

Automatic Differentiation in the Analysis of Strategies for Mitigation of Global Change

I. Enting

MASCOS The University of Melbourne

Acknowledgments

The Center of Excellence for Mathematics and Statistics (MASCOS) is funded by the Australian Research Council.

My fellowship at MASCOS is supported by CSIRO through a sponsorship agreement.

Much of this work builds on work with the members of the MATCH working group studying the Brazilian Proposal, particularly Cathy Trudinger of CSIRO Marine and Atmospheric Research

Summary

- Modelling global change
- Automatic (algorithmic) differentiation in analysing models
- Algorithmic differentiation in analysing the Brazilian proposal for greenhouse mitigation targets

Timescales

 CO_2 concentrations and consequent warming, partitioned according to time of emission.

Lowest bands are from pre-1960 emissions, next from 1960 to 1980 emissions, etc. Increase in contribution to warming after time of emissions from 'committed warming' effect.

Modelling Spectrum

Characteristics	Carbon Cycle	Climate System
Black box		
Empirical	Curve fitting	Curve fitting
Stochastic	Airborne fraction	
Grey box		
	Response function	Response function
	Box model	Energy balance model
White box		
Deterministic		Atmos/ocean GCM
Reductionist	Spatially resolved	
Mechanistic		Earth system model

Spectrum concept: Karlpus 1977; carbon examples: Enting 1987.

Model Analysis

Most common model calculation is forward projection by (numerical) integration of DEs.

However many aspects of analysing models involve differentiation:

- **Sensitivity analysis** derivatives with respect to parameters;
- Calibration techniques such as Maximum Likelihood imply optimisations, facilitated by use of derivatives;

Data assimilation — real-time model adjustment — dynamic calibration.

For a model expressed as N DEs:

$$\frac{d}{dt}x_j = g_j(\{x_k\}, \alpha, t) \qquad \text{for } j = 1, N$$

we can define sensitivities as

$$y_j = \frac{\partial}{\partial \alpha} x_j \qquad \text{ for } j = 1, N$$

to give 'the tangent linear model':

$$\frac{d}{dt}y_m = \frac{\partial}{\partial\alpha}g_m(\{x_k\}, \alpha, t) + \sum_n \frac{\partial}{\partial x_n}g_m(\{x_k\}, \alpha, t) y_n$$

Algorithmic Differentiation (AD)

Differentiation by successive use of chain rule. For binary operation c = f(a, b),

$$\frac{\partial c}{\partial \alpha} = \frac{\partial f}{\partial a} * \frac{\partial a}{\partial \alpha} + \frac{\partial f}{\partial b} * \frac{\partial b}{\partial \alpha}$$

e.g.

$$c = a + b \quad \rightarrow \frac{\partial c}{\partial \alpha} = \frac{\partial a}{\partial \alpha} + \frac{\partial b}{\partial \alpha}$$
$$c = a * b \quad \rightarrow \frac{\partial c}{\partial \alpha} = b * \frac{\partial a}{\partial \alpha} + a * \frac{\partial b}{\partial \alpha}$$

Convert program to code for derivatives, one operation at a time.

Computational Complexity of AD
For
$$u_k \to x_j(t) \to y_j$$
, Jacobian is: $J_{jk} = \frac{\partial y_j}{\partial u_k}$
 $J_{jk} = \sum \frac{\partial y_j}{\partial x_n(T)} \cdots \frac{\partial x_{n'}(t)}{\partial x_{m'}(t-1)} \cdots \frac{\partial x_n(1)}{\partial x_n(0)} \frac{\partial x_n(0)}{\partial u_k}$
Tangents: $\frac{\partial y_n}{\partial \alpha} = \sum_k J_{jk} \frac{\partial u_k}{\partial \alpha}$

TLM is successive product of vector \times sparse matrix.

Gradients:
$$\frac{\partial \phi}{\partial u_k} = \sum_j J_{jk} \frac{\partial \phi}{\partial y_j}$$

Adjoint model achieves efficiency of vector \times sparse matrix by using chain rule backwards in time.

Approaches to AD

Hand-code program to calculate derivatives laborious, error-prone and must be repeated each time the model changes.

Symbolic algebra (e.g. Mathematica) — problematic for adjoints.

Tangent/adjoint compilers — transform source into code for tangent or adjoint models.

Operator overloading to produce a 'script' that is analysed to give code for the derivatives.

Use operator overloading capabilities directly — straightforward for tangent-linear-model, but restricted applicability to adjoint models.

Operator Overloading

Replace real variable x, (type double), with composite variable \tilde{x} (type Xvar), representing both value x and its derivatives with respect to K model quantities, α_k as:

$$ilde{x}_0 = x$$
 and $ilde{x}_k = rac{\partial}{\partial lpha_k} x$ for $k = 1, K$

Operator overloading implements $\tilde{c} = \tilde{a} * \tilde{b}$, representing:

$$\tilde{c}_0 = \tilde{a}_0 * \tilde{b}_0$$
 and $\tilde{c}_k = \tilde{a}_0 * \tilde{b}_k + \tilde{a}_k * \tilde{b}_0$

Overloaded functions, $\tilde{c} = f(\tilde{a})$, represent:

$$\tilde{c}_0 = f(\tilde{a}_0)$$
 and $\tilde{c}_k = f'(\tilde{a}_0) * \tilde{a}_k$

where f'(.) denotes the derivative of f(.)

Class Definitions

Fragment of C++ class definition to implement operator overloading:

```
class Xvar{
public :
static const int ns = _NUMDERIVS+1;
double xs[_NUMDERIVS+1];
Xvar operator*(Xvar);
. . .
};
Xvar Xvar::operator*(Xvar b){ Xvar c;
for (int i=1; i < ns; i++) c.xs[i] =</pre>
xs[i]*b.xs[0]+xs[0]*b.xs[i];
c.xs[0] = xs[0]*b.xs[0];
return c;};
```

Brazilian Proposal

Tabled by Brazil during negotiations leading to Kyoto Protocol — Flicked-passed to Subsidiary Body of Scientific and Technical Advice (SBSTA). Proposes that emission reduction targets should be proportional to nation's relative responsibility for the greenhouse effect.

Issues:

- Indicator? What quantity is used as a measure of the greenhouse effect?
- For what period of emissions is responsibility attributed?
- How are non-linear responses attributed?

Brazilian Proposal as Derivatives

$$\frac{\partial T^*}{\partial E_j(t)} E_j(t) = \frac{\partial T^*}{\partial E(t)} E_j(t) = S(t) E_j(t)$$

where S(t) is a functional derivative. Cumulated attribution: $T_j^* = \int S(t) E_j(t) dt$

Results: Functional Derivatives

Assumes IS92a emissions. Represents temperature by response function. Linear responses for ocean and biotic carbon, coupled non-linearly to atmospheric CO_2 (as in CSIRO study).

 $\frac{\partial}{\partial E(t)}T(\tau)$ for $\tau = 2000$, 2050, 2100. Decrease as $t \to \tau$ shows 'committed warming'. At any time, warming from most recent releases is yet to happen.

Implications

- For a given indicator, T^* , calculation of S(t) allows attribution to any nation.
- S(t) most efficiently calculated from adjoint model, but for multiple indicator times, tangent linear model not too inefficient.
- \bullet Sensitivity of T_j^* to model uncertainties can be obtained as second derivatives.
- \bullet Sensitivity of T_j^* to uncertainties in emissions can be obtained as

 $\operatorname{Var}[T_j^*] = \int \int S(t) \operatorname{Cov}[E_j(t), E_j(t')] S(t') dt' dt$

Conclusions

Algorithmic differentiation —

Operator overloading is a straightforward way of developing tangent linear models (and obtaining higher derivatives if needed).

Brazilian Proposal —

Attribution in terms of derivatives is readily calculated using algorithmic differentiation. Higher derivatives give sensitivities.

Global change —

Potential should extend to other analyses of uncertainties in global change.

Further Information

Algorithmic Differentation —

Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Andreas Griewank (SIAM).

Brazilian Proposal — MATCH website:

http://www/match-info.net
My site:
http://ms.unimelb.edu.au/~enting/brazil.html

This study — Extended abstracts from MODSIM 2005.