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Abstract

We study a model for delays experienced by traffic along ℓ lanes when there is no
opportunity to switch between lanes. A controller (who does not know the state of the
system) may direct vehicles to different lanes based on their velocities.

We examine properties of the long run delay rate (as a function of the arrival rate and
the distribution of velocities) for a single lane. In the multiple lane setting we compare
the long run delay rates arising from different routing schemes and in particular prove
that optimal partition routing (where cars are assigned to lanes based entirely on their
velocities) gives smaller long run delay rate than the optimal simple random routing.
Many proofs rely on coupling.

1 Introduction
Traffic congestion affects many facets of society. Commuters, emergency services, and
indeed all road users can experience delays, with outcomes ranging from minor inconve-
nience to major adverse health impacts. Other undesirable outcomes such as noise and
air pollution affect even non-road users. National and local governments design and
manage traffic networks in order to alleviate traffic congestion and its consequences.
This design and management can take many forms including disincentives (such as
tolls), incentives for alternatives (such as improving public transport or cycling options)
or changing the road network itself.

Probabilistic models for traffic flow and congestion have been around for decades see
e.g. Breiman [Bri62, Bri63], Rényi [R6́4], Hawkes [Haw66, Haw68] and Zeephongsekul
[Zee]. Queueing theory, a subfield of applied probability and stochastic operations re-
search, concerns the modelling (and rigorous analysis of those models) of queuing and
service systems, that typically also experience congestion. There have been several more
recent works in the literature utilizing queuing theory in the context of traffic flow mod-
elling or analysis, including Heidemann [Hei94] and Jain and Smith [JS97]. We refer
readers to the survey by Van Woensel and Vandaele [VWV07] for further references prior
to 2007. Most relevant to our work is the work of Chao et al. [CHR15]. Therein the
authors introduce and study the ‘tollbooth tandem queue’, which is a type of infinite-
server queue where the servers are arranged in series (instead of in parallel). When a
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customer/job arrives at the system, its service commences immediately, but that job
cannot leave until all prior arrivals have left the system. The authors of [CHR15] point
out that the tollbooth tandem queue can be interpreted as a single-lane traffic model,
but the main objective of [CHR15] is to derive various distributions and performance
measures associated with this queueing system.

We seek to understand how arriving cars should be routed to lanes in this traffic
model when there are multiple lanes and passing within a lane is not allowed. More
precisely, we are interested in reducing or minimising the delay per unit time (which
we will define precisely below) occurring in the system. Under the routing schemes we
consider, the traffic flows in different lanes will be independent of each other. Therefore
a substantial part of our effort will be directed to investigating properties of the delay
per unit time in a single lane.

The model studied here is very much a ‘toy model’, but we hope that our treat-
ment will encourage both: (i) further study of this and similar toy models for traffic
congestion; and (ii) extensions to more realistic models (and perhaps even practical
recommendations).

2 Main Results
Suppose there are ℓ ∈ N lanes on a stretch of highway, labelled 1, . . . , ℓ, all of unit length,
enabling travel from a common source/routing point to a common destination. Cars
arriving at the source are immediately assigned to a lane, and cannot change lanes at
any point along the highway. They can, therefore, be delayed by slower cars travelling in
front of them. This raises a very general question: how should arriving cars be assigned
to lanes in order to minimise delays? We will address this question for some specific
classes of routing schemes.

Cars arrive at the source in accordance to a Poisson process {N(t); t ≥ 0} having
rate λ, with N(t) denoting the number of cars who enter the highway within the time
interval [0, t], t > 0. The i-th car arrives at time Ti, travelling at speed Vi: the workload
associated to this car is Wi := 1/Vi ∼ F , where Wi can be interpreted as the amount
of time it takes the i-th car to move from the routing point to the endpoint of the
highway, when it is unimpeded by any other cars. We assume throughout that {Wi}i≥0

is an i.i.d. sequence, independent of the arrival process, with cdf F satisfying F (0−) :=
limx↑0 F (x) = 0, as well as F (∞) := P(W < ∞) = 1. Let supp(F ) denote the support
of F , where we recall t ∈ supp(F ) if, for each ϵ > 0, F (t+ ϵ)− F (t− ϵ) > 0.

In a real system an arriving car may choose (or be routed to) a lane depending on
what is in front of it at the time of arrival (e.g. based on the speed of or distance to
the closest car in each lane). However we will restrict our attention to routing schemes
in which each arriving car is routed to lane j ∈ [ℓ] := {1, 2, . . . , ℓ} with probability qj
(independent of all other cars), so that

∑
j∈[ℓ] qj = 1. The lane entered could be chosen

completely at random, or could depend on the velocity of the arriving car. This will be
specified more precisely later.

If the n-th car is unimpeded by any slower cars encountered on the road, it arrives at
the endpoint at time Dn := Tn +Wn. However, passing is not possible (as cars cannot
switch lanes), so if the n-th arrival catches up to another car in front of it, it is impeded
by that slower car. It therefore adjusts its velocity to match that of the impeding car,
and they reach the destination at the same time. For each integer n ≥ 1, let Sn denote
the sojourn time of the car on the highway, and let ∆n := Sn−Wn denote the total delay
experienced by the n-th car from driving on the entire road segment. Thus, Tn +Wn is
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the time at which the n-th car expects to arrive to the endpoint, assuming ideal traffic
conditions, and Tn + Sn is the actual time this arrival arrives at the endpoint.

Next, define, for each t ≥ 0,

∆n(t) := ((Tn + Sn) ∧ t)− ((Tn +Wn) ∧ t) (1)

as the amount of time the nth arrival is overdue at time t. Clearly, ∆n(t) → ∆n as
t → ∞. Finally, for each t ≥ 0 we define Lt(λ, F ) = 0 when λ = 0 and otherwise

Lt(λ, F ) :=
∞∑
n=1

∆n(t) (2)

which represents the cumulative delay at time t of all cars arriving to the highway in [0, t]
(clearly ∆n(t) = 0 when t < Tn). We study the long-run delay rate limt→∞ Lt(λ, F )/t.
When ℓ = 1 we express the long-run delay rate as L(λ, F ). Existence and finiteness of
the limit are non-trivial, and are the subject of Theorem 1 below.

Let, for each t ≥ 0, Xt denote the number of customers traversing the highway at
time t. Observe (assuming X0 = 0) that for each t ≥ 0,

Xt =
∞∑
n=1

1{Tn≤t,Tn+Sn>t}.

Many properties of {Xt; t ≥ 0} play an important role in establishing our main results,
e.g. when ℓ = 1, {Xt; t ≥ 0} can be interpreted as the queue-length process of the
tollbooth tandem queue of [CHR15], and this interpretation will play a role in some of
our arguments.

We seek a basic understanding of how certain routing schemes compare in terms of
the long run delay rate. To this end we will establish various properties (not found
in [CHR15]) of L(λ, F ) as a function of both λ and F , and then use these (and other
methods) to demonstrate that some routing strategies are superior to others. Along the
way we will also present some examples that illustrate interesting features of L(λ, F ).

In order to establish part of our main limit theorem, it helps to introduce the infinite-
server queue process {Yt; t ≥ 0} associated with {Xt; t ≥ 0}, where for each t ≥ 0,

Yt :=

∞∑
n=1

1{Tn≤t,Tn+Wn>t}.

Note that Xt ≥ Yt for each t ≥ 0, simply because Sn ≥ Wn for each integer n ≥ 1.
Moreover, standard regenerative arguments show that both {Xt; t ≥ 0} and {Yt; t ≥ 0}
have a limiting distribution when E[W ] < ∞, and it can also be shown (see [CHR15])
that if X∞ and Y∞ denote random variables whose laws, respectively, are those of the
limiting distribution of {Xt; t ≥ 0} and the limiting distribution of {Yt; t ≥ 0}, then

E[X∞] = lim
t→∞

E[Xt], E[Y∞] = lim
t→∞

E[Yt].

Our first main result establishes the existence of the a.s. limit L(λ, F ) and gives a
concise formula for it.

Theorem 1. For a single lane with arrival rate λ and workload distribution F , the
almost-sure limit L(λ, F ) ∈ [0,∞] exists, is non-random and satisfies the following.

(i) L(λ, F ) < ∞ if and only if E[W 2] < ∞.
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(ii) If E[W 2] < ∞ then

L(λ, F ) = λ

∫ ∞

0

(
1− e−λH(s)

)
F (s) ds, (3)

where H(y) :=
∫∞
y F (s)ds.

Proof. We provide a simple proof of Theorem 1 for the special case where E[W ] < ∞,
as it is analogous to arguments typically used in queueing theory to establish Little’s
law; see e.g. Whitt [Whi91, Whi92] and in particular both Serfozo [Ser94] and Chapter
5 of Serfozo [Ser99]. Proving this result for the case where E[W ] = ∞ appears to be
significantly more difficult, and the reader can find the argument in Section 3.

The key to establishing this result when E[W ] < ∞ is to realise that, for each t ≥ 0,

Lt(λ, F ) =
∞∑
n=1

[((Tn + Sn) ∧ t)− ((Tn +Wn) ∧ t)] =

∫ t

0
(Xs − Ys)ds. (4)

Note also that, as observed in [CHR15], the busy period distribution associated with
{Xt}t≥0 is equal to the busy period distribution associated with {Yt}t≥0, and the latter
is clearly finite with probability one if and only if E[W ] < ∞. From here, it follows from
standard regenerative process theory (see e.g. Theorem 3.1 on page 178 of Asmussen
[Asm03]) that

Lt(λ, F )

t
→ E[X∞ − Y∞]

almost surely as t → ∞, so that L(λ, F ) exists and is equal to E[X∞ − Y∞] when
E[W ] < ∞. Finally, Chao et al. show at the bottom of page 946 of [CHR15] that

E[X∞ − Y∞] = λ

∫ ∞

0

(
1− e−λH(s)

)
F (s) ds

which proves statement (ii), and completes the proof of Theorem 1 when E[W ] < ∞. It
is also easy to show that when E[W ] < ∞, L(λ, F ) < ∞ if and only if E[W 2] < ∞. ■

A similar expression to (3) holds for the expected value of Lt(λ, F ).

Proposition 2. For a single lane with arrival rate λ and workload distribution F ,

E[Lt(λ, F )] = λ

∫ t

0

∫ s

0

[
1− e−λ

∫ s
u F (v)dv

]
F (u)duds. (5)

Moreover,

lim
t→∞

E[Lt(λ, F )]

t
= L(λ, F ). (6)

Formula (6) follows trivially from (5), even when E[W ] = ∞, which is interesting in
light of what we found whilst proving Theorem 1.

Proof. This result follows from Formula (4). Indeed, on page 946 of [CHR15], the
authors show that for each s ≥ 0,

E[Xs − Ys] = λ

∫ s

0
F (u)

[
1− e−λ

∫ s
u F (v)dv

]
du (7)
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and after taking the expected value of both sides of (4), then applying (7), we get

E[Lt(λ, F )] = λ

∫ t

0

∫ s

0
F (u)

[
1− e−λ

∫ s
u F (v)dv

]
duds

proving (5). As noted above, (6) is a simple consequence of (5). ■

Example 1. Suppose that W takes the values a and b > a with probabilities 1− p and
p respectively. Then one can easily evaluate (3) to get

L(λ, F ) =
1− p

p

[
pλ(b− a)− 1 + e−λp(b−a)

]
. (8)

A calculus exercise shows that the value of p which maximizes L is always in (0, 1/2).
Thus we are worse off in this example having slightly more delayees than delayers.

One can easily evaluate (5) for this example too. Indeed, with δ = b− a,

E[Lt(λ, F )] =


0, if t ≤ a
1−p
p

[
λp (t−a)2

2 − (t− a) + 1−e−λp(t−a)

λp

]
, if t ∈ (a, b],

1−p
p

[
λp δ2

2 − δ + 1−e−λpδ

λp + (t− b)
[
λpδ − 1 + e−λpδ

]]
, if t > b.

Note that the growth is linear after time b (the maximum of the bounded support).

In view of Theorem 1(i) we make the following assumption.

Assumption A. We henceforth assume (unless otherwise stated) that E[W 2] < ∞.

Our next result establishes many properties of L(λ, F ) that will be useful when we
study routing strategies for cars travelling on a multi-lane highway. The proof is in
Section 3.

Theorem 3. Suppose that supp(F ) contains at least two elements.

(a) L(λ, F ) > 0 when λ ∈ (0,∞).

(b) L(λ, F ) is strictly increasing in λ on [0,∞) and differentiable in λ on (0,∞).

(c) For α, β ≥ 0, if F ′ is the cdf of W ′ = βW + α then

L(λ, F ′) = L(βλ, F ). (9)

(d) L(λ, F ) is superadditive in λ on [0,∞), i.e. for λ1, λ2 ≥ 0

L(λ1 + λ2, F ) ≥ L(λ1, F ) + L(λ2, F ). (10)

(e) If W ∼ F and W ′ ∼ F ′ then

∣∣L(λ, F )− L(λ, F ′)
∣∣ ≤ λ

∣∣E[W ′]− E[W ]
∣∣+ λ2

∫ ∞

0
s
∣∣F ′(s)− F (s)

∣∣ ds.
In particular, if F has finite variance and {Fn} is a sequence that satisfies

∫∞
0 s|Fn(s)−

F (s)| ds → 0 as n → ∞, then L(λ, Fn) → L(λ, F ) as n → ∞.

(f) L(λ, F ) is convex in λ on [0,∞).
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Remark 2. Let b− a = 1 in Example 1. Let Gp denote the workload cdf associated to
this example (it depends on p). For small λ we have that L(λ,Gp) ≈ λ2

2 p(1 − p). For
large λ we have that L(λ,Gp) ≈ (1− p)λ. It follows that

L(λ,G1/2) > L(λ,G1/3), for λ sufficiently small,

L(λ,G1/2) < L(λ,G1/3), for λ sufficiently large.

This shows that (in general) whether one workload distribution gives larger long-run
delay rate than another depends on λ.

Further results concerning a single lane appear in Section 3. In particular we will
present results concerning asymptotics for small and large λ, as well as conditions under
which one workload distribution gives larger long-run delay rate than another for all λ.

We now turn our attention to multiple lanes. Let F = σ({Wn}n∈N, {Tn}n∈N, {Un}n∈N),
where {Un}n∈N are i.i.d. standard uniform random variables that are independent of the
arrival process. For fixed ℓ ≥ 2, let {Rn}n∈N be any F-measurable assignment of arrivals
to lanes, where Rn denotes the lane traversed by the nth arrival. It is a trivial exercise
to show that the delay experienced by any individual under lane assignments {Rn}n∈N
is not more than that when all arrivals are sent to lane 1.

It is interesting to study how vehicle delay accumulates over time, whenever the
vehicles choose lanes according to some fixed policy. Examples of such policies include
the following:

• Random Routing: When cars select lanes under this policy, an arriving car
chooses lane j with probability qj , independent of its speed/workload, or any
other information. Standard thinning properties of Poisson processes imply that
the long-run delay rate is given by

L(λ, F | q) := lim
t→∞

Lt(λ, F )

t
=

ℓ∑
j=1

L(λqj , F ).

We refer to this routing scheme as the random routing scheme.

• Partition Routing: Another interesting routing scheme is the partition routing
scheme: given a partition I := {Ij}j∈[ℓ] of [0,∞) consisting of Borel sets, an
arriving vehicle chooses lane j if its workload is an element of Ij . Hence, an arriving
vehicle chooses lane j with probability qj := P(W ∈ Ij). Because the workload of
an arriving vehicle is independent of the workloads of all other vehicles, thinning
arguments can again be used to show that the long-run delay rate is

L(λ, F | I) := lim
t→∞

Lt(λ, F )

t
=

ℓ∑
j=1

L(λqj , Fj)

where the cdf Fj : R → [0, 1] is defined as Fj(t) := P(W ≤ t | W ∈ Ij).

• Cyclic Routing: A third natural routing scheme that would be of interest to
study for comparison purposes is the case where Rn − 1 = n mod ℓ. We call this
cyclic routing and note that in this case the arrival process in each lane is not
Poisson.

In this paper we primarily investigate properties of random and partition routing
schemes. Although our main results in this setting are not surprising, some other
intuitively reasonable statements turn out to be false in general.
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The following result shows that the uniform random routing policy is optimal among
the set of all random routing policies.

Proposition 4. The optimal random routing policy q∗ := [q∗i ]i∈[ℓ] among the set of all
random routing policies is q∗i = 1/ℓ, i ∈ [ℓ].

Proof. Recall from Theorem 3(f) that L(λ, F ) is convex in λ. Therefore, for any random
routing policy q := [qi]i∈[ℓ] satisfying qi ̸= 1/ℓ for some i ∈ [ℓ], we have

L(λ/ℓ, F ) = L

(
ℓ∑

i=1

1

ℓ
λqi, F

)
≤

ℓ∑
i=1

1

ℓ
L(λqi, F )

from which we get
ℓ∑

i=1

L(λ/ℓ, F ) = ℓL(λ/ℓ, F ) ≤
ℓ∑

i=1

L(λqi, F ), as required. ■

We expect that cyclic routing is superior to random routing. The next result estab-
lishes the superiority of partition routing as compared to random routing, when F is
continuous.

Theorem 5. If F is continuous then, for any λ > 0, optimal partition routing has a
smaller delay rate than optimal random routing.

In general it seems to be a very difficult task to find optimal partition routing schemes
for arbitrary F . A reasonable first guess is that optimal partitions put cars together with
other cars of similar speed, in such a way that each lane is assigned a single interval of
speeds/workloads. This turns out to not be the case in general, with 3 distinct velocities
(see Example 3) already providing counterexamples.

Example 3. Consider the case ℓ = 2, with three workloads wi = i, i = 1, 2, 3 with prob-
abilities (1, 20, 1)/22, and λ = 10. Of the three non-trivial partition rules (corresponding
to which workload gets a lane of its own), the one that puts the cars with workload 2
in their own lane (hence the highest and lowest workloads in the other lane) is opti-
mal. Moreover this partition gives lower long-run delay rate than any semi-randomized
partition that puts workloads 1 and 3 in different lanes and splits the other workloads
randomly between the two lanes (probability q′ of being assigned to lane 1 - see Figure
1).

This is not an artifact of W being discrete, as we observe the same phenomenon
with an approximating continuous W (recall Theorem 3(e)).

Following the previous example, the next theorem should now be considered non-
obvious.

Theorem 6. Suppose F ∼ U(a, b). Then the optimal partition routing scheme assigns
to each lane, a single interval of length (b− a)/ℓ.

Open Problem 4. Give non-trivial sufficient conditions on F that guarantee that the
optimal partition rule assigns to each lane a single interval.

The rest of the paper is organised as follows. In Section 3 we prove various results
about the long-run delay rate for a single lane, including Theorems 1, 2, and 3. In
Section 4 we prove Theorems 5 and 6.
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Figure 1: A plot of L as a function of q′ in the setting of Example 3,
where there are 3 distinct workloads (1,2,3) and two lanes. Workloads
1 are put in lane 1, and workloads 3 are put in lane 2. Workloads equal
to 2 are assigned at random to either lane (lane 1 with probability q′).
One obtains a smaller L (dotted line) by putting workloads equal to 2
in lane 2 and all others in lane 1.

3 Single lane proofs
In this section we finish the proof of Theorem 1, and we also prove Theorem 3. We also
include some additional results (and proofs) concerning properties of L(λ, F ). Through-
out this section ℓ = 1.

We start by showing that the delay rate is infinite when W has infinite expectation,
thus completing the proof of Theorem 3.

Lemma 7. If E[W ] = ∞ then Lt(λ, F )/t → ∞ almost surely as t → ∞.

Proof. The proof is by coupling. Roughly speaking we will compare the delay up to
time t with a sum of i.i.d. random variables. The proof is somewhat “technical”, so
before presenting the details, let us indicate the main ideas of the proof.

Consider the second arrival. This arrival has workload W2 < ∞, so on the event
that W2 ≤ c, the expected delay that it will experience is infinite due to the fact that
the expected workload of the first arrival is infinite. The delay that it will experience
up to time t is of course finite, but that delay will have large expected value if t is large
(the second arrival should arrive well before time t), and W2 ≤ c (which has positive
probability). More generally, even arrivals who: (1) arrive well before time t; and (2)
have workload that is not large; and (3) have the previous arrival arrive a short time
before them, will be expected to be delayed a lot by that previous arrival. Roughly
speaking, the proof below will combine these observations in a rigorous way, and will
show that by counting only delays to even arrivals ignoring all delayers but the previous
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odd arrival (call this a paired delay) we get a lower bound on

lim inf
t→∞

Lt(λ, F )

t
,

that is as large as we like by choosing “well before”, “not large” and “short time” ap-
propriately in (1),(2),(3). The proof ultimately utilises the law of large numbers, so we
will need to show that the paired delays above dominate an i.i.d. collection of random
variables.

We now commence the proof proper. First, observe that since limx→∞ F (x) = 1 by
assumption, there exists c > 0 such that P(W < c) > 0. We also define, for each integer
i ≥ 1,

Mi := sup
1≤ℓ≤i

(Ti +Wi), M
′
2i := max(T2i−1 +W2i−1, T2i +W2i).

In particular M2i is the departure time of the 2i-th arrival, while M ′
2i would be the

departure time of the 2i-th arrival if this individual could only be delayed by the previous
arrival. Clearly M ′

2i ≤ M2i.
Next, define, for each t ≥ 0, Ne(t) as the number of evenly-indexed arrival times less

than or equal to t, i.e.

Ne(t) :=
∞∑
k=1

1{T2k≤t}.

Given a fixed positive integer s0 > c+ 1, observe that for each t > s0,

Lt(λ, F ) =

N(t)∑
i=1

[Mi ∧ t− (Ti +Wi) ∧ t]

≥
Ne(t−s0)∑

i=1

1{W2i≤c,T2i−T2i−1≤1,M2i>T2i+W2i} [M2i ∧ t− (T2i +W2i) ∧ t] . (11)

The summand in the first line above is the delay experienced by the ith arrival up to
time t. We get a lower bound on the sum by only counting even arrivals, and a smaller
lower bound by only counting those even arrivals 2i that arrived before t− s0 (so “well
before” t if s0 is not small) whose workload is not large (≤ c), and whose predecessor,
the 2i− 1st arrival, arrived at most 1 time unit (a “short time") before them. We also
need only count those even arrivals who are actually delayed (M2i > T2i +W2i). This
results in the lower bound (11), which is equal to

Ne(t−s0)∑
i=1

1{W2i≤c,T2i−T2i−1≤1,M2i>T2i+W2i} [M2i ∧ t− (T2i +W2i)] . (12)

To see this note that on the set {T2i ≤ t−s0,W2i ≤ c, T2i−T2i−1 ≤ 1,M2i > T2i+W2i},

T2i +W2i ≤ t− s0 + c = t− (s0 − c) ≤ t.

Moreover, since M
′
2i ≤ M2i we have that

(12) ≥
Ne(t−s0)∑

i=1

1{W2i≤c,T2i−T2i−1≤1,M
′
2i>T2i+W2i}

[
M

′
2i ∧ t− (T2i +W2i)

]
.
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Next we define, for each integer i ≥ 1,

M̂2i := t− s0 +W2i−1 − (T2i − T2i−1).

and when T2i ≤ t− s0 and M ′
2i > T2i +W2i, we have

M̂2i ≥ T2i +W2i−1 − (T2i − T2i−1) = T2i−1 +W2i−1 = M
′
2i.

Our next goal is to show that

1{W2i≤c,T2i−T2i−1≤1,M
′
2i>T2i+W2i}

[
M

′
2i ∧ t− (T2i +W2i)

]
≥ 1{W2i≤c,T2i−T2i−1≤1,M

′
2i>T2i+W2i}

[
M̂2i ∧ t− (t− s0 +W2i)

]
.

Observe that, when T2i ≤ t− s0,W2i ≤ c, T2i − T2i−1 ≤ 1,M
′
2i > T2i +W2i, we have

t− s0 +W2i ≤ t− s0 + c = t− (s0 − c) < t

so it suffices to prove the claim for the following three cases: (a) t ∈ (t− s0+W2i,M
′
2i],

(b) t ∈ (M
′
2i, M̂2i), and (c) M̂2i ≤ t.

Assuming first that M̂2i ≤ t (i.e. case (c)), it follows that M
′
2i ≤ t, and

M̂2i ∧ t− (t− s0 +W2i) = M̂2i − (t− s0 +W2i)

= [t− s0 +W2i−1 − (T2i − T2i−1)]− (t− s0 +W2i)

= W2i−1 + T2i−1 − (W2i + T2i)

= M
′
2i − (T2i +W2i)

= M
′
2i ∧ t− (T2i +W2i)

which proves the inequality for this case.
Next, suppose that t−s0+W2i < t ≤ M

′
2i (i.e. case (a)). Then M

′
2i∧t = t = M̂2i∧t,

and moreover,

M
′
2i ∧ t− (T2i +W2i) = M̂2i ∧ t− (T2i +W2i) ≥ M̂2i ∧ t− (t− s0 +W2i)

which proves the inequality for this case.
Finally, suppose that t ∈ (M

′
2i, M̂2i) (i.e. case (b)). In this case,

M̂2i ∧ t− (t− s0 +W2i) ≤ M̂2i − (t− s0 +W2i)

= W2i−1 + T2i−1 − (W2i + T2i)

= M
′
2i − (W2i + T2i)

= M
′
2i ∧ t− (W2i + T2i)

and the claimed inequality holds again.
We have shown that the summand in (11) is at least

1{W2i≤c,T2i−T2i−1≤1,W2i−1>W2i+(T2i−T2i−1)}

[
(t ∧ M̂2i)− (t− s0 +W2i)

]
, (13)

where we note that the last event in the indicator is the same as the event M ′
2i >

T2i +W2i. Finally, since W2i ≤ c and T2i − T2i−1 ≤ 1 when the indicator is non-zero, it
follows that (13) is at least

1{W2i≤c,T2i−T2i−1≤1}1{W2i−1>c+1}

[
(t ∧ [t− s0 +W2i−1 − 1])− (t− s0 + c)

]
.

10



This is equal to

1{W2i≤c,T2i−T2i−1≤1}1{W2i−1>c+1} ·

{
s0 − c , if W2i−1 − 1 ≥ s0

W2i−1 − 1− c , if W2i−1 − 1 < s0.

= 1{W2i≤c,T2i−T2i−1≤1}

[(
(W2i−1 − (1 + c)) ∨ 0

)
∧ (s0 − c)

]
.

We have shown that

Lt(λ, F ) ≥
Ne(t−s0)∑

i=1

1{W2i≤c,T2i−T2i−1≤1}

[(
(W2i−1 − 1− c

)
∨ 0
)
∧ (s0 − c)

]
. (14)

The classical strong law of large numbers shows that almost surely as n → ∞,

1

n

n∑
i=1

1{W2i≤c,T2i−T2i−1≤1}

[(
(W2i−1 − 1− c

)
∨ 0) ∧ (s0 − c)

]
→ L(s0),

(since the summands are i.i.d. random variables) where

L(s0) = E
[
1{W2≤c,T2−T1≤1}

]
E
[(
(W1 − 1− c

)
∨ 0) ∧ (s0 − c)

]
.

Since Ne(t− s0)/t → λ/2 almost surely as t → ∞ it follows from (14) that

lim inf
t→∞

Lt(λ, F )

t
≥ λ

2
L(s0)

and since E[W ] = ∞, L(s0) → ∞ as s0 → ∞ which completes the proof. ■

The following proposition is elementary, but it is useful because it provides us with
another interpretation of L(λ, F ) when ℓ = 1.

Proposition 8. Suppose that ℓ = 1. Then for each integer n ≥ 1, the sojourn time
random variable Sn satisfies

Sn = max
1≤j≤n

(Wj − (Tn − Tj)).

Moreover, Sn
d→ S∞ as n → ∞, where

S∞
d
= sup

j≥0
(Wj − Tj)

and as a consequence,

L(λ, F ) = λE

[
sup
j≥0

((Wj −W0)− Tj)

]
. (15)

Proof. First, observe that when ℓ = 1, the departure time of the nth car must be greater
than or equal to the departure time of cars 1, 2, . . . , n− 1. More particularly, it is clear
from the dynamics of the model that, for each integer n ≥ 1,

Dn = max
1≤k≤n

(Tk +Wk)

11



and, therefore,

Sn = Dn − Tn = max
1≤k≤n

(Wk + Tk)− Tn = max
1≤k≤n

(Wk − (Tn − Tk))

proving the first half of the claim. The remaining claim follows from an argument that
is essentially the same as that used to establish the limiting distribution of the Lindley
recursion. Indeed, letting W0 be a generic random variable having CDF F , independent
of both {Wk}k≥1 and the arrival processes, we have that for each integer n ≥ 1,

Sn = max
1≤j≤n

(Wj − (Tn − Tj))
d
= max

0≤j≤n−1
(Wj − Tj) =: S̃n.

Clearly the sequence of random variables S̃n is nondecreasing in n, and therefore it
converges almost-surely as n → ∞ to

S̃∞ := sup
j≥0

(Wj − Tj)

proving Sn
d→ S∞ as n → ∞. Once this has been established, Equality (15) follows

from recalling L(λ, F ) = E[X∞ − Y∞], then applying Little’s law. ■

We first obtained the formula (3) in the following way, which will be useful for later
results.

Lemma 9. For K > 0 let ∆(K) denote the total delay experienced by a marked car
arriving at exactly time K. Then

lim
K→∞

E[∆(K)] =

∫ ∞

0

(
1− e−λH(s)

)
F (s) ds.

Proof. Fix K > 0. Consider a Poisson arrival process of rate λ on (−∞, 0) with each
arrival having workload with distribution F . Let ∆̃ denote the total delay experienced by
a marked car arriving at time 0 in this system, and let ∆̃(K) be the delay of this car when
excluding all cars that arrived before time −K. Then ∆̃(K) has the same distribution
as ∆(K) and ∆̃(K) ↑ ∆̃ almost surely. It follows that limK→∞ E[∆(K)] = E[∆̃].

The number of cars NK arriving in the time interval of length K before the marked
arrival has a Poisson distribution with parameter λK. Moreover,

P(∆̃(K) ≤ s|NK ,W ) = P(W ′ −KU ≤ s+W |W )NK , a.s. (16)

where W ′ is the workload of a car arriving KU time units before the marked car, and
U ∼ U [0, 1]. Conditioning on KU we have that the right hand side of (16) is a.s. equal
to ( 1

K

∫ K

0
P(W ′ ≤ u+ s+W |W )du

)NK

=
( 1

K

∫ K

0
F (u+ s+W )du

)NK

.

Thus, a.s.

P(∆̃(K) ≤ s|W ) =
∞∑
n=0

e−λK(λK)n

n!

( 1

K

∫ K

0
F (u+ s+W )du

)n
= e−λKeλ

∫K
0 F (u+s+W )du = e−λ

∫K
0 1−F (u+s+W )du

= e−λ
∫K
0 F (u+s+W )du.

12



By monotone convergence we conclude that a.s.,

P(∆̃ > s|W ) = 1− e−λ
∫∞
0 F (u+s+W )du

= 1− e−λ
∫∞
s+W F (t)dt.

Thus, a.s.,

E[∆̃|W ] =

∫ ∞

0
1− e−λ

∫∞
s+W F (t)dtds =

∫ ∞

W
1− e−λ

∫∞
v F (t)dtdv.

Taking the expected value of this gives

E[∆̃] =

∫ ∞

0

∫ ∞

w
1− e−λ

∫∞
v F (t)dtdvdF (w),

and a change of order of integration completes the proof. ■

We turn to the proof of Theorem 3. Often these results can be obtained via both
coupling and calculus proofs, but we present only one.

Proof of Theorem 3. Let us write

f(λ) := L(λ, F ) = λ

∫ ∞

0

(
1− e−λH(s)

)
F (s) ds.

(a) It is obvious that f(0) = 0. Assuming now that λ > 0, choose δ, ϵ > 0 such that
0 < F (δ) < 1 and 0 < F (δ + ϵ) < 1. Then

L(λ, F ) ≥ λ

∫ δ+ϵ

δ

(
1− e−λH(s)

)
F (s) ds ≥ λϵ

(
1− e−λH(δ+ϵ)

)
F (δ) > 0.

(b) We first show f is strictly increasing on [0,∞). Since f(0) = 0, and by part (a),
f(h) > 0 for each h > 0, so f(h) − f(0) > 0 whenever h > 0. Furthermore, for
each λ > 0, and each h > 0, a second application of (a) gives

f(λ+ h)− f(λ) = λ

∫ ∞

0
(e−λH(s) − e−(λ+h)H(s))F (s)ds+

hf(λ+ h)

λ+ h
≥ hf(λ+ h)

λ+ h
> 0.

We next show f is differentiable on (0,∞). Fix λ > 0, and observe that for each
h ̸= 0, and each s > 0, ∣∣∣∣∣e−λH(s) − e−(λ+h)H(s)

h

∣∣∣∣∣ ≤ H(s)

and since H is integrable on [0,∞) when E[W 2] < ∞, an application of the
dominated convergence theorem gives

lim
h→0

f(λ+ h)− f(λ)

h
=

∫ ∞

0
H(s)e−λH(s)F (s)ds+

f(λ)

λ

thus proving f is differentiable on (0,∞).
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(c) This follows from a simple coupling argument (it also follows readily from (15)).
Generate the arrival process of rate λ and the ∼ F workloads of each arrival.
Adding α to each workload gives a new system whose workloads have distribution
∼ W + α, but the delays of individuals are unchanged (delays just start α time
units later). This shows that adding a constant to the workloads does not change
L.
Returning to the original F system, consider what happens if we speed up (slow
down if β < 1) time by a factor of β. This multiplies the arrival rate by β (and
likewise, the time between arrivals by β−1) but also the length of each delay is
multiplied by β−1, which implies the loss per unit time is unchanged. This verifies
the obvious statement that speeding up (or slowing down) time in the system does
not change L.
Now consider what happens if we multiply each workload in the F system by β.
Speeding up time by a factor of β gives a process with workloads ∼ F again, but
now with Poisson arrival rate λβ. By the previous paragraph this speeding up of
time does not change L. This shows that scaling the workloads is equivalent to
scaling the arrival rate as in the theorem.

(d) This follows from an elementary coupling argument. Compare a single lane system
with arrival rate λ1 + λ2 to a 2 lane system with the identical arrival stream in
which each arrival is independently assigned to lane i ∈ {1, 2} with probability
λi/(λ1 + λ2). The delay experienced by any individual in the 2 lane system is less
than or equal to the delay that it experiences in the 1 lane system. 1

(e) On page 945 of [CHR15], the authors show that

E[X∞] = λ

∫ ∞

0
(1 + λu)F (u)e−λH(u)du

and an application of integration by parts reveals that

λ

∫ ∞

0
(1 + λu)F (u)e−λH(u)du = 1− e−ϱ + λ

∫ ∞

0

(
1− e−λH(y)

)
dy.

Furthermore, since it is well-known that E[Y∞] = ϱ, we get

L(λ, F ) = E[X∞]− E[Y∞] = 1− ϱ− e−ϱ + λ

∫ ∞

0

(
1− e−λH(y)

)
dy

which in turn means

L(λ, F )− L(λ, F ′) = ϱ′ + e−ϱ′ − ϱ− e−ϱ + λ

∫ ∞

0

(
e−λH′(y) − e−λH(y)

)
dy.

By the mean value theorem

|(ϱ′ + e−ϱ′)− (ϱ+ e−ϱ)| ≤ |ϱ′ − ϱ| max
z∈[ϱ,ϱ′]

|1− e−z| ≤ |ϱ′ − ϱ| = λ
∣∣E[W ′]− E[W ]

∣∣.
Similarly∣∣e−λH′(y) − e−λH(y)

∣∣ ≤ λ|H ′(y)−H(y)| max
z∈[H′(y),H(y)]

∣∣e−λz
∣∣ ≤ λ|H ′(y)−H(y)|

= λ
∣∣∣ ∫ ∞

y

(
F ′(s)− F (s)

)
ds
∣∣∣.

1This can be upgraded to a strict inequality if λ1, λ2 > 0.
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Finally, by changing the order of integration,∣∣L(λ, F )− L(λ, F ′)
∣∣ ≤ λ|E[W ′]− E[W ]|+ λ2

∫ ∞

0

∫ ∞

y

∣∣F ′(s)− F (s)
∣∣ ds dy

= λ|E[W ′]− E[W ]|+ λ2

∫ ∞

0
s
∣∣F ′(s)− F (s)

∣∣ ds. (17)

This proves the first claim. To prove the second claim, suppose that∫ ∞

0
s|Fn(s)− F (s)|ds → 0, as n → ∞. (18)

Let ε > 0 and choose n0 sufficiently large so that for all n ≥ n0,∫ ∞

0
s|Fn(s)− F (s)|ds < ε2

4
.

Then for n ≥ n0,∣∣E[Wn]− E[W ]
∣∣ = ∣∣∣ ∫ ∞

0
Fn(s)ds−

∫ ∞

0
F (s)ds

∣∣∣
≤
∫ ε/2

0
|Fn(s)− F (s)|ds+

∫ ∞

ε/2
|Fn(s)− F (s)|ds

≤ ε

2
+

∫ ∞

ε/2

s

ε/2
|Fn(s)− F (s)|ds

≤ ε

2
+

2

ε

∫ ∞

0
s|Fn(s)− F (s)|ds ≤ ε.

Together with (18) and (17) this verifies that L(λ, Fn) → L(λ, F ) and hence com-
pletes the proof.

(f) Assume first that F is the cdf of a random variable taking values 0 ≤ w1 <
w2 < . . . < wn. After realizing that the integrand found within the integral is
only nonzero in the region [w1, wn), and that for each s ∈ [wi, wi+1], H(s) =
(wi+1 − s)F (wi) +H(wi+1), we find that

L(λ, F ) = λ

∫ wn

w1

(1− e−λH(s))F (s)ds

= λ
n−1∑
i=1

F (wi)

∫ wi+1

wi

(1− e−λH(s))ds

= λ

n−1∑
i=1

F (wi)

[
(wi+1 − wi)− e−λH(wi+1)

∫ wi+1

wi

e−λ(wi+1−s)F (wi)ds

]

=

n−1∑
i=1

F (wi)

F (wi)

[
λF (wi)(wi+1 − wi) + e−λH(wi) − e−λH(wi+1)

]
.

Combining exponential terms and recalling that H(wn) = 0 (so e−λH(wn) = 1), we
get

L(λ, F ) =

[
n−1∑
i=1

F (wi)(wi+1 − wi)

]
λ− F (wn−1)

F (wn−1)

+
F (w1)

F (w1)
e−λH(w1) +

n−1∑
i=2

[
F (wi)

F (wi)
− F (wi−1)

F (wi−1)

]
e−λH(wi).
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This expression is convex in λ on [0,∞), because it consists of the sum of an affine
function (which is both convex and concave) and n− 1 convex functions. Note in
particular that for this particular type of cdf, L(λ, F ) is strictly convex in λ on
[0,∞).
Next, assume F is an arbitrary cdf satisfying E[W 2] < ∞, and approximate W
with the sequence {W (n)}n≥1, where for each integer n ≥ 1,

W (n) := n1{W≥n} +

n2n∑
k=1

k − 1

2n
1{(k−1)2−n≤W<k2−n}.

Then W (n) ↑ W pointwise so E[(W (n))k] → E[W k] < ∞ for k = 1, 2 by monotone
convergence. Letting Fn represent the cdf of W (n), we clearly have that Fn con-
verges weakly to F as n → ∞, meaning we have pointwise convergence of the CDFs
outside of a set of Lebesgue measure zero on [0,∞). Moreover, since Fn ≥ Fn+1

and Fn ≥ F on [0,∞) for each integer n ≥ 1, another application of the monotone
convergence theorem, gives

lim
n→∞

∫ ∞

0
s|Fn(s)− F (s)|ds = lim

n→∞

E[W 2]− E[(W (n))2]

2
= 0

which, by Theorem 3(e), proves L(λ, Fn) → L(λ, F ) as n → ∞. Finally, since the
(finite) pointwise limit of a sequence of convex functions must also be convex, we
conclude that L(λ, F ) is convex in λ on [0,∞). ■

We next present a comparison result. Let SF denote the support of F . For R ⊂ R+

we say that a function g : R → R+ is an expansion if g(w2) − g(w1) ≥ w2 − w1 for all
w2 ≥ w1 (with w2, w1 ∈ R). Note that if g : R → R+ is an expansion it must also be
increasing.

Lemma 10. Let W ∼ F . Let g : SF → R+ be an expansion, and Fg be the workload
cdf of W ′

:= g(W ). Then for every λ > 0, L(λ, Fg) ≥ L(λ, F ).

Proof. The proof is by coupling. Suppose that the j-th arrival has delay ∆j ≥ 0. Then

∆j = max
k≤j

(Tk +Wk − (Tj +Wj)) = max
k≤j

(Wk −Wj + Tk − Tj).

Let ∆′
j denote the corresponding delay of the j-th arrival when we keep the same arrival

process, but replace Wk with W ′
k = g(Wk) for each k ∈ N.

If ∆j = 0 then ∆′
j ≥ 0 ≥ ∆j . Otherwise ∆j > 0 and there exists some k < j such

that Wk −Wj > Tj − Tk > 0. For any k with this property, since g is an expansion we
have

W ′
k −W ′

j + Tk − Tj = g(Wk)− g(Wj) + Tk − Tj ≥ Wk −Wj + Tk − Tj .

Hence ∆′
j ≥ ∆j . The result now follows e.g. by Lemma 9. ■

The next lemma consists of known statements, but we have chosen to include both
it and its proof in order to make later arguments easier to follow.

Lemma 11. Integrals of the function H(y) =
∫∞
y F (u) du are related to the first two

moments of W and its variance via∫ ∞

0
H(y) dy =

1

2
E[W 2],

∫ ∞

0
H(s)F (s) ds =

1

2
E[W ]2,

∫ ∞

0
H(y)F (y) dy =

1

2
var(W ).
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Proof. The first equation follows easily by change of the order of integration in∫ ∞

0
H(y) dy =

∫ ∞

0

∫ ∞

y
F (s) ds dy =

∫ ∞

0
sF (s) ds =

1

2
E[W 2].

Moreover, letting D :=
∫∞
0 H(s)F (s) ds then

D =

∫ ∞

0

∫ ∞

s
F (y) dyF (s) ds =

∫ ∞

0

∫ y

0
F (s) dsF (y) dy =

∫ ∞

0

(
E[W ]−

∫ ∞

y
F (s) ds

)
F (y) dy

= E[W ]

∫ ∞

0
F (y) dy −

∫ ∞

0

∫ ∞

y
F (s) dsF (y) dy = E[W ]2 −D,

so the second equality follows. The third is a consequence of the former two, since∫∞
0 H(y)F (y) dy =

∫∞
0 H(y) dy −

∫∞
0 H(y)F (y) dy. ■

In what follows we examine the asymptotic behavior of L(λ, F ) as λ → 0, and as
λ → ∞, starting with the former one.

Theorem 12. We have the bound L(λ, F ) ≤ λ2

2 var(W ) and as λ → 0

L(λ, F ) ∼ λ2

2
var(W ). (20)

Proof. We first prove the bound. By Lemma 11

L(λ, F )

λ2
=

∫ ∞

0

1− e−λH(s)

λ
F (s) ds︸ ︷︷ ︸

Bλ

≤
∫ ∞

0
H(s)F (s) ds︸ ︷︷ ︸

B

=
1

2
var(W ).

The asymptotic relation follows similarly, since Bλ → B as λ → 0 by dominated con-
vergence. ■

We next consider the behavior of L(λ, F ) as λ → ∞. Let F ∗ := inf{t ≥ 0 : F (t) = 1}.
In the finite support case (F ∗ < ∞) L(λ, F ) increases asymptotically linearly.

Theorem 13. If F ∗ < ∞ then L(λ, F ) ∼ (F ∗ − E[W ]) · λ as λ → ∞.

Proof. By dominated convergence, as λ → ∞,

L(λ, F )

λ
=

∫ F ∗

0

(
1− e−λH(s)

)
F (s) ds →

∫ F ∗

0
F (s) ds = F ∗ −

∫ F ∗

0
F (s) ds = F ∗ − E[W ].■

We now consider the infinite support case. The integrated tail function H(y) =
∫∞y F (s) ds has H(0) = E[W ] and is continuous and strictly decreasing with limy→∞H(y) =
0. Let A : [1/E[W ],∞) → [0,∞) be the inverse function of the strictly increasing con-
tinuous function 1/H(y). Then A(y) is strictly increasing and continuous, too, with
A(1/E[W ]) = 0 and A(y) → ∞ as y → ∞.

We need the concept of slow/regular/rapid variation. A function g : [0,∞) → [0,∞)
is slowly varying at ∞ if g(us)/g(u) → 1 as u → ∞ for every s > 0 , and rapidly varying
at ∞ if g(us)/g(u) → 0 as u → ∞ for every s > 1. A function f is regularly varying (at
∞) with index α ∈ R if f(u) = uαg(u) for some slowly varying (at ∞) function g.

We write f ∈ Rα or f ∈ R∞ if f is regularly varying or rapidly varying respectively.
The following result is basically the celebrated Karamata Theorem.
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Lemma 14 ([BGT89], Proposition 1.5.10, p.27). If F ∈ Rα with α < −1 (implying
E[W 2] < ∞) then H(s) ∼ sF (s)

−(1+α) as s → ∞. If F is rapidly varying then so is H.

In the infinite support case, assuming F has certain smoothness properties, λ 7→
L(λ, F ) increases faster than linear, but is always o(λ2).

Theorem 15. Suppose that F ∗ = ∞.

1. If F ∈ Rα with α < −2 then A ∈ R−1/(1+α) and as λ → ∞

L(λ, F ) ∼ λΓ
(
α+2
α+1

)
A(λ). (21)

In particular L(λ, F ) ∈ Rα/(α+1).

2. If F ∈ R∞ then A is slowly varying and as λ → ∞,

L(λ, F ) ∼ λA(λ). (22)

In particular L(λ, F ) ∈ R1.

Proof. 1. Suppose that F is regularly varying with index α < −2. By Lemma 14
then

H(s) ∼ sF (s)

−(α+ 1)
, s → ∞

and in particular H is regularly varying with index α+ 1. For u ≥ 0 we have

L(1/H(u), F ) =
1

H(u)

∫ ∞

0

(
1− e

−H(r)
H(u)

)
F (r) dr

=
u

H(u)

∫ ∞

0

(
1− e

−H(su)
H(u)

)
F (su) ds. (23)

The integrand is bounded by 1 and for any s > 0, as u → ∞, H(su)/H(u) → sα+1

and F (su) → 1. Hence∫ 2

0

(
1− e

−H(su)
H(u)

)
F (su) ds →

∫ 2

0
(1− e−s1+α

)ds.

Turning to the tail of the integral, it follows from the Karamata representation
theorem that there exists C > 0 such that for ϵ ∈ (0,−2−α) we can choose u0 so
that for all u > u0 and all s > 2

H(su)

H(u)
≤ Csα+1+ϵ =: g(s). (24)

This is sometimes called a Potter bound. Since α + 1 + ϵ < −1,
∫∞
2 g(s)ds < ∞

so by

1− e
−H(su)

H(u) ≤ H(su)

H(u)
≤ g(s),

and dominated convergence we get∫ ∞

2

(
1− e

−H(su)
H(u)

)
F (su) ds →

∫ ∞

2
(1− e−s1+α

)ds.
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Note that e−s1+α is the cdf of a Frèchet distribution with mean Γ((α+2)/(α+1)).
Altogether we now have

L(1/H(u), F ) =
u

H(u)

∫ ∞

0

(
1− e

−H(su)
H(u)

)
F (su) ds ∼ Γ

(
α+2
α+1

) u

H(u)
. (25)

Let λ = 1/H(u). Since A is the inverse function of 1/H, A(λ) = u and equation
(21) follows. Since 1/H is regularly varying with index −(1 +α) it follows that A
is regularly varying with index −1/(1 + α) ([BGT89], Theorem 1.5.12), implying
that L(1/H(u), F ) is regularly varying with index 1− 1/(1 + α) = α/(1 + α).

2. For the rapid variation case we again split the integral in (23) up into two integrals,

L(1/H(u), F ) =
u

H(u)

(∫ 1

0

(
1− e

−H(su)
H(u)

)
F (su) ds+

∫ ∞

1

(
1− e

−H(su)
H(u)

)
F (su) ds

)
.

By Lemma 14 the rapid variation of F implies rapid variation of H, so H(su)/H(u) →
∞ for s ∈ [0, 1) as u → ∞. Consequently∫ 1

0

(
1− e

−H(su)
H(u)

)
F (su) ds → 1.

For the second integral∫ ∞

1

(
1− e

−H(su)
H(u)

)
F (su) ds ≤

∫ ∞

1

H(su)

H(u)
ds =

∫∞
u H(s) ds

uH(u)
.

By Theorem 1.3.1. in [dH70] the r.h.s. tends to 0 as u → ∞. ■

4 Multiple lanes proofs
Proof of Theorem 6. Let I be a partition, where each Ij is a disjoint union of intervals.
Let δi be the Lebesgue measure (total length) of Ii, and c = b− a. Then the delay is

L(λ, F | I) =
ℓ∑

i=1

L(λδi/c, FIi). (26)

Since Ii is a union of intervals whose length is δi, FIi is trivially an expansion of F0,δi

where Fu,v is the cdf of a U(u, v) distribution (the expansion function g simply inserts
gaps into the distribution). Applying Lemma 10 to each lane gives

L(λ, F | I) ≥
ℓ∑

i=1

L(λδi/c, F0,δi),

where (by Theorem 1(c)) the right hand side is equal to the delay rate of a partition
routing of F into single intervals of length δ1, . . . , δℓ.

Thus we have proved that among partition routings, it is optimal to assign to every
lane i a single interval Ii. To prove (a), it remains to show that these should be of
equal length. Again, let Ii have length δi, and c = b− a =

∑ℓ
i=1 δi. By Theorem 1(c),

Proposition 4, and the fact that 1
ℓ

∑ℓ
i=1 δ

2
i ≥

(
1
ℓ

∑ℓ
i=1 δi

)2
= c2

ℓ2
we have

L(λ, Fa,b | I) =
ℓ∑

i=1

L(λδ
2
i ℓ

c2
, F0, c

ℓ
) ≥

ℓ∑
i=1

L(λ
∑ℓ

i=1 δ
2
i

c2
, F0, c

ℓ
) ≥

ℓ∑
i=1

L(λ
ℓ
, F0, c

ℓ
). (27)
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By Theorem 1(c) again, the last expression in (27) is the delay obtained by a partition
routing of a system with arrival rate λ and workload cdf Fa,b into single intervals of
equal length. This completes the proof. ■

Proof of Theorem 5. Let the quantiles mk be such that F (mk) = k/ℓ, k = 0, 1, . . . , ℓ.
The total loss for ‘quantile partition routing’ (i.e. partition routing with a single interval
per lane, with interval endpoints given by the quantiles) is given by

L1(λ, F ) =
ℓ−1∑
k=0

λ

∫ mk+1

mk

(
1− exp

(
− λ

∫ mk+1

s

(k + 1

ℓ
− F (u)

)
du
))(

F (s)− k

ℓ

)
ds.

(28)

We compare this with the loss for the optimal random routing (with qi = 1/ℓ, see
Proposition 4)

L2(λ, F ) =

ℓ∑
k=1

λ

ℓ

∫ ∞

0

(
1− exp

(
− λ

ℓ

∫ ∞

s
F (u) du

))
F (s) ds.

=
ℓ−1∑
k=0

λ

∫ mk+1

mk

∫ ∞

0

(
1− exp

(
− λ

ℓ

∫ ∞

s
F (u) du

))
F (s) ds. (29)

Comparing the integrands we will prove that for mk ≤ s ≤ mk+1 and k = 0, 1, 2 . . . , ℓ−1(
1− exp

(
− λ

ℓ

∫ mk+1

s

(
k + 1− ℓF (u)

)
du
))

(ℓF (s)− k)

≤
(
1− exp

(
− λ

ℓ

∫ ∞

s
(1− F (u)) du

))
ℓF (s). (30)

This is true if∫ mk+1

s
(1− F (u)) du+

∫ ∞

mk+1

(1− F (u)) du ≥
∫ mk+1

s

(
k + 1− ℓF (u)

)
du

i.e. if ∫ ∞

mk+1

(1− F (u)) du+

∫ mk+1

s

(
(ℓ− 1)F (u)− k

)
du ≥ 0.

This inequality certainly holds when s is such that F (s) ≥ k
ℓ−1 (implying F (u) ≥ k

ℓ−1
since u ≥ s) so the assertion is proved in this case. Hence we assume from now on
F (s) ≤ k

ℓ−1 . Since∫ mk+1

s

(
k + 1− ℓF (u)

)
du ≤ ℓ

∫ mk+1

s

(
1− F (u)

)
du ≤ ℓ

∫ ∞

s

(
1− F (u)

)
du,

it is, considering (30), enough to prove

(1− r)ℓF (s) ≥ (1− rℓ) (ℓF (s)− k) ,

where r = exp
(
− λ

ℓ

∫∞
s (1− F (u)) du

)
. Equivalently F (s) ≤ k

ℓ
R

R−1 , where R = 1+ r+

r2 + . . .+ rℓ−1. Since we assumed F (u) ≤ k
ℓ−1 , it is sufficient to prove k

ℓ−1 ≤ k
ℓ

R
R−1 , i.e.

ℓ

ℓ− 1
≤ R

R− 1

which is true because x 7→ x/(x− 1) is monotone decreasing and ℓ ≥ R. ■
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