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Summary

• Context of carbon data assimilation

– modelling, applications, data

• Inversion formalisms and techniques

– beyond flux inversions: adjoints

• Radiocarbon revisited

– information about gross terrestrial carbon

fluxes
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Why Carbon?

Calibration for earth system simulator

• ACCESS: CABLE + CASA(CNP?) + LPJ

• Application to projection and detection of

feedbacks between physical climate system

and the carbon cycle.

Nowcasting

• For natural resource management

Links to water cycle
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Interpretation

Two main inverse problems: calibration and

data assimilation (deconvolution).

C(t) = C(0) +
∫ t

0
R(t− t′)S(t′) dt′

C(t) = C(0) +
∫ t

0
R(t′′)S(t− t′′) dt′′

The problems of deducing model response,

R(t) (given (S(.) and C(.)) and deducing

forcing term S(t) (given R(.) and C(.)) are

formally equivalent, but in practice differ

greatly because of the different characteristics

of the statistics.
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Hybrid

Using observations in an assimilation mode as

part of a calibration is a case that sits

between the ‘pure’ calibration and

deconvolution formalisms.

Use of satellite vegetation indices is an

important case for terrestrial modelling.

This type of problem will almost always

involve non-linear estimation.
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Information content: e.g. CO2

Quasi-exponential growth in emissions in 20th

century:

C(t) ≈ Cequil +
∫ t

−∞A exp(αt′)R(t− t′) dt′

Sequence of C(t) values all characterise same

projection of the response function. [Happens to

be p = α value of Laplace Transform of R(t).]

Information about longer time scales comes

from ocean chemistry and natural 14C.

Information about shorter time scales comes

from bomb 14C.
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Data for Carbon Cycle Studies

• Air sampling networks interpreted by inverse
modelling;

• Satellite data, for quantities such as leaf-area index
and phenology

• Terrestrial biosphere models;

• Convective boundary layer measurements;

• Stand-level flux networks;

• Ecosystem experiments;

• Small cuvettes.

From Canadell et al., Ecosystems, 3:115, 2000.
Satellite CO2 data is potential addition to this list.
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Key characteristics of statistics

• magnitude;

• degree of correlation between components;

• temporal correlation structure;

• spatial correlation structure;

• distribution;

• mismatches in averaging;

• contribution from model representativeness error.

From Raupach et al., Global Change Biol., 11: 378,
2005

AMOS, 2007

8



Characteristics of terrestrial carbon

• very great spatial heterogeneity

• dominated by local interactions (coupled to

atmosphere)

• wide range of time-scales involved

Water in the land-surface has similar

characteristics.
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Inversion for CO2 fluxes
Synthesis

• Discretise, and calculate responses to

specified set of surface fluxes. Estimate

fluxes from best fit to data from linear

combinations of responses.

Mass balance

• interpolate data to provide surface

concentrations at all points as function of

time, and integrate transport equations

using this boundary condition – deduce

fluxes from surface mass balance.
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Gradient methodology

• Direct (iterative) minimisation of cost

function

• Doesn’t assume linearity so can do

parameter estimation (and/or non-Gaussian

statistics)

• Can work in large dimension spaces (but

requires efficient calculation of gradients

using adjoint relations)

• Adjoint relations less important if

dimension of parameter space is small

AMOS, 2007
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Adjoint transformation

Simplify by separating parametric differentiation

from integration of model (Lu(.) = f(.)[a]),

expressed as Green’s function u(.)[a] = Gf(.)[a]

Then ∇a〈w(.)|u(.)[a]〉 transforms as

∇a〈w(.)|u(.)[a]〉 = ∇a〈w(.)|Gf(.)[a]〉 =

∇a〈G†w(.)|f(.)[a]〉 = ∇a〈v(.)|f(.)[a]〉
where v(.) = G†w(.) defines a single function v(.)

with no dependence on a

Gradients for soft constraints:

∇a〈Hu− z|Hu− z〉 = 2∇a〈Hu0 − z|Hu〉 =

2∇a〈Hu0 − z|HLf〉 = 2∇a〈(HL)†(Hu0 − z)|f〉
AMOS, 2007
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Adjoints as matrix transpose

For ∇a〈w(.)|u(.)[a]〉 with u(.)[a] = Gf(.)[a]

J∑
j=1

K∑
k=1

wkGkj
∂fj

∂ap
for p = 1, P

K∑
k=1

wk

J∑
j=1

Gkj
∂fj

∂ap
takes KP + KJP operations

J∑
j=1

 K∑
k=1

wkGkj

 ∂fj

∂ap
takes KJ + JP operations

Gkj
∂fj
∂ap

solves TLM, wkGkj solves its adjoint.
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Significance of localisation

For sites n = 1, N with total of NP parameters

and NJ forcings

J∑
j=1

K∑
k=1

N∑
n=1

wkGk,jn
∂fjn

∂apn
for p = 1, P , n = 1, N

K∑
k=1

wk

J∑
j=1

Gk,jn
∂fjn

∂apn
takes KPN + KJPN ops

J∑
j=1

 K∑
k=1

wkGk,jn

 ∂fjn

∂apn
takes KJN + JPN ops

For large N and small P :

comparative advantage of adjoint form is small.
AMOS, 2007
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Bomb-14C, with seasonal variation
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mil) from Nydal
and Lovseth,
JGR, 88C, 3621,
1983.
CDIAC NDP057.

In times of isotopic disequilibrium, 14C data give
information about gross terrestrial fluxes. Randerson et
al, (2002), analysed these data mainly as a constraint
on seasonality of stratosphere-troposphere exchange.
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CASA vegetation types

Seasonal modulation of bomb 14C ‘spike’ gives a

low-pass spatial filtering of the age distribution

associated with the spatial distribution.
AMOS, 2007
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Concluding remarks

Analysis of the structure of inversion problems

(including data assimilation) is important for

• using appropriate statistics

• identifying the actual information content

• choosing an appropriate computational

formalism

AMOS, 2007
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