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Summary 2
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Business-as-Usual statistical mechanics

Problems of statistical inference:
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1-D ising

2-D (Gibbs-Markov fields)

Pickard random fields
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Gibbs distribution

Probability of microstate x1, x2, . . . xN

Pr(x1, x2, . . . xN)

=
1

Z
exp [−E(x1, x2, . . . xN)/kBT ]

E(x1, x2, . . . xN) is energy of micro-state

Z, the partition function, is the normalising

factor for the distribution

kB is Boltzmann’s constant

=1.3806× 10−23J/K

T is absolute temperature.
University of Melbourne, November 2008
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Thermodynamics

Thermodynamic quantities

= moments of Gibbs distribution

= derivatives of Z

〈E〉 =
∑

E(x1, x2, . . . xN)× Pr(x1, x2, . . . xN)

Free energy = −kBT ln(Z)

For example, Ising model (xj = ±1) represents

the physics of transitions in:

* binary alloys (beta-brass);

* liquid gas critical point

* anisotropic magnetism.
University of Melbourne, November 2008
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Solving lattice statistics problems

• Exact solutions (Z, low-order moments)

• Closed form aproximations (statistical

closures)

• Exact series expansions: high-temperature

— high-field (low-T)

• Renormalisation group: real space —

reciprocal space

• Monte Carlo: Markov Chain Monte Carlo

(MCMC) can be defined in terms of relative

probabilities: — don’t need Z

University of Melbourne, November 2008
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Random fields

More general models where probabilities do

not reflect energy or temperature.

Gibbs specification in terms of joint

probability

Markov specification of probabilities,

conditional on states of neighbours,

Hammersley-Clifford theorem shows

equivalance of the Gibbs and Markov forms

(as long as no probabilities are zero).

University of Melbourne, November 2008
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Critical points, scaling & fractals

• Special points — occurring

as first-order transition

disappears; OR

• Regime of critical behaviour

— massless phases with

Kosterlitz-Thouless

transitions;

‘OR “The ubiquity of the critical state may well be

regarded as the first really solid discovery of complexity

theory” — M Buchanan in Ubiquity: The Science of

History, referring to self-organised criticality.

University of Melbourne, November 2008
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Physics, beyond thermodynamics

• Percolation:

q → 1 limit of q-state Potts model

(Wu, Fortuin and Kasteleyn), but no longer

related to temparture

— numerous applications

• DLA: diffusion-limited aggregation

• geomorphology — percolation-related?

University of Melbourne, November 2008
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Percolation transition: Firn-to-ice

Past atmospheric

composition can be

measured in air bubbles

trapped in polar ice.

Photograph from CSIRO

Atmospheric Research

Model bubble trapping as

random closure of channels.

‘Critical fluctuations’ in

trapped volume at

close-off. (Simulations

from Enting, J.Glaciol. 39

133–142 (1993).)

University of Melbourne, November 2008
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Satellite data?

Statistical modelling to reconcile

mutliple data streams.

Example from Google Earth (near

Otway geosequestration test site)
University of Melbourne, November 2008
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Role in Earth System Science

• Use statistical models of heterogeneous

systems:

mechanistic models of behaviour of classes

combined with statistical models of

distribution, rather than spatially-explicit

mechanistic modelling

• ‘Null models’ for testing significance of

heterogeneity in observational data –

especially aircraft/satellite remote sensing.

University of Melbourne, November 2008
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Aspects of Modelling

Simple model of response to forcing (Volterra

eqn)

x(t) =
∫ t

0
R(t− t′) f(t′) dt′ =

∫ t

0
R(t′′) f(t− t′′) dt′′

Three forms of model application:

• calculate x(t) given R(t) and f(t)

Forward model

• calculate R(t) given x(t) and f(t)

calibration

• calculate f(t) given x(t) and R(t)

deconvolution — data assimilation
University of Melbourne, November 2008
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Atmospheric CO2 (century scale)

CO2 concentration:

C(t) = C(t0) +
∫ t

t0
R(t− t′)SFossil+land−use(t) dt′

For t0 ≤ 1800, C(t0) ≈ 280 ppm.

Formal equivalence between estimating S(t)

given R(t), C(t) and estimating R((t) given

S(t), C(t), but different forms of function

expected.

(Actual model calibrations, i.e. estimates of

R(t), rely heavily on radio-carbon data).

University of Melbourne, November 2008
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Hidden Markov terminology

Hidden Markov Models, e.g. as applied to

speech processing, have comparable three

problems:

• forward problem:

simulation?

• inverse problem:

calibration = learning or training

• inverse problem:

deconvolution = decoding

University of Melbourne, November 2008
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Lattice statistics modelling

Forward and inverse problems in Gibbs-Markov fields.

forward problem :

Usually hard to construct a realisation of the

probability distribution (except by Markov Chain

Monte Carlo).

calibration problem :

Maximum Likelihood is usually hard — partition

function unknown.

Maximum conditional likelihood formally easier.

reconstruction :

Generally done as Markov Chain Monte Carlo.

University of Melbourne, November 2008
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Parameter estimation

Log likelihood is:

` = −E(x1, . . . xN)/kT − lnZ

( i.e. −S/k in thermodynamic terms —

i.e. maximum likelihood = minimum entropy)

For E(x1, . . . xN)/kT =
∑
α

Kαfα(x1, . . . xN),

maximum likelihood estimates satisfy
∂`

∂Kα
= fα(x1, . . . xN)− 〈fα〉

i.e. the maximum likelihood estimates of interaction

strengths, Kα, are those that give expectations of spin

products, fα that equal observed averages.

Maximum likelihood is equivalent to fitting moments.

University of Melbourne, November 2008
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1-D Ising: Inference

a

b

a

b

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0 Parameterise as

Markov chain:

Pr(σn|σ′n, n′ < n) =
1
2[1 + σn(a + b σn−1)]

Plots shows contours

of 〈σn〉 (straight lines)

and 〈σnσn+1〉 in the

a, b plane.

University of Melbourne, November 2008
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1-D Ising: reconstruction
σ1 — ν1
|

σ2 — ν2
|

σ3 — ν3
|

σ4 — ν4
|

σ5 — ν5
|

σ6 — ν6
|

σ7 — ν7
|

σ8 — ν8
|

Represent reconstruction of Ising state,

σ1 . . . σN , from noisy data, decorated

model with ν1, . . . νN as the degraded

observations.

Pr(σn|νn, σn−1) =
Pr(σn|σn−1)Pr(νn|σn)

Pr(νn|σn−1)

This gives a recursive one-sided

procedure for state-estimation as

Pr(σn|ν1 . . . νn)

=
∑

σn−1=±1
Pr(σn|νn, σn−1)Pr(σn−1|ν1, . . . , νn−1)

University of Melbourne, November 2008
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1-D Ising reconstruction

Time upwards,

independent

series

Noise on 50%

of data.

Reconstruction

as probabilities
Pr(σ = 1) as

greyscale

University of Melbourne, November 2008

19



Inferring 2-D Ising interactions

Maximum likelihood:

choose {Kα} so that for

spin products fα(x1, . . . xN),

〈fα〉 = fα(x1, . . . xN)sample

The problems is that

usually the 〈fα〉 are not

known (as functions of the

{Kα}).

University of Melbourne, November 2008
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Conditional likelihoods

J. Besag: maximise the

likelihood of one set of

spins, conditional on others.

Pr(xj, j ∈ A|xk, k ∈ B)

e.g. maximum (conditional)

likelihood of green/red

distribution, given

blue/yellow sites). Loss of

statistical efficiency and

still potential for poor

convergence, but

computationally simple.

University of Melbourne, November 2008
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Beyond Besag

. . a1 . .

. a2 X1 a3 .
a4 X2 X3 X4 a5
. a6 X5 a7 .
. . a8 . .

Joint probability of X1 to X5,

given a1 to a8 readily

calculated.

Inference on 5/9 of sites

(red or green),

conditional on the other 4/9

(blue or yellow).

(Each site aj occurs as

boundary of 2 sets of Xn.)

University of Melbourne, November 2008
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Image reconstruction

‘On the statistical analysis of dirty pictures’.

J. Besag, J. Roy. Statist. Soc., 48, 259–302.

Binary (i.e. Ising) models mainly relevant for

classification, but also electron-micrography.

Markov Chain Monte Carlo techniques can

sample posterior distributions either for

reconstruction (posterior distribution as

Gibbs-Markov field) or for ‘feature detection’

with Gibbs-Markov as ‘null model.

University of Melbourne, November 2008
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Directed problems

Crystal growth :

growing mixed disordered crystals

— a moving surface of a growing crystal

Stochastic cellular automata (SCA) :

— link to Wolfram (A New Kind of Science???)

Ising model disorder points :

— mapping back onto Gibbs Markov fields reveals

‘hidden’ symmetries (Enting 75).

Directed percolation :

— a special case, extensively studied

— in SCA terms a partly deterministic limit, since

some probabilities are zero.

University of Melbourne, November 2008
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Stochastic cellular automata

Define a distribution in terms of conditional

probabilities that can be used explicitly.

For (0 . . . M)× (0 . . . N) define a stochastic

cellular automaton by:

Pr(σm,n|σm−1,n, σm,n−1, σm−1,n−1) =

Pr(D|C, B, A).

Build up the random field, from boundaries,

(0,0) to (0,N) and (0,0) to (M ,0) by

successive application of Pr(D|C, B, A).

Used to model disordered mixed crystals by

Welberry. Various special solutions found.

University of Melbourne, November 2008
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Pickard fields

Reproducing a 1-D Markov chain across a planar lattice.

• D.J. Pickard (Statistics: R.S.Soc.Sci.): unilateral

Markov fields

• R.J. Baxter (Theoretical Physics, R.S.Phys.S.):

approximate eigenvectors of transfer matrix as

products — variational approximations → corner

transfer matrix

• T.R. Welberry (R.S.Chem): statistics of mixed

crystals — 2-site correlations c.f. X-ray diffraction

• I.G. Enting (Theoretical Physics, R.S Phys.S.): Map

Welberry conditional form onto generalised Ising

models to reveal implicit symmetries.

ANU, Canberra 1976–77

University of Melbourne, November 2008
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Pickard specifications

• Applies to (0 . . . M)× (0 . . . N)

• General stochastic cellular automaton defines:

Pr(σm,n|σm−1,n, σm,n−1, σm−1,n−1) = Pr(D|C, B, A)

• Pickard defines boundaries σ0,0 to σM,0 and σ0,0 to

σ0,N as Markov Chains.

• Using ⊥ to denote independence, Pickard’s

constraints are B ⊥ C|A along with:

– A ⊥ D|C and A ⊥ D|B Case A

– OR

– B ⊥ C|D Case B

• These conditions ensure stationarity over plane.

• Both lead to ‘reversibility’ – case A has rectangular

symmetry.
University of Melbourne, November 2008
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Some results for Pickard fields

• Exponential decay of correlations:

〈σn,mσ0,0〉 − 〈σn,m〉〈σ0,0〉
= α|m|β|n| ∀m, n Case A

= α|m|β|n| for m× n ≥ 0 case B

• Pair correlations don’t uniquely characterise

field (i.e. X-ray diffraction does not tie

down structure). Even for spibn-symmetric

cases, there are families whose members

have identical pair correlations but differ in

their 4-site correlations

University of Melbourne, November 2008
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Modelling with Pickard fields

• Modelling:

— simple to construct explicit realisations

by applying the defining rule

• Calibration:

— match the defining probabilities to equal

sample statistics??

• Reconstruction: — closed-form probabilities

facilitate both Monte Carlo and maximum

likelihood.

University of Melbourne, November 2008
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Symmetries

Mapping the SCA form onto the

Gibbs-Markov form revealed ‘hidden

symmetries (Enting, 1975) and led to

additional closed form solutions of correlations

(Welberry).

Special subcases have triangular lattice

neighbourhood, D ⊥ A|B, C, and various

symmetries lead to a set of cases with exact

solutions, mostly identified in isolation as

special Ising model cases.

University of Melbourne, November 2008
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Future directions?

• Applications to land-surface modelling

• Higher-order Pickard fields

• Use of Stochastic cellular automata (SCA)

in the design of deterministic cellular

automata (Rujan 1987).

— looking in the Gibbs parameter space,

‘interesting’ cellular automata can occur

when the SCA manifold approaches a

critical manifold as probabilities → 0 or 1.

University of Melbourne, November 2008
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Beyond Pickard?

Pickard results not restricted to binary

variables.

Can Pickard results produce a higher-order field

by using variables with 2m2
states?.

i.e. reproduce m×m squares of binary variables

— overlapping to allow stationarity?

Is this possible?

Does it corrrespond to higher-order versions of

corner-transfer-matrix approximations?

Is it useful? — bounds?

University of Melbourne, November 2008
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THANK YOU

University of Melbourne, November 2008
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Further information

• D.K. Pickard: Unilateral Markov Fields. Adv. Appl.

Prob,, 12, 655–671, 1980.

• T.R. Welberry. Diffuse X-ray scattering and models

of disorder. Rep. Prog. Phys., 48, 1543–1593, 1985.

• N.A.C. Cressie Statistics for Spatial Data, Wiley,

NY, 1993.

• P. Rujan. Cellular automata and statistical

mechanics models. J. Statistical Physics, 49,

139–222, 1987.

University of Melbourne, November 2008
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Comments on graphics

Hand-coded postscript.

Two main types:

1: Rendering a simulation from other software

— can render one data set in multiple ways

2: Simulation within the postscript

use internal random numbers in PS-interpreter

(in printer, viewer, pdf converter, etc)

Description in Aust. M. S. Gazette, 33, 131

(2006). Enting’s review of Mathematical

Illustrations: A Manual of Geometry and

PostScript by Bill Casselmann

University of Melbourne, November 2008
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Render external simulation

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 90 90 565 560

% File monte.ps1 Plot Ising simulation

/dx 5 def /yc 100 def /x0 100 def /xc x0 def

dx setlinewidth

/A { 1 0 0 setrgbcolor block} def

/B {0 1 0 setrgbcolor block} def

/LF { /xc x0 def yc dx add /yc exch def} def

/block {newpath xc yc moveto dx 0 rlineto stroke xc dx

add /xc exch def} def

% End of file monte.ps1

% File monte0.psd: Dummy test data

A B A A B LF A B A B B LF B A A A B

showpage
University of Melbourne, November 2008
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Internal simulation

/unitrand {rand 65536 div 32768 div } def

/withinp {unitrand le } def

/setspin { withinp {-1} {1} ifelse} def
.......

/pcase { 1 eq {A} {B} ifelse } def

/Print { {pcase} forall LF} def
...

/ycalc { bb exch dup dup aa xget exch 1 sub dup aa xget

exch bb xget func setspin put } def
...

/Loop

{ bb 0 aa 0 get dim1 put 1 1 nsca {ycalc} for bb Print

aa 0 bb 0 get dim1 put 1 1 nsca {xcalc} for aa Print } def
...

1 1 25 Loop for

University of Melbourne, November 2008
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