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Summary

• Analysing the Brazilian proposal

– Marginal attribution

– Sensitivity functions

– Use in attribution, sensitivity and

data uncertainty

• Interpretation as adjoints

• derivation by automatic

differentiation.
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Brazilian Proposal
Tabled by Brazil during negotiations leading to Kyoto

Protocol — Flicked-passed to Subsidiary Body for

Scientific and Technical Advice (SBSTA).

Proposes that emission reduction targets

should be proportional to nation’s relative

responsibility for the greenhouse effect.

Issues:
• Indicator? What quantity is used as a

measure of the greenhouse effect?

• For what period of emissions is
responsibility attributed?

• How are non-linear responses attributed?
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Marginal attribution

As example, use indicator T ∗ = TCO2(2100)=

warming in 2100 from CO2 emissions.

T ∗ is to be attributed to emissions Ej(t) from

country j with E(t) =
∑
j
Ej(t).

Differential attribution of warming to emissions

from country j is

∂

∂αj
T ∗[

∑
j
(1 + αj)Ej(t)]
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Sensitivity functions

Consider additive form:
∂

∂γ
T ∗[E(t) + γf(t)]

This is linear:
∂

∂γ
T ∗[E(t) + γ(f1(t) + f2(t))]

=
∂

∂γ
T ∗[E(t) + γf1(t)] +

∂

∂γ
T ∗[E(t) + γf1(t)]

Therefore can be represented as inner product:

∂

∂γ
T ∗[E(t) + γf(t)] =

∫ τ

0
S(t) f(t) dt

Sensitivity function, S(t) is Frechet derivative.
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Applications

• Attribution
∂

∂αj
T ∗[

∑
j
(1 + αj)Ej(t)] =

∫
S(t)Ej(t) dt

• Cumulated attribution: T ∗
j =

∑
j

∫
S(t)Ej(t) dt

• Sensitivities:
∂
∂βT ∗

j =
∑
j

∫
Ej(t)

∂
∂βS(t) dt

• Sensitivity of T ∗
j to uncertainties in emissions

can be obtained as

Var[T ∗
j ] =

∫ ∫
S(t)Cov[Ej(t), Ej(t

′)]S(t′) dt′ dt
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Results: Frechet Derivatives
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Assumes IS92a emissions.

Represents temperature by

response function. Linear

responses for ocean and

biotic carbon, coupled

non-linearly to atmospheric

CO2 (as in CSIRO study).

“ ∂
∂E(t)T (τ) ” for τ = 2000, 2050, 2100.

Decrease as t → τ shows ‘committed warming’.
At any time, warming from the most recent releases
is yet to happen.
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Timescales
CO2 concentrations and consequent warming,
partitioned according to time of emission.
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Lowest bands are from pre-1960 emissions,
next from 1960 to 1980 emissions, etc.
Increase in contribution to warming after time
of emissions from ‘committed warming’ effect.
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Tangent Linear Model (TLM)

For N DEs:
d

dt
xj = gj({xk}, α, t) for j = 1, N

we can define sensitivities as

yj,p =
∂

∂αp
xj for j = 1, N or

to give ‘tangent linear model(s)’:

d

dt
ym,p =

∂

∂αp
gm({xk}, α, t)+

∑
n

∂

∂xn
gm({xk}, α, t) yn,p

Adjoint relations can give gradients.
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Algorithmic Differentiation (AD)

Differentiation by successive use of chain rule.

For binary operation c = f(a, b),

∂c

∂α
=

∂f

∂a
∗

∂a

∂α
+

∂f

∂b
∗

∂b

∂α

e.g.

c = a + b →
∂c

∂α
=

∂a

∂α
+

∂b

∂α

c = a ∗ b →
∂c

∂α
= b ∗

∂a

∂α
+ a ∗

∂b

∂α
Convert program to code for derivatives, one

operation at a time.
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Operator Overloading (C++)

Replace real variable x, (type double), with composite

variable x̃ (type Xvar), representing both value x and its

derivatives with respect to K model quantities, αk as:

x̃0 = x and x̃k =
∂

∂αk
x for k = 1, K

Operator overloading implements c̃ = ã ∗ b̃, representing:

c̃0 = ã0 ∗ b̃0 and c̃k = ã0 ∗ b̃k + ãk ∗ b̃0

Overloaded functions, c̃ = f(ã), represent:

c̃0 = f(ã0) and c̃k = f ′(ã0) ∗ ãk

where f ′(.) denotes the derivative of f(.)
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Class Definitions

Fragment of C++ class definition to

implement operator overloading:
class Xvar{
public :
static const int ns = NUMDERIVS+1;
double xs[ NUMDERIVS+1];
Xvar operator*(Xvar);
...
};

Xvar Xvar::operator*(Xvar b){ Xvar c;
for (int i=1; i < ns; i++)

c.xs[i] = xs[i]*b.xs[0]+xs[0]*b.xs[i];
c.xs[0] = xs[0]*b.xs[0];
return c;} ;

...
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Usage

Original

double F co2(double c){
double a;
a = log(c/280.0)*5.35;
return a;
};
...
double cc;
...
ff = F CO2(cc)

Transformed

Xvar F co2(Xvar c){
Xvar a;
a = log(c/280.0)*5.35;
return a;
};
...
Xvar cc;
// Derivatives wrt
// initial value of cc
cc.set(280,1);
...

ff = F CO2(cc)
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Putting AD into models

Need to modify model by changing:

• type declarations

• output

• initialisation (and input)

• other surprises ????

Use syntax checking of compiler to help

ensure validity.

Real = x var should be undefined, detection

by compiler implies failure to declare all

neccessary variables.
In preparation for MATCH workshop
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Basic Operator Requirements

A basic set:

Binary
Op X.op.X R.op.X X.op.R X.op.I I.op.X
= Y N/A Y Y N/A
+ Y Y Y Y Y
− Y Y Y Y Y
∗ Y Y Y Y Y
/ Y Y Y Y Y
∗∗ – – – Y –

Unary operations (and intrinsics)
Op − sqrt cos sin log exp

Y Y Y Y Y Y
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Conclusions

Brazilian Proposal —

• For a given indicator, T ∗, calculation of S(t) allows
attribution to any nation.

• S(t) most efficiently calculated from adjoint model,
but for multiple indicator times, tangent linear model
is not too inefficient.

• Sensitivity of T ∗
j to model uncertainties can be

obtained as second derivatives.

Algorithmic differentiation —
Operator overloading is a straightforward way of
developing tangent linear models (and obtaining higher
derivatives if needed).
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