa that is of interest here.
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Figure 3: A comparison of the tangential velocity near the particle surface from
different derivations of the Smoluchowski result at large values of κa as indi-
cated. Results of the standard derivation of the tangential velocity, ut(r)/U at a
planar surface, given by (10) are shown as dotted lines (· · ·, · · ·). Results of the
present derivation of the tangential velocity, uθ(r)/U around a sphere, given by
(11) are shown as dashed lines (− − −, − − −). The outer solution for the tan-
gential velocity (12) is shown as the solid red line (—). Results from the Henry
theory, valid for all separations are shown in solid lines (—, —). The velocity
maximum is at (r − a)/a = 0.019, 0.048 for κa = 100, 300, respectively. The
locations of 1/(κa) in each case are indicated by vertical dashed lines.

In the Overbeek theory, where the applied field, E = Ek is
along the z-direction, the electrophoretic fluid velocity relative
to a stationary sphere has the form:

u = ur(r) cos θ nr − uθ(r) sin θ nθ, (9)

with just r and θ components and their magnitudes only vary
with the radial coordinate, r. We show variations of these com-
ponents scaled by the Smoluchowski velocity: ur(r)/U and
uθ(r)/U as functions of the scaled distance from the sphere sur-
face: s/a = (r − a)/a in the inner region, within the electrical
double layer, in Fig. 3 and in the outer region over the scale of
the sphere in Fig. 4.

Consistent with the Henry theory, we use the Debye-Hückel
potential at a planar surface: ψ(s) = ζ exp(−κs) in (3) to give an
expression for the inner solution of the tangential fluid velocity
relative to the surface within the electrical double layer

ut(s) = U
[
1 − exp

(
− (κa)[(r − a)/a]

)]
. (10)

where U is the Smoluchowski velocity (1). This inner solution
holds for the standard derivation of the Smoluchowski formula.

On the other hand, if we follow the present derivation of the
inner solution outlined in Section 3 for a sphere, the tangential
fluid velocity, uθ(r) relative to the surface within the electrical
double layer (inside the surface S ∗) would take the form

uθ(r) = (3/2)U
[
1 − exp

(
− (κa)[(r − a)/a]

)]
. (11)

A number of features are of note in the results for the elec-
trophoretic velocity components relative to a stationary sphere
(9) given in Figs. 3 and 4:

Figure 4: The (a) (upper) tangential velocity, uθ(r) and (b) (lower) radial, ur(r)
velocity, see (9), around a sphere in electrophoretic motion according to the
Henry model [13, 16] for the indicated values of κa. Shown also are the outer
solutions (8a) and the Stokes solution for a solid sphere with U∞ = −(2/3)U,
see Appendix B.

1. The Henry results show that the tangential velocity,
Fig. 4a, has a maximum that becomes progressively more
prominent as κa increases and the location of the maxi-
mum moves towards the surface of the sphere.

2. The fundamental physical reason for the existence of this
velocity maximum is the requirement that a particle in
electrophoretic motion experiences zero net force as it
travels at constant velocity. For a detailed technical ex-
position, see [13].

3. For κa � 1, there are 2 distinct regions: (i) an inner region,
a < r < a∗ and (ii) and outer region, r > a∗, as can be seen
in Fig. 3 where a∗ is around the position of the maximum
of uθ/U that extends a few Debye lengths from the sphere
surface.

4. The velocity in the inner region (a < r < a∗) is well
described by the result derived here for the sphere (11),
whereas the standard Smoluchowski inner solution (10)
does not capture the behavior in the inner region.
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Figure 5: A schematic illustration of a general shaped particle with a uniform
ζ-potential (ζ > 0) on its surface, S in an applied electric field E and the re-
sulting electrophoretic velocity, U. The tangential electric field, E∗ and the
corresponding tangential fluid velocity, U∗ (in the reference frame that the par-
ticle is at rest) at the outer edge of the electrical double layer at surface, S ∗ are
shown at a general point on the surface.

5. In the outer region (r > a∗), the magnitude of the tan-
gential velocity has the limiting form given by (8a), with
a ≈ a∗ for κa � 1

uθ(r)/U → 1 +
a3

2r3 , κa→ ∞, (12)

approaches the Smoluchowski value (1) from above as
r → ∞.

6. For κa � 1, we see from Fig. 3 that the simple inner (11)
and outer (12) solutions derived here provide a quantita-
tively accurate picture of the velocity at all locations.

7. As seen in Fig. 4a the limiting value of uθ(r) as r → ∞
is the electrophoretic velocity that varies from the Hückel
limit of (2/3)U for small κa to the Smoluchowski limit of
U for large κa given by (1).

8. Both the tangential velocity, uθ(r) (Fig. 4a) and the ra-
dial velocity, ur(r) (Fig. 4b) lie between the outer solu-
tion (12) and the Stokes solution for a solid sphere with
U∞ = −(2/3)U, given by (B.4) in Appendix B.

9. The normal velocity, ur(r) as well as its derivative, dur/dr
are small at the outer edge of the double layer. In par-
ticular, the velocity inside the double layer indeed has a
very small radial component in the direction normal to the
surface and thus justifies the assumption that the flow is
predominantly tangential near the surface at large κa.

10. The magnitudes of the pressure and the vorticity are only
significant inside the double layer, that is r < a∗. Outside
r > a∗, the pressure and vorticity are exponentially small
(see [13] for more details).

4.2. Arbitrarily shaped particles
We generalize our derivation of the electrophoretic velocity

of a sphere in the thin double layer limit to particles of arbitrary
shape (as in Fig. 5) with a constant ζ-potential and give a phys-
ically perspicuous exposition of the theoretical treatment given
by Morrison [12].

Outside the thin electrical double layer, the electrolyte is neu-
tral, so the electrostatic potential, φ that is generated by the

presence of the particle in an applied electric field E = Ek
in the z-direction must satisfy the Laplace equation: ∇2φ = 0.
Far from the particle, φ → −Ez. The surface, S ∗ that is just
outside the thin electrical double layer around the particle en-
closes the charged particle and the thin diffuse layer of neu-
tralizing counter-ions and co-ions and is therefore electrically
neutral. Therefore, the normal component of the electric field
vanishes on S ∗, that is, ∂φ/∂n = 0 on S ∗ (∂/∂n indicating the
normal derivative). These conditions are sufficient to determine
the electrostatic potential, φ outside the thin double layer. In
particular, the tangential electric field, E∗ at S ∗ for a particle of
arbitrary shape can be determined from φ.

Turning now to the velocity field, u in the reference frame
in which the particle is stationary. Far from the particle we
have the condition u → −U∞k as r → ∞, but the value of the
constant velocity, U∞ remains to be determined. At the surface
S ∗ the normal velocity is approximately zero in the thin double
layer limit. As for the tangential velocity, U∗ on S*, it must be
proportional to the electric field there according to (7).

As the electrophoretic problem is linear in the applied elec-
tric field, E, all transport properties must be proportional to
E. So outside the thin double layer we seek a solution of
the velocity expressed in terms of a scalar function, Φ where
u = ∇Φ so that the above velocity boundary conditions for Φ

are: Φ → −U∞z as r → ∞, and ∂Φ/∂n = 0 on S ∗. From the
incompressibility condition: ∇ · u = 0, the velocity potential, Φ

obeys the Laplace equation: ∇2Φ = 0.
Now we see that the electrostatic potential, φ and the veloc-

ity potential, Φ both satisfy the Laplace equation and analo-
gous boundary conditions. Thus in the thin double layer limit,
the linearity property of the electrophoretic problem means that
the local electric field and the local velocity outside the double
layer are proportional to each other. This is a considerable sim-
plification. Since u = ∇Φ is also a solution of the Stokes equa-
tion in the absence of a body force, we have found the unique
solution of the hydrodynamic problem. It also follows that the
velocity field is irrotational since ∇ × u = ∇ × ∇Φ ≡ 0.

From the Stokes equation we deduce that the pressure, p is a
constant because

∇p = η∇2u = η∇2∇Φ = η∇∇2Φ = 0. (13)

The constant pressure can be set to zero without loss of gener-
ality since the pressure is arbitrary up to an additive constant.

The above discussion about the electric and velocity poten-
tials around a particle of any shape with a thin electrical double
layer can be summarized as follows:

Electric potential Fluid potential

∇2φ = 0 ∇2Φ = 0
∂φ

∂n
= 0 (on S*)

∂Φ

∂n
= 0 (on S*)

lim
r→∞

φ = −Ez lim
r→∞

Φ = −U∞z

(14)

where S ∗ is the surface just outside of the thin double layer and
thus very close to the ‘real’ surface S . Both the electric and the
fluid potentials obey the same governing equation and boundary
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conditions on any shaped object with boundary S ∗. The elec-
tric field, E∗ on S ∗, which is tangential to the surface, and the
apparent slip velocity, U∗ just outside the double layer are pro-
portional to each other according to (7). The same proportional
relationship must hold between the applied field, E and the ve-
locity at infinity, U∞ in (14). And therefore the Smoluchowski
result (1) follows: U∞ = U.

The fluid dynamics of such a system under electrophoresis is
thus indeed quite ’unusual’ [13]. This discussion about parti-
cles with thin double layers is similar to the analysis by Morri-
son [12], except for the fact that Morrison did not assume that
the pressure outside the double layer is zero, but instead use the
Bernoulli equation for pressure: p ∼ u2 which is inconsistent
with a viscous dominated, low Reynolds flow in electrophore-
sis. In fact, as demonstrated in Appendix C, the zero pressure
condition is related to the fact that a particle in electrophoretic
motion experiences zero net force.

For smaller values of κa, the double layer becomes thicker
and the condition ∂Φ/∂n = 0 in Eq. 14 breaks down, because
the normal velocity a S ∗ is no longer zero.

5. Conclusions

In this paper, we revisited the derivation of the Smolu-
chowski expression for the electrophoretic mobility that is valid
in the so-called thin double layer limit in which the thickness of
the electrical double layer is small compared to the character-
istic dimension of the colloidal particle. This result is valid for
any electrolyte composition as long as the particle has a uniform
ζ-potential.

By using a sphere as an explicit example, we demonstrate
how the flow field close to the particle surface, within the elec-
trical double layer, couples to the flow field outside the extent
of the double layer. Whereas the standard derivation of the
Smoluchowski result implies that the fluid velocity increases
monotonically from zero, relative to the surface, to the elec-
trophoretic velocity U just outside the double layer, results of
our present analysis (11) and (12), substantiated by detailed
numerical results [13], shows that the fluid velocity actually
attains a maximum at the outer edge of the double layer and
then decreases towards the electrophoretic velocity U far from
the particle Figs. 3 and 4. This velocity maximum approaches
(3/2)U as κa→ ∞.

Arguments are presented to show that the results for a sphere
apply equally to particles of any shape as long as the double
layer is thin and the particle ζ-potential is uniform. Although
in the thin double layer limit, the electric field is tangential to
the surface just outside the double layer with magnitude E∗ that
varies with the position on the surface, the magnitude of E∗ is
not that of the applied field E = Ek, that is E∗ , E.

In fact, the velocity field, u outside the double layer can be
expressed as the gradient of a velocity potential: u = ∇Φ [12]
and as a result both the pressure outside the double layer and
the force on the particle are identically zero. In the reference
frame in which the particle is stationary, u→ −Uk far from the
particle (r → ∞), and the velocity decays as 1/r3 towards this

limit. Just outside the double layer where the tangential electric
field has magnitude E∗, the fluid has a tangential slip velocity,
U∗, where U∗ and E∗ are related by the formula in (7).

Although there are a number of theoretical studies of the
electrophoretic mobility in the literature in the thin double layer
limit that take into account other effects such as ion transport
and surface conductivity, see for example [10, 17, 18, 19], they
all took the approach of eliminating the pressure by taking the
curl of the Stokes equation and avoided the need to consider
details of the velocity field. Indeed, in the O’Brien-White for-
mulation of the electrophoresis of a sphere [20], the calculation
of the electrophoretic mobility does not require explicit evalua-
tion of the fluid velocity,

Acknowledgment DYCC was supported in part by
an Australian Research Council Discovery Project Grant
DP170100376.

Appendix A. A neutral sphere in a constant electric field

The variation of the electric field, E = −∇φ, around a neutral
sphere of radius, a, placed in a constant uniform electric field
far away from the sphere in the z-direction: E∞ k, can be found
by solving the Laplace equation: ∇2φ = 0 with φ → −E∞z =

−E∞ r cos θ, as r → ∞, far from the sphere. At the surface of
the neutral sphere with a zero surface charge density, we have
the boundary condition: ∂φ/∂r = 0 at r = a.

In spherical polar co-ordinates, r, θ and ϕ, the solution for the
potential is φ = −E∞ cos θ [r + a3/(2r2)] and the corresponding
electric field is [21]

E = E∞ cos θ
(
1 −

a3

r3

)
nr − E∞ sin θ

(
1 +

a3

2r3

)
nθ (A.1)

where nr and nθ are unit vectors in the direction of increasing
radial, r and angular, θ directions.

At the surface of the sphere, r = a, the electric field is tan-
gential to the surface and varies with the polar angle, θ as

E(r = a) = −(3/2)E∞ sin θ nθ ≡ Etang. (A.2)

The negative sign indicates that the tangential field, Etang points
in the direction of decreasing θ (see Fig. 2). The magnitude of
the tangential field at the sphere surface varies with position as
sin θ with an absolute maximum magnitude that is (3/2) times
that of the constant applied field, E∞.

Appendix B. A sphere in a constant velocity field

The velocity field, u, and pressure, p, in an unbounded in-
compressible Newtonian fluid with density, ρ, shear viscosity,
η, around a sphere of radius, a, placed in a uniform flow field:
U∞ k, can be found by solving the Stokes equation in the ab-
sence of a body force:

η ∇2u − ∇p = 0 (B.1a)
∇ · u = 0 (B.1b)
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in the low Reynolds number regime: Re ≡ ρaU∞/η � 1 (i.e.
neglecting inertial effects).

The general solution of (B.1) with the sphere located at the
origin satisfying the condition u → U∞k, as r → ∞, is in
Cartesian coordinates [22, 23]:

u = U∞
(k · x)

r2

[
B1

a
2r

+ B2
3a3

2r3

]
x

+ U∞

[
1 + B1

a
2r
− B2

a3

2r3

]
k

(B.2)

where x is the position vector, r = |x|. Equivalently, the solution
can be expressed in spherical polar coordinates

u ≡ ur(r, θ) nr + uθ(r, θ) nθ

= U∞ cos θ
(
1 + B1

a
r

+ B2
a3

r3

)
nr

− U∞ sin θ
(
1 + B1

a
2r
− B2

a3

2r3

)
nθ (B.3a)

p =
ηa
r2 B1U∞ cos θ (B.3b)

Fh = − 4πηa B1U∞ k (B.3c)

∇ × u =
3a
2r2 B1U∞ sin θ nϕ (B.3d)

and the hydrodynamic force, Fh, exerted on the sphere is found
by integrating the stress tensor: −pI +η[(∇u) + (∇u)T ] over any
surface that encloses the sphere using (B.2). The constants B1
and B2 are determined by the boundary conditions specified on
the sphere surface. Note that only the constant B1 is present in
the pressure, the force and the vorticity, (∇ × u).

Appendix B.1. Standard Stokes result

At a stationary solid sphere surface, the normal and tan-
gential components of the fluid velocity vanish: ur(a, θ) = 0,
uθ(a, θ) = 0, the constants are: B1 = −3/2 and B2 = 1/2 and we
have

u = U∞ cos θ
(
1 −

3a
2r

+
a3

2r3

)
nr

− U∞ sin θ
(
1 −

3a
4r
−

a3

4r3

)
nθ (B.4a)

p = −
3ηa
3r2 U∞ cos θ (B.4b)

Fh = 6πηa B1U∞ k (B.4c)

∇ × u = −
9a
4r2 U∞ sin θ nϕ (B.4d)

where both the pressure, p and ∇ × u decay as 1/r2, while the
velocity perturbation from the uniform flow decays as 1/r.

Appendix B.2. Imposed tangential velocity

If the tangential velocity on the impenetrable sphere in the
θ-direction is prescribed as:

uθ(a, θ) nθ = −(3/2)U∞ sin θ nθ, (B.5)

the constants are: B1 = 0 and B2 = −1, thus giving

u = U∞ cos θ
(
1 −

a3

r3

)
nr − U∞ sin θ

(
1 +

a3

2r3

)
nθ (B.6a)

p = 0 (B.6b)
Fh = 0 (B.6c)

∇ × u = 0. (B.6d)

With this tangential boundary condition, the sphere experiences
no hydrodynamic drag force and is vorticity-free. This is re-
ferred to as the zero pressure or irrotational (or curl free) so-
lution of the Stokes equation. The velocity perturbation now
decays as 1/r3.

Although the solution for the velocity, u in (B.6) has the same
form as that for a sphere in an inviscid fluid governed by po-
tential flow [22], the underlying physical assumptions embod-
ied in these two cases are at the opposite ends of the spectrum.
Whereas (B.6) is a result that holds in the limit of zero Reynolds
number where inertial effects are negligible relative to viscous
forces and the pressure, p is zero, the potential flow result, in
contrast, accounts fully for inertial effects but omits effects due
to viscosity with the pressure being given by the Bernoulli equa-
tion: p = 1

2ρu2.

Appendix C. The relationship between zero pressure and
zero force

The force F on a particle in Stokes flow can be obtained by
integrating the stress tensor over any surface, S 0 that encloses
the particle [24]

F =

∫
S 0

[
−pδi j + η

(
∂ui

∂x j
+
∂u j

∂xi

)]
n jdS . (C.1)

We have seen that if the velocity, u can be expressed as the
gradient of a potential: u = ∇Φ then the pressure is zero, p = 0.
Thus we can write for this force:

F = η

∫
S 0

[
∂ui

∂x j
+
∂u j

∂xi

]
n j dS

= η

∫
S 0

[
∂2Φ

∂x j∂xi
+

∂2Φ

∂xi∂x j

]
n j dS

= 2η
∫

S 0

∂2Φ

∂x j∂xi
n j dS = 0

(C.2)

where S 0 is a sphere around the particle with a very large radius,
R0. Then the last equality follows from the fact that for any
potential function that dies out faster than 1/r2 from a particle,
the twice differentiation in the integrand means that as R0 → ∞,
the decrease in the integrand will be faster than the R2

0 growth
in the surface area of S 0.

Appendix D. Glossary of symbols

a radius of a spherical charged colloidal particle or typical
length scale of an particle of arbitrary shape
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a∗ radius of a spherical surface that encloses the particle and
its neutralizing diffuse layer ionic cloud.

E constant external applied electric field in the z-direction =

Ek

E∗ magnitude of the tangential component of the electric field
just outside the electrical double layer at the surface, S ∗

nr, nθ, nϕ unit vector in the (r, θ, ϕ) - (radial, polar, azimuthal)
direction of a spherical polar coordinate system centered
at the sphere

p pressure

r radial coordinate of the spherical polar system

s local coordinate normal to the particle surface

S the surface of the particle

S ∗ the surface that just encloses the particle and the neutraliz-
ing diffuse double layer

t local coordinate tangential to the particle surface

u velocity field of the fluid

U the electrophoretic velocity given by the Smoluchowski for-
mula (1)

U∗ the tangential fluid velocity at the outer edge of the double
layer at surface S ∗ and is related to E∗ by (7)

U∞ the constant velocity at infinity in Appendix B

εr relative permittivity of the solvent

ε0 permittivity of vacuum, 8.852 × 10−12 F/m

ε ≡ ε0εr, solvent permittivity

η solvent viscosity

φ the local electrostatic potential generated by the presence of
the particle in and imposed electric field

Φ the fluid velocity potential: u = ∇Φ

θ polar angular coordinate of the spherical polar system, i.e.
the angle between the radius vector and the electric field

ρ local volume charge density

ψ equilibrium electrostatic potential in the electrical double
layer

ζ the zeta potential of the colloidal particle (assumed to be con-
stant everywhere on the surface)
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