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Abstract

We study the random subgraph E∞, consisting of edges reinforced
infinitely often, in a reinforcement model on infinite graphsG of bounded
degree. The model involves a parameter α > 0 governing the strength
of reinforcement, and Poisson firing rates λv at the vertices v of the
graph. In [6], it was shown that for various graphs G, all connected
components of E∞ are finite when α� 1 is sufficiently large. In [9] it
was shown that infinite clusters in E∞ are possible for suitably chosen
G and α > 1. In this paper, we focus on the finite connected compo-
nents of E∞ in the strong reinforcement regime (α > 1). When α is
sufficiently large, all connected components of E∞ are trees.

When the firing rates λv are constant, components are trees of
diameter at most 3 when α is sufficiently large. We show that there
are infinitely many phase transitions as α ↓ 1. For instance, on the
triangular lattice, increasingly large (odd) cycles appear when taking
α ↓ 1, while on the square lattice no finite component of E∞ contains
a cycle for any α > 1. Increasingly long paths and other structures
appear in both lattices when taking α ↓ 1. In the special case where
G = Z and α > 1, all connected components of E∞ are finite and we
show that the possible cluster sizes are non-monotone in α.

An important aspect of the proofs is that on finite connected com-
ponents of E∞, the model behaves similarly as on finite graphs. Thus,
we build on existing results concerning these processes on finite graphs,
and in the course of our analysis we resolve Conjecture 1 of [8, 10] for
finite graphs.
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1 Introduction

Pólya-type urn models are random processes where balls are repeatedly sam-
pled from an urn, and additional balls are added depending on the colour
of the sampled ball. Since their introduction in 1931 [15], generalisations of
Pólya urn models have spurred a rich variety of mathematical research activ-
ity (see e.g. [14]). They are basic building blocks of competition-type proba-
bilistic models in the fields of economics, biology and neuroscience [1, 7, 12].
A single urn is often insufficient to capture the complexity inherent in real-
world applications, and consequently systems of interacting urns have gained
popularity [2, 13]. In the field of neuroscience, when a neuron fires, only
synapses that are connected to this neuron can be chosen to transmit the sig-
nal. Hence, Pólya models with graph-based interactions are a natural start-
ing point for addressing one of the mechanisms of neuroplasticity: synapses
that have been identified as useful in the past are more likely to be chosen
in the future.

Stochastic processes described by (W,A)-reinforcement models [8] – short
WARM processes – are a flexible framework for studying interacting Pólya
urns: The strength of the reinforcement is described by a weight-function
W and the interactions are determined by a sequence of subsets At, t ∈
Z+ = {0, 1, . . .} revealing which colours are competing for selection at each
step of the process. A single Pólya urn with n colours corresponds to the
setting where At = [n] := {1, 2, . . . , n} for every t. Included in [8, 10] is an
analysis of WARM processes on finite graphs G = (V,E), where the colours
are the edges of the graph, and the subset At is the set of edges incident to
an independently and randomly chosen vertex. In this setting, WARM pro-
cesses describe stochastic processes of dynamically evolving integer-valued
edge counts N = (Nt(e))e∈E,t∈Z+ (with e.g. N0(e) = 1 for each e ∈ E).

As in [8, 10] we consider the case W (x) = xα in the strong reinforcement
regime and tacitly assume α > 1 throughout the manuscript (the cases
α = 1 and α < 1 are rather different, see e.g. [11, 5]). However, in the
present paper, we focus on the natural generalisation of such models to
infinite connected graphs (with countably many vertices). Time t ∈ [0,∞)
is now continuous (note that t ∈ Z+ in [8, 10]). The dynamics is induced by
Poisson-based firings with rates λV := (λv)v∈V at the vertices V as follows:

1. Wait until the next firing of the vertex v ∈ V .

2. Choose an edge from those incident to v with probability proportional
to the current count raised to the power α, i.e. choose e ∼ v with
probability proportional to N·(e)

α.
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3. Increment the count of the chosen edge.

Let PG,λV ,α denote the law of the WARM on G = (V,E) with reinforcement
parameter α > 1 and firing rates λV .

When the graph G is finite, the jump process of our model is the discrete-
time WARM process studied in [8, 10], and knowledge of the finite-graph
behaviour is an important ingredient in our analysis of the infinite graph
setting. In the infinite setting some assumption on the firing rates and
growth of the graph is required for the process to be well defined. We
will assume throughout this paper that the firing rates satisfy the following
condition.

Condition 1. There exists L > 0 such that 0 < λv ≤ L for each v ∈ V .

Sometimes we will restrict our attention to arguably the most interesting
case where all of the firing rates are the same.

Condition 2. λv = 1 for each v ∈ V .

For convenience, we will assume that G has bounded degrees, i.e. the
degrees (∂x)x∈V satisfy supx ∂x = d for some d ∈ N.

Condition 3. G is a graph with bounded degrees.

It is proved in [6, Theorem 1] that if Conditions 1 and 3 hold then the
WARM process on G with rates λV is well defined. As time progresses,
the number of firing events in any region grows linearly with time. How-
ever, the edge counts on specified edges need not grow at all (e.g. Rubin’s
construction [4] shows that for a single Pólya urn with α > 1, only one
colour is drawn infinitely often). Starting with N0(e) = 1 for each e ∈ E,
we investigate the random vector(

lim
t→∞

t−1Nt(e)
)
e∈E .

In particular we are interested in the random sets

E∞ = {e ∈ E : sup
t>0

Nt(e) =∞}, and

E+ = {e ∈ E : lim inf
t→∞

t−1Nt(e) > 0}. (1)

Clearly E+ ⊂ E∞. We will prove that E∞ = E+ almost surely (see Propo-
sition 1). In general the a.s. existence of limits (as opposed to lim inf or
lim sup) in (1) is a highly non-trivial problem even on finite graphs. Suc-
cess in analysing the finite setting has thus far relied on a deep connection
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with the fixed points of the averaged dynamics – a certain deterministic
dynamical system depending on both the graph and the firing rates1. Let
S = S(G,λV , α) denote the set of linearly stable and critical equilibria of
this deterministic dynamical system (see Section 5). The following result
for finite graphs has been conjectured in [8, 10] and will be proved using a
result of Tad́ıc [16] and some coupling arguments.

Theorem 1. Let G = (V,E) be finite, α > 1 and λV ∈ (0,∞)V . Then
(t−1Nt(e))e∈E converges almost surely to a random vector N that is sup-
ported on the set S of linearly stable and critical equilibria. For any linearly
stable equilibrium x ∈ S, PG,λV ,α(N = x) > 0.

In the present setting where E is infinite, although we believe that under
Condition 1 the limit exists almost surely for each λV , the limit of the infinite
graph process does not have point masses (we do expect that the restriction
of the limit to finite boxes is discrete).

Define the support σ(x) of x ∈ S by σ(x) = {e ∈ E : xe > 0}. It
was proved in [10, Theorem 3] that for finite G and any λV ∈ (0,∞)V , all
equilibria x that are not linearly unstable (i.e. all x ∈ S) are supported on
forests when α > 2. In the case where the firing rates are constant, it was
conjectured in [8] and proved in [10, Theorem 2(a)] that for any finite G and
α > 25 (not sharp), all x ∈ S are supported on whisker forests, i.e. spanning
graphs whose connected components are trees of diameter at most 3.

Open Problem 1. Significantly improve the bound α > 25 from [10].

Combined with Theorem 1, this proves that on finite graphs when α > 2
all connected components of E+ are trees and that they have diameter at
most 3 when α > 25. See e.g. Figure 1.

We upgrade this result to the finite components of infinite graphs.

Theorem 2. Let G and λV satisfy Conditions 1 and 3. Then, for every
edge e in a finite component of E+ the limit limt→∞ t

−1Nt(e) exists almost
surely. All finite components of E+ are trees if α > 2. If also Condition 2
holds and α > 25 then all finite components of E+ have diameter at most 3.

This is not a straightforward consequence of the results on finite graphs
because conditioning on F ⊂ E being a connected component of E+ changes
the law of the process. In particular, the law of the WARM process on G
restricted to F , conditional on F being a connected component of E+ is not
the same as the law of a WARM process on F itself.

1For finite graphs
∑
e∈E t

−1Nt(e) →
∑
v∈V λv almost surely. In such systems, by a

simple time rescaling w.l.o.g. we may (and sometimes do) assume that
∑
v∈V λv = 1.

4



Figure 1: Simulations of E+ with constant firing rates on a torus (square
and triangular lattices respectively) with α = 5. All components are trees
of diameter at most 3.

It was shown in [6] that for any G of bounded degree and firing rates
that are bounded above, all connected components of E+ are a.s. finite. On
the other hand for every α > 1, [9] shows that there exists a bounded degree
graph (more specifically, a regular tree) and firing rates that are bounded
above (but they decrease exponentially with distance from the root) for
which E+ contains infinite connected components.

Open Problem 2. Is it true that for any G of bounded degree, α > 1 and λV
bounded away from 0 and ∞, all components of E+ are a.s. finite?

Remark 1. Open Problem 2 already seems to be difficult (and worthy of
study) in the settings of regular trees or Z2.

In the proof of Theorem 2, an important role is played by the set of edges

N =
{
e ∈ E : sup

t≥0
Nt(e) = N0(e)

}
that are never reinforced. Roughly speaking, the parts of the WARM process
onG evolving on different connected components ofN c evolve independently
of each other (but their evolutions are governed by conditional laws).

Given a graph G = (V,E) and F ⊂ E, we let VF = {v ∈ V : (v, y) ∈
F for some y ∈ V } ⊂ V denote the set of vertices of F , and let GF =
(VF , F ). Let V̄F denote the set of vertices that are G-graph distance at
most one from VF , and ∂F ⊂ E denote the set of edges with exactly one
end-vertex in VF .
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Definition 1 (Removable edge set). A set E′ ⊂ E of edges is removable
from G if (V,E \ E′) does not have isolated vertices. That is, VE\E′ = V .

For finite F ⊂ E, let AF denote the event that F is a connected compo-
nent of E+. Finally, define

θG,λV ,α = PG,λV ,α(E+ = E)

which is the probability that every edge in G is used a positive proportion
of the time. Note that if G is a finite star graph (i.e. every e ∈ E is incident
to a leaf v ∈ V ) then θG,λV ,α = 1 for every α and λV . In particular this
holds for the graph G = ({v, y}, (v, y)) containing two vertices and a single
edge. Our next main result is the following, which characterises the possible
kinds of finite connected components.

Theorem 3. Assume Conditions 1 and 3. Then, for any finite F ⊂ E,

PG,λV ,α(AF ) > 0 ⇐⇒ θF,λVF ,α > 0 and ∂F is removable from G.

Moreover, if PG,λV ,α(AF ) > 0 then the law of (Nt(e))e∈F under the con-
ditional measure PG,λV ,α(·|AF ) is absolutely continuous with respect to the
law of (Nt(e))e∈F under the conditional measure PF,λVF ,α(·|E+ = F ).

Let Kx denote the cluster of x in E+, and let

Jα = {k : P(diam(Kx) = k) > 0 for some x ∈ V }

denote the (non-random) set of possible connected cluster sizes. Put

α∗ = α(t1) =
et1

2− t1
+ 1 ≈ 4.4,

where t1 solves ln
(

2
2−et

)
= tet

2−et . The following is our fourth main result.

Theorem 4. Let G = Z and assume Condition 2. Then:

(0) diam(0) <∞ almost surely, for all α > 1.

(i) 1, 2 ∈ Jα for all α > 1.

(ii) Jα = {1, 2, 3} for α > α∗.

(iii) Jα = {1, 2} for α ∈ (2, α∗).

(iv) For every k ≥ 1, there exists α2k > 1 such that 2k ∈ ∩α<α2k
Jα.
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Part (0) of Theorem 4 in fact holds for graphs that are “uniformly dis-
connectable”2 in the sense that there exists a constant C > 0 such that any
finite A ⊂ G can be disconnected from infinity by removing at most C edges
from E. Such graphs include graphs that are quasi-isometric to Z, graphs
with linear volume growth, etc.

Perhaps the most striking observation from Theorem 4 is that cluster
sizes are non-monotone: E+ admits large connected clusters for small α > 1,
clusters of size at most 2 for moderate α > 1, and clusters up to size 3 for
large α > 1.

Open Problem 3. Is the sequence (α2k)k∈N (strictly) decreasing in k?

For infinite graphs with vertices of higher degree various other structures
are of course possible. For example, a natural analogue of Theorem 4(i) is
that star graph components are always possible (provided the boundary of
the star is removable as in Theorem 3). A natural analogue of Theorem 4(iv)
is that k-elongated star graphs - where each branch of the star contains k
edges - are possible for α < α′k (an interval of length 2k can be thought of
as an elongated star graph with 2 branches each containing k edges), see
e.g. [11].

As a consequence of Theorem 3, and results about finite graphs, we
obtain the following, where α2k is in Theorem 4 (see also Figure 2).

Corollary 1. Under Condition 2, with α > 1 the following hold for the
square and triangular lattices with vertex set Z2:

� On the square lattice, no finite component of E+ contains a cycle.

N On the triangular lattice, for each m ≥ 1, if α < (cos(π/2n))−2 then
infinitely many components of E+ are cycles of length n = 2m + 1
whose edges are used an equal limiting proportion of time. If α >
(cos(π/2n))−2 no components have this property.

F For k ≥ 2, on both lattices, infinitely many components (resp. no
components) of E+ are simple paths of length 2k if α < α2k (resp. α >
2).

Similar results hold on other vertex transitive graphs, depending on
whether they contain odd cycles. Moreover infinitely many components
of E+ are k-elongated star graphs with central vertex having degree r if

1 < α < α
(r)
k provided the transitive graph contains such subgraphs. Note

2part (0) does not even require Condition 2
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Figure 2: As in Figure 1 but with α = 1.05. Here a large number of steps
have been generated at random, and then deterministic dynamics have been
used to speed up convergence (convergence is very slow when α is close to
1). In the square lattice two elongated stars of central degree 3 can be seen.
In the triangular lattice cycles of length 3 and 5 are visible. Paths of length
1 and 4 are visible in both.

that Corollary 1 part N shows that there are infinitely many phase transi-
tions on the triangular lattice, as α ↓ 1.

Open Problem 4. Estimate the relative frequency of various types of con-
nected components of E+ as a function of α > 1 for some fixed medium or
large graph. For example, estimate the relative frequency of stars of degree
3 in a length 20 torus, as a function of α > 1.

Structure of the paper

The rest of the article is structured as follows. In Section 2, we give an
explicit construction of a probability space on which our process is defined,
assuming that our graph satisfies a certain condition. In Section 3, we state
a number of ancillary results from which many of our main results follow.
These ancillary results are proved in Section 4. Section 5 presents the basic
stochastic approximation theory relevant to the evolution of a WARM on
a finite graph, and proves Theorem 1. Theorems 3 and 2 are proved in
Section 6. Theorem 4 and Corollary 1 are proved in Section 7, with the
former proved assuming a few additional ancillary results (whose proofs are
deferred to the Appendix).
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2 Construction of the WARM process

In this section, we give a probability space (Ω,F ,P) on which the WARM
processes exist. The processes evolve on a graph G = (V,E) satisfying
Condition 3.

We will add some extra structure to our probability space to incorporate
different processes on the same space. Let E′ ⊂ E be a possibly empty,
finite removable set of edges. Let (Ω,F ,P) be a probability space on which
we have a Poisson point process M = {(Xn, Tn)}n≥1 on V × [0,∞) with
intensity λV , satisfying Condition 1, and a family (Um(x), Vm(x))x∈V,m≥1 of
i.i.d. standard uniform random variables that are also independent of M .
Loosely speaking, we use Vm(x) (and the current edge counts) to determine
whether we choose an edge in E− = E \E′ or E′ when the clock rings at x
for the mth time. Then, we use Um(x) to determine which edge we choose
from the relevant edge set. Fix an ordering ≺ of the edges in E−, and also
an ordering ≺′ of the edges in E′.

For each vector n = (ne)e∈E ∈ ZE+ such that
∑

e∈Ex ne > 0 for every
x ∈ V we define a WARM process Nn = (Nn

t (e))e∈E,t≥0 on G as follows.
The initial counts are Nn

0 (e) = ne for each e ∈ E. For e0 ∈ Ex ∩ E− define

Rnt (x, e0) =
Nn
t (e0)α∑

e1∈Ex∩E− N
n
t (e1)α

,

and
Qnt (x, e0) =

∑
e1∈Ex∩E−: e1≺e0

Rnt (x, e1).

These quantities are the probabilities (conditional on the past and the event
of selecting some edge from Ex∩E−) of selecting the edge e0, and of selecting
an edge less than e0. Similarly, for e0 ∈ Ex ∩ E′ define

R
′n
t (x, e0) =

Nn
t (e0)α∑

e1∈Ex∩E′ N
n
t (e1)α

,

and
Q
′n
t (x, e0) =

∑
e1∈Ex∩E′:e1≺′e0

R
′n
t (x, e1).

Let Snt (x) denote the probability of selecting an edge in E− from Ex, i.e.

Snt (x) =

∑
e0∈Ex∩E− N

n
t (e0)α∑

e1∈Ex N
n
t (e1)α

.
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When the clock rings at x for the mth time at some time t, we choose a
random edge ê according to

1{ê=e} = 1{e∈Ex∩E−}1{Vm(x)≤Sn
t−(x)}1{Um(x)∈(Qn

t (x,e),Qn
t (x,e)+Rn

t (e)]}

+ 1{e∈Ex∩E′}1{Vm(x)>Sn
t−(x)}1{Um(x)∈(Q

′n
t (x,e),Q

′n
t (x,e)+R

′n
t (e)]}.

We then increment the count of the edge ê, i.e. we set Nn
t (e) = Nn

t−(e) +
1{ê=e} for each e. One can easily check that this defines a WARM process
on G with initial counts n.

Remark 2. It is obvious that if G is not connected, then the WARM process
on G evolves independently on different connected components of G. This is
because the Poisson process is independent on disjoint components and for
each x ∈ V the set Ex only contains edges from one connected component
(the component containing x).

Remark 3. Setting n′e = 0 for e ∈ E′ (and n′e = 1 otherwise) gives a WARM
on G′ = (V,E \E′) with the Poisson point process M and the initial counts
n′ = (n′e)e∈E\E′ . To see why this is the case, note that Nn′

0 (e) = 0 for each

e ∈ E′ and hence Sn
′

0 (x) = 1 almost surely for every x. If time Tn is the
time of the mth firing at Xn = x and at that time we have Nn′

T−n
(e) = 0 for

each e ∈ E′, then Sn
′

T−n
(x) = 1 for every x ∈ V . Hence, Vm(x) ≤ Sn

′

T−n
(x)

almost surely, so almost surely the chosen edge is not in E′.

Remark 4. In the following, we always tacitly assume a monotone indexing
of M in the sense that Tk ≤ Tn if both k ≤ n and Xk = Xn. The event
{E′ ⊂ N} equals the event⋂

n≥1

{
VK(n)(Xn) ≤ Sn

T−n
(Xn)

}
,

where K(n) = |{k ≤ n : Xk = Xn}| denotes the number of firings at vertex
Xn with index at most n. The event {E′ ⊂ N} also equals⋂

v∈V :Ev∩E′ 6=∅

⋂
m≥1

{Vm(v) ≤ Snτm(v)−(v)},

where τm(v) is the time of the mth firing at v.

3 Outline of proofs and examples

Here we state a number of results that together will form the basis of the
proofs of many of our main results.
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The first says that if the edge weight of an edge per unit time drops too
low too often, then the edge is in fact reinforced only finitely often.

Proposition 1. Assume Conditions 1 and 3. Then, for each e ∈ E there
exists ε(e) > 0, depending only on α and the degrees and firing rates of its
endvertices in G such that

PG,λV ,α
(

lim inf
t→∞

Nt(e)

t
< ε , sup

t≥0
Nt(e) =∞

)
= 0.

Proposition 2. Assume Conditions 1 and 3. Then, for finite E′ ⊂ E,

PG,λV ,α(E′ ⊂ N ) > 0 ⇐⇒ E′ is removable from G.

Moreover, if E′ is finite and removable then P-almost surely,

P
(
E′ ⊂ N

∣∣M , (Un(x))n∈N,x∈V
)
≥

∏
v∈V :

Ev∩E′ 6=∅

∏
m≥1

(m/|Ev|)α

|E′ ∩ Ev|+ (m/|Ev|)α
. (2)

For E′ ⊂ E, let k′ ∈ N ∪ {∞} denote the number of connected compo-
nents of G \ E′ = (V,E \ E′), and let {G(i)}i≤k′ = {(V(i), E(i))}i≤k′ denote
the collection of connected components. If E′ is finite (and G is connected)
then k′ is finite. If E′ is finite and removable, then we let µ(i)

G,λV ,E′
denote

the law of (M (i),N (i)) conditional on E′ ⊂ N , where

M (i) = M ∩ (V(i) × [0,∞))

is the firing process on V(i) and

N (i) = {Nt(e)}e∈E(i), t≥0

is the count process of edges in E(i).
Let V̄(i) denote the set of vertices of graph distance at most 1 from V(i)

and Ē(i) denote the set of edges with both endpoints in V̄(i). Hence, V̄(i)

includes V(i) and neighbours of V(i), while Ē(i) includes all of E(i) and some
edges of E′. Consider a WARM process on Ḡ(i) = (V̄(i), Ē(i)) with Poisson
rates λV(i) = (λv)v∈V(i) for vertices in V(i) and 0 for vertices in V̄(i) \ V(i),

conditional on no edge in Ē(i) \E(i) ever being chosen, and µo
Ḡ(i),λV(i) ,Ē(i)∩E′

denote the law of that part of the process restricted to G(i).

Proposition 3. Assume Conditions 1 and 3. If E′ ⊂ E is finite and re-
movable, then conditional on {E′ ⊂ N}
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0 1 2 3

0 1 2

1′ 2′ 3′

Figure 3: The path graph G = [0, 3] ⊂ Z (top) has a single removable
edge (1, 2). Underneath are the two graphs Ḡ(1) and Ḡ(2), on which we run
independent WARMs (filled vertices x fire at rates λx and hollow vertices
fire at rate 0). Conditional on the event {(1, 2) ∈ N}, the law of the WARM
process on G is the same as the joint law of two independent processes: a
WARM on Ḡ(1) conditional on never reinforcing edge (1, 2) and a WARM
on Ḡ(2) conditional on never reinforcing edge (1′, 2′).

(i) the WARM processes {(M (i),N (i))}i≤k′ are independent, and

(ii) the conditional distribution µ(i)

G,λV ,E′
of the WARM process (M (i),N (i))

given {E′ ⊂ N} equals µo
Ḡ(i),λV(i) ,Ē(i)∩E′

.

The basic idea behind Proposition 3 is that if two subgraphs of G would
be disconnected by removing all of the edges E′, then it means that com-
munication between the WARM sub-processes (defined by restricting the
WARM process on G to each of these subgraphs) must pass through edges
in E′. If those edge counts never change, then the WARM processes on the
two subgraphs never communicate with (or influence) each other.

For example, when G is the path graph [0, 3] ⊂ Z of length 3, then
e = (1, 2) is the only removable edge. Let Di be the event that (1, 2) is
never reinforced by a clock ring at i. Then, with E′ = {(1, 2)} we have
{E′ ⊂ N} = D1∩D2. On the event {E′ ⊂ N} the edge count Nt((1, 2)) ≡ 1
for all t, so clock rings and edge reinforcement on the right are never felt on
the left and vice versa. See Figure 3.

Recall that if F ⊂ E then ∂F is the set of edges with exactly one end-
vertex in VF . In order to prove Theorem 3 we use the fact (recall Proposition
1) that if an edge is not used a positive proportion of the time then it is
used only finitely often, together with the following result.

Given a finite and removable set E′ ⊂ E, let G′ = (V,E \ E′). Let
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N− = (Nt(e))e∈E\E′,t≥0, and let µ−G,λV ,α(·) = PG,λV ,α(N− ∈ ·|E′ ⊂ N )
denote the conditional law of this restricted process. Let µG′,λV ,α denote
the law of the WARM process on G′.

Proposition 4. Let E′ ⊂ E be finite and removable. Then, µ−G,λV ,α and
µG′,λV ,α are mutually absolutely continuous.

Proposition 5. Assume Conditions 1 and 3. Let E′ ⊂ E be removable and
finite, and R ∈ σ(Nt(e) : t ≥ 0, e /∈ E′). Then,

PG,λV ,α(R,E′ ⊂ Ec∞) > 0 ⇐⇒ PG,λV ,α(R,E′ ⊂ N ) > 0.

Proposition 6. Let G be finite and E′ ⊂ E be removable. Then, PG,λV ,α(E+ =
E \ E′) > 0 if and only if θGi,λVi (α) > 0 for each i ≤ k′.

For v ∈ V , let Ev denote the connected component of v in E+. The
WARM model on G = (V,E) under Condition 2 can be defined on a prob-
ability space (similar to the construction in Section 2) in terms of a family(
(Tx,i, Ux,i)i∈N

)
x∈V , of random variables that are i.i.d. over sites x ∈ V : the

Tx,i are Poisson firing times at x ∈ V , and we use Ux,i to pick the edge that is
reinforced upon the ith firing at x. This “environment” is shift/translation
invariant on a transitive graph, so an application of the ergodic theorem im-
mediately yields the following result, which says that for a transitive graph
G, almost surely, for any given finite set of edges F there are either no or
infinitely many connected components that are translations of F .

Proposition 7. Let G = (V,E) be a transitive graph with distinguished
vertex o ∈ V , and assume Condition 2. If F 3 o is a finite connected subset
of E and PG,1,α(AF ) > 0 then

PG,1,α(Ev is isomorphic to F for infinitely many v) = 1.

4 Proof of Propositions 1-6

To prove Proposition 1, we begin by introducing a bivariate Markov chain
coupled with our WARM process. Loosely speaking, it captures the joint
evolution of the maximum weight of an edge incident to a vertex together
with the weight of a specific edge.

Let (Wt)t≥0 = ((W
[1]
t ,W

[2]
t ))t≥0 denote a discrete-time Markov chain

with state space N×Z+, and transition probabilities as follows, where r ∈ N,

13



and θ ∈ (0, 1)

(n, s) 7→


(n, s+ 1) with probability

(
r
n

)α
,

(n+ 1, s) with probability θ
(
1−

(
r
n

)α)
,

(n, s) otherwise.

Let the initial state be (w[1], w[2]), and let ζ = r/w[1].

Lemma 1. For each α > 1 there exists cα > 0 such that if ζ < 1/2 then

P
(

sup
t≥1

W
[2]
t − w[2] ≥ r/3

)
<
cα
θ
ζα−1.

Proof. For m ≥ 1, let km = inf{t : W
[1]
t = m} denote the first hitting

time of m, so that W
[1]
t = m if and only if km ≤ t ≤ km+1 − 1. Let

K(m) = km+1 − km denote the number of steps that W
[1]
t stays in state m.

Then, K(m) ∼ Geometric(γ(m)), where

γ(m) := θ
(

1−
( r
m

)α)
.

We can now calculate the expectation of ∆ := supn≥1W
[2]
n −W [2]

0 . In-
deed,

∆ =
∑

m≥w[1]

(W
[2]
km+1

−W [2]
km

), (3)

hence equality also holds for the expectations.

Now, conditionally on K(m) the difference W
[2]
km+1

−W [2]
km

is a sum of

K(m)− 1 independent Bernoulli random variables with parameter

ρ(m) :=

(
r
m

)α
1− γ(m)

.

Thus,

E
[
W

[2]
km+1

−W [2]
km

]
= E

[
E[W

[2]
km+1

−W [2]
km
|K(m)]

]
= ρ(m)E[K(m)− 1] = ρ(m)

[
1

γ(m)
− 1

]
=

(
r
m

)α
γ(m)

=

(
r
m

)α
θ
(
1−

(
r
m

)α) .
14



Now, since in the sum (3), m ≥ w[1], we see that r
m ≤ ζ for such m. If

ζ ≤ 1/2, then

E[∆] ≤
∑

m≥w[1]

(
r
m

)α
θ
(
1−

(
r
m

)α) ≤ 2

θ

∑
m≥w[1]

( r
m

)α ≤ c′αr
α

θ(w[1])α−1
,

where c′α only depends on α.
Finally, by Markov’s inequality,

P(∆ > r/3) ≤ 3

r
E[∆] ≤ 3c′α

θ

( r

w[1]

)α−1
=

3c′α
θ
ζα−1,

as claimed. �

We are now ready to prove Proposition 1 via Lemma 1.

Proof of Proposition 1. Fix e0 = {x, y} ∈ E. Then, by symmetry, it
suffices to show that (for sufficiently small ε) almost surely on the event

Oe0(ε) :=
{

lim inf
t→∞

t−1Nt(e0) < ε
}

the edge e0 is reinforced only finitely often from the vertex x. Almost surely
there exists τ > 0 such that for all t > τ the number of Poisson firings at
x and y at time t is between t/2 and 2t times their respective firing rates.
Then, at each time t > τ ,

Mt(x) := max
e∈Ex

Nt(e) >
λxt

2dx
,

and similarly for y. It follows that almost surely on the event Oe0(ε) there
are infinitely many times t0, t1, . . . at which t−1

i Nti(e0) < ε and Mti(x) >
λxti/(2dx) and Mti(y) > λyti/(2dy). Taking ε < λx/(4dx) ensures that
2Nti(e0) ≤Mti(x) for each i.

Let ti > τ be such a time. Then, at any time s > ti such that
Ns(e0) < 2Nti(e0) and a firing occurs at x, there is probability at most
(2Nti(e0)/Ms(x))α that the WARM process chooses to reinforce edge e0

and probability at least (1 − (2Nti(e0)/Ms(x))α)/dx of choosing to rein-
force a specific edge e ∈ Ex with maximal weight Ms(x) (so e 6= e0). Let
r = 2Nti(e0) and w[1] = Mti(x), w[2] = 0, and θ = 1

dx
. Let ζ∗ < 1/2 be

sufficiently small (depending only on α, θ) so that cα(ζ∗)α−1/θ < 1/3, and

choose ε < ζ∗

4

(
λx
dx
∧ λy

dy

)
so that

r

w[1]
=

2Nti(e0)

Mti(x)
≤ 4ε

dx
λx

< ζ∗.
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Then, according to Lemma 1, with this choice of ε there is probability at
least 2/3 the WARM process observed on the neighbours of x reinforces
e0 from x no more than Nti(e0)/3 times after time ti. We therefore see
this occur after at most I ∼ Geometric(2/3) number of attempts. Thus,
(Nt(e0))t≥0 is bounded almost surely on the event Oe0(ε). �

Proof of Proposition 2. First, suppose that E′ ⊂ E is not removable.
By definition, G \ E′ contains an isolated vertex x ∈ V . Since λx > 0 we
have #(M ∩ ({x} × [0,∞)) =∞ almost surely, at least one of {Nt(e)}e∈Ex
has to diverge to ∞. Thus, P(E′ ⊂ N ) = 0.

Next, once (2) is verified, it is now an easy exercise to show that (if E′

is removable and finite) the right hand side of (2) is strictly positive since
{v ∈ V : Ev ∩ E′ 6= ∅} is finite and α > 1. Hence, if E′ is finite and
removable then P(E′ ⊂ N ) > 0. Hence, it remains to prove (2).

Let U = (Un(x))n∈N,x∈V . Then, the left-hand side of (2) is equal to the
limit as r →∞ of∑

v∈V

∑
k∈N

1{Xr=v}1{K(r)=k}P
(
∩j≤r {VK(j)(Xj) ≤ SnT−j (Xj)}

∣∣M ,U
)
. (4)

Write the probability as

P
(
∩j≤r {VK(j)(Xj) ≤ SnT−j (Xj)}

∣∣M ,U
)

= P
(
VK(r)(Xr) ≤ SnT−r (Xr)

∣∣M ,U ,∩j≤r−1{VK(j)(Xj) ≤ SnT−j (Xj)}
)

(5)

× P
(
∩j≤r−1 {VK(j)(Xj) ≤ SnT−j (Xj)}

∣∣M ,U
)
.

On the event {Xr = v} ∩ {K(r) = k}, the current firing is the kth firing
of the vertex v. If the vertex v is not incident to an edge in E′, then
Sn
T−r

(Xr) = 1, and therefore the probability in (5) is 1. Otherwise v is

incident to an edge in E′, and at least one edge in Ev has count at least
1 + (k − 1)/|Ev| ≤ k/|Ev|. On the event that previous firings have not
reinforced an edge in E′, at least one edge in Ev \ E′ has count at least
k/|Ev|, and moreover that

∑
e∈Ev∩E′ NT−r

(e) = |E′ ∩ Ev| and hence

Sn
T−r

(Xr) ≥
(k/|Ev|)α

|E′ ∩ Ev|+ (k/|Ev|)α
.

Thus, if Ev ∩ E′ 6= ∅, then (5) is at least

P
(
VK(r)(Xr) ≤

(k/|Ev|)α

|E′ ∩ Ev|+ (k/|Ev|)α
∣∣M ,U ,∩j≤r−1{VK(j)(Xj) ≤ SnT−j (Xj)}

)
.
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But VK(r)(Xr) is independent of the conditioning, so this probability is equal

to
(k/|Ev|)α

|E′ ∩ Ev|+ (k/|Ev|)α
. Thus, (4) is bounded below by

∑
v∈V

∑
k∈N

1{Xr=v}1{K(r)=k}

[
1{Ev∩E′=∅} + 1{Ev∩E′ 6=∅}

(k/|Ev|)α

|E′ ∩ Ev|+ (k/|Ev|)α

]
× P

(
∩j≤r−1{VK(j)(Xj) ≤ SnT−j (Xj)}

∣∣M ,U

)
.

Proceeding inductively we get that (4) is bounded below by∑
v1,...,vr
∈V

∑
k1,...,kr
∈N

∏
j≤r

1{Xj=vj}1{K(j)=kj}

[
1{Evj∩E′=∅}

+ 1{Evj∩E′ 6=∅}
(kj/|Evj |)α

|E′ ∩ Ev|+ (kj/|Evj |)α
]
.

Letting K(n, v) = |{k ≤ n : Xk = v}| denote the number of firings at vertex
v with index at most n, we see that this equals∏

v:Ev∩E′ 6=∅

∏
j≤K(r,v)

(j/|Ev|)α

|E′|+ (j/|Ev|)α
.

Taking the limit as r → ∞ and using the fact that K(r, v) → ∞ a.s. for
every v verifies (2). �

Proof of Proposition 3. Let E′ ⊂ E be finite and removable. Recall the
probability space of Section 2. Then, P(E′ ⊂ N ) > 0 by Proposition 2. Let

N̄ (i) = (N̄
(i)
t (e))e∈Ē(i),t≥0 denote the WARM process on Ḡ(i) induced by the

construction on our probability space, but with λ̄V = (λ̄x)x∈V defined by
λ̄x = λx1{x/∈V̄(i)\V(i)}. In other words, we use the same independent uniform

random variables (defined site by site) and edge ordering, and we use the
Poisson point process M(i), except that we remove all firings at sites in
V̄(i) \ V(i). Here, edges in Ē(i) \ E(i) can only be reinforced from a firing at
the endvertex in V(i) (since there are no firings at the other endvertex).

Introduce the event

K∗i :=
{
Vm(x) ≤ wx({N̄ (i)

Tm(x)−(e)}e∈Ex\E′) for all m ≥ 1, x ∈ V(i)

}
where

wx({n(e)}e∈Ex\E′) =

∑
e∈Ex\E′ n(e)α

|Ex ∩ E′|+
∑

e∈Ex\E′ n(e)α
.
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Note that K∗i is not the same as the event that no edge in E′ is reinforced
from firings at vertices in V(i), as the occurrence of the latter would de-
pend on possible reinforcements of E′ from elsewhere. Nevertheless, letting
NE′ := {E′ ⊂ N} we have that NE′ = ∩i≤k′K∗i since while each edge in

E′ remains unreinforced, the processes ((N̄
(i)
t (e))e∈E∗

(i)
)i≤k′ and (Nt(e))e∈E

are identical. They can differ only after some edge in E′ is reinforced. For

(Ai)i≤k′ arbitrary (measurable), but fixed let B∗i = {(N̄ (i)
t (e))e∈Ei,t≥0 ∈ Ai}

and Bi = {((Nt(e))e∈Ei,t≥0 ∈ Ai} . On the event NE′ = ∩i≤k′K∗i we have
that B∗i occurs if and only if Bi occurs. Hence

P
(
NE′ ∩ ∩i≤k′Bi

)
= P

(
∩i≤k′

(
B∗i ∩K∗i

))
.

The events (B∗i ∩ K∗i )i≤k′ are independent, as are the events (K∗i )i≤k′ ,
since they depend on independent Poisson processes and uniform random
variables. Therefore,

P
(
∩i≤k′Bi

∣∣NE′) =
P(∩i≤k′(B∗i ∩K∗i ))

P(∩i≤k′K∗i )
=
∏
i≤k′

P(B∗i ∩K∗i )

P(K∗i )
=
∏
i≤k′

P(B∗i |K∗i ).

Similarly,

P(Bj |NE′) =
P(B∗j ,∩i≤k′K∗i )

P(∩i≤k′K∗i )
=

P(B∗j ∩K∗j )
∏
i≤k′,i 6=j P(K∗i )∏

i′≤k′ P(K∗i′)
= P(B∗j |K∗j ).

(6)

Therefore,

P
(
∩i≤k′Bi

∣∣NE′) =
∏
i≤k′

P(Bi|NE′)

which proves the first claim.
The second claim follows immediately from our construction due to

the equality of the Poisson processes, equality of ((N̄
(i)
t (e))e∈E∗

(j)
)j≤k′ and

(Nt(e))e∈E on the event NE′ = ∩i≤k′K∗i (and the already proved indepen-
dence). �

Now, we have collected all ingredients to prove Proposition 4.

Proof of Proposition 4. We define the two processes on the same proba-
bility space by using Remark (3). Let n ≡ 1 and n′ be as in the remark and
let N ′ := (Nn′

t (e))e∈E\E′,t≥0. Then, as in the remark, N ′ is a WARM pro-
cess on G′ with the same firing processM and with the same partial ordering

18



of edges (as in the proof of Proposition 3). Thus, on the event {E′ ⊂ N},
the two processes evolve identically. That is, N ′ = (Nt(e))e∈E\E′,t≥0 on this
event.

For measurable A, let B = {(M , (Nt(e))e∈E\E′,t≥0) ∈ A} and similarly
let B′ = {(M , (N ′t(e))e∈E\E′,t≥0) ∈ A′}. Then,

P(B,E′ ⊂ N ) = P(B′, E′ ⊂ N ). (7)

Therefore if P(B|E′ ⊂ N ) > 0 then P(B′) > 0.
Observe that B′ is independent of (Vn(x))x∈V,n≥0 since by construction

Sn
′

t (x) = 1 for every t, x almost surely by our choice of n′. Thus, if P(B′) > 0
then by Proposition 2 we have

P(E′ ⊂ N|B′) ≥
∏

v:Ev∩E′ 6=∅

∞∏
m=1

(m/∂v)
α

|E′|+ (m/∂v)α
> 0. (8)

Hence, P(E′ ⊂ N|B′) > 0 and therefore P(B′, E′ ⊂ N ) > 0. From (7),
this proves that P(B,E′ ⊂ N ) > 0 and therefore that P(B|E′ ⊂ N ) > 0 as
required. �

To prove Proposition 5, we construct a coupling (N ,N∗) such that N∗

has the same distribution asN and we have a lower bound on the probability
that N∗ never reinforces edges from E′.

Proof of Proposition 5. It is trivial that if P(R,E′ ⊂ N ) > 0 then
P(R,E′ ⊂ Ec∞) > 0, so we must prove the converse. Let VE′ denote the
set of vertices incident to E′.

Suppose that P(R,E′ ⊂ Ec∞) > 0. Then, there exist t0 ∈ N and k0 ∈ Z+

such that with positive probability all of the following occur:

• R occurs,

• D0 = {no edge in E′ is reinforced after time t0},

• J0 = {before time t0 there are exactly k0 firings at vertices in VE′}.

We enrich our existing probability space with a familyW = (Wn(x))n∈N,x∈VE′
of i.i.d. Bernoulli(1/2)-distributed random variables that are independent
of U ,V ,M and a Poisson point process M ′′

VE′
on VE′ × [0, t0] with rates

(λx)x∈VE′ (i.e. the same as the rates in M at these sites) that is independent
of all of these variables. Let MVE′ [0, t0] denote the restriction of M to sites
in VE′ and times in [0, t0].
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Then,
M ′ = M ∪M ′′

VE′

is a Poisson point process with rate 2λx at x ∈ VE′ during the interval [0, t0]
and rate λy at y ∈ V otherwise.

We define a new process N ′ from the Poisson point process M ′ exactly
as for the process N defined from M , using the same U ,V and ordering,
and with N ′0(e) = N0(e) for each e ∈ E.

We also define a new process N∗ from the Poisson point process M ′

as follows. Set N∗0 (e) = N0(e) for each e ∈ E. At the mth firing (in the
process M ′) at x at some time t, if either [x ∈ VE′ and t ≥ t0], or [x /∈ VE′
and t ≥ 0], then we choose edge ê∗ according to

1{ê∗=e} = 1{e∈Ex∩E−}1{Vm(x)≤S∗t−(x)}1{Um(x)∈(Q∗t (x,e),Q∗t (x,e)+R∗t (e)]}

+ 1{e∈Ex∩E′}1{Vm(x)>S∗t−(x)}1{Um(x)∈(Q
′∗
t (x,e),Q

′∗
t (x,e)+R

′∗
t (e)]},

where the starred quantities are defined as in Section 2 but for the process
N∗ (using the same U ,V variables and ordering of edges). We then set
N∗t (e) = N∗t−(e) + 1{e=ê∗}.

If (in the process M ′) we have (Xn, Tn) = (x, t) for some x ∈ VE′ and
t < t0, we don’t reinforce any edge if Wn(x) = 0, while if Wn(x) = 1 and
there have been m firings at x in [0, t] then we choose edge ê∗ according to

1{ê∗=e} = 1{e∈Ex∩E−}1{Vm(x)≤S∗t−(x)}1{Um(x)∈(Q∗t (x,e),Q∗t (x,e)+R∗t (e)]}

+ 1{e∈Ex∩E′}1{Vm(x)>S∗t−(x)}1{Um(x)∈(Q
′∗
t (x,e),Q

′∗
t (x,e)+R

′∗
t (e)]},

and we set N∗t (e) = N∗t−(e) + 1{e=ê∗}.
Notice that N∗ only reinforces an edge at firings in the set

M∗ = {(Xn, Tn) ∈M ′ : Wτ ′n(Xn) = 1 if Xn ∈ VE′ and Tn ≤ t0},

where τ ′n = |{k ≤ n : Xk = Xn}| is the number of times that Xn has fired
(in the process M ′) up to time Tn. Clearly, M∗ is the process M filtered
on VE′ × [0, t0] by W , which is easily seen to be a Poisson point process on
V × [0,∞) with rates λV . Thus, the processes (M ,N) and (M∗,N∗) have
the same law.

Let K denote the event that: Wn(Xn) = 0 for each of the firings
(Xn, Tn) ∈M ′

VE′
[0, t0] that result in a choice of an edge in E′, andWn(Xn) =

1 for each of the firings (Xn, Tn) ∈M ′
VE′

[0, t0] that result in a choice of an
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edge in E \ E′. Let L′ denote the number of firings in M ′
VE′

[0, t0]. Then,

P(R,D0, J0,K) =
∑
`≥k0

P(R,D0, J0,K|L′ = `)P(L′ = `)

=
∑
`≥k0

P(R,D0, J0|L′ = `)P(K|L′ = `)P(L′ = `),

where we have used the fact that K is independent of R,D0, J0 given L′ = `.
Since P(K|L′ = `) = 2−` we have

P(R,D0, J0,K) =
∑
`≥k0

2−`P(R,D0, J0, L
′ = `),

which is strictly positive since 0 < P(R,D0, J0) =
∑

`≥k0 P(R,D0, J0, L
′ =

`).
Now, observe that on the event D0∩J0∩K we have thatN∗E\E′ = NE\E′

(so in particular on D0 ∩ J0 ∩ K, R∗ occurs if and only if R∗ occurs) and
moreover E′ ⊂ N ∗. Thus,

P(R∗, E′ ⊂ N ∗) ≥ P(R,D0, J0,K) > 0.

Now, recall that the processes (M ,N) and (M∗,N∗) have the same law,
so P(R,E′ ⊂ N ) = P(R∗, E′ ⊂ N ∗) > 0 as claimed. �

Proof of Proposition 6. First, Proposition 1 gives that

PG,λV ,α(E+ = E \ E′) = PG,λV ,α(Ec∞ = E′) = PG,λV ,α(E′ ⊂ Ec∞, R),

where R = {supt≥0Nt(e) =∞ for every e ∈ E \E′}. Thus, by Propositions
(5) and (2), we have

PG,λV ,α(E+ = E \ E′) > 0 ⇐⇒ PG,λV ,α(E′ ⊂ N , R) > 0

⇐⇒ PG,λV ,α(R|E′ ⊂ N ) > 0.

Putting G′ = (V,E \ E′), Proposition 4 gives that

PG,λV ,α(R|E′ ⊂ N ) > 0 ⇐⇒ PG′,λV ,α(R) > 0

⇐⇒
∏
i≤k′

PGi,λVi ,α(Ri) > 0

⇐⇒
∏
i≤k′

θGi,λVi (α) > 0

⇐⇒ θGi,ΛVi (α) > 0 for every i ≤ k′,
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where (Gi)i≤k′ , are the disjoint components of G′, Ri is the event that every
edge in Ei is used infinitely often, and where in the second line we have used
the fact that a WARM process is independent on disjoint components. �

5 Proof of Theorem 1

In this Section we prove Theorem 1, which asserts that when E is finite
(Xe(n))e∈E converges almost surely to a random vector supported on the set
of not-linearly-unstable equilibria of a particular deterministic dynamical
system. In order to introduce this system, we generalise the model to the
general setting considered in [8, 10]. In this setting we have a finite set E
of colours of balls and collection of probabilities p = (pA)A⊂E , with p∅ = 0.
At each step of the process we choose a subset A ⊂ E (with probability pA
independent of the history of the process) of the colours to compete for one
step of a Pólya urn process with parameter α. The dynamics of counts of
the edges in a finite, discrete-time WARM process are given by

Ne(n+ 1) = Ne(n) + ηn,e,

where ηn,e are random variables, taking values 0 or 1, and indicating the
random reinforced edge at time n. We have

P(ηn,e = 1|Fn) =
∑
A3e

pA
(Ne(n))α∑
j∈A(Nj(n))α

,

where Fn = σ((Ne(k))e∈E , k ≤ n). Setting ρn,e := ηn,e−Xe(n), the propor-

tions Xe(n) = Ne(n)
n satisfy

Xe(n+ 1) = Xe(n) +
1

n+ 1
(ηn,e −Xe(n)) = Xe(n) +

1

n+ 1
ρn,e. (9)

Thus,

E[Xe(n+ 1)−Xe(n)|Fn] =
1

n+ 1
Fe( ~X(n)),

where

Fe(~x) =
∑
A3e

pA
xαe∑
j∈A x

α
j

− xe, for e ∈ E. (10)

The solutions ~v of this system of equations are equilibria. Let J denote the
Jacobian of (Fe)e∈E . An equilibrium ~v is linearly unstable if at least one
eigenvalue of J (~v) is strictly positive.
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It is known for instance from [8, Theorem 1] that all accumulation points
of X are equilibria of the above deterministic system, and the argument of
[3, Section 4] shows that if U is the set of linearly unstable equilibria, then
P(limn→∞(Xe(n))e∈E ∈ U) = 0. Therefore to prove Theorem 1 it remains
to show that P(limn→∞(Xe(n))e∈E exists) = 1.

To this end, we will prove the following result, by adapting arguments
of [16], in which

XE = min
e∈E

inf
n≥0

Xe(n),

denotes the smallest rescaled weight over all edges and times and

D =
{

lim inf
n→∞

X(n) 6= lim sup
n→∞

X(n)
}

denotes the event that X(n) does not converge.

Proposition 8. For any finite WARM, with α > 0 and λV > 0

PG,α,λV (XE > 0, D) = 0.

Proof of Theorem 1 assuming Proposition 8, As explained in Sec-
tion 1, it suffices to consider the discrete-time dynamics. We first prove by
induction on the number of edges in G that PG,λV ,α(D) = 0. If G has only
one edge then the result is trivial. Let G be a graph containing n edges. By
Proposition 8 it suffices to show that PG,α,λV (XE = 0, D) = 0. Now,

PG,λV ,α(XE = 0, D) ≤
∑
e∈E

PG,λV ,α
(

inf
n≥0

Xe(n) = 0, D
)
,

so it is sufficient to show that PG,λV ,α(infn≥0Xe(n) = 0, D) = 0. Suppose
instead that this probability is strictly positive. Then, by Proposition 1,
PG,λV ,α(e ∈ Ec∞, D) > 0. In particular, PG,λV ,α(e ∈ Ec∞) > 0 and this
implies that e must be removable, otherwise Ne(n) would grow asymptot-
ically linearly in time almost surely. Since Xe(n) converges to 0 on the
event {e ∈ Ec∞}, we must have that PG,λV ,α(e ∈ Ec∞, D′e) > 0 where D′e is
the event that Xu(n) does not converge for some u 6= e. Now, Proposi-
tions 5 and 4 imply that PG,λV ,α(e ∈ N , D′e) > 0 and PG\{e},λV ,α(D) > 0.
But this violates the induction hypothesis. We therefore conclude that
PG,λV ,α(infn≥0Xe(n) = 0, D) = 0 and hence PG,λV ,α(D) = 0 as claimed. �

The idea of proof for Proposition 8 is to first implement a change of
variables transforming the vector field F into an anti-gradient, and then to
apply the main result of [16].
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Proof of Proposition 8. An easy calculation gives

Fe(~x) = −xe
∂L

∂xe
,

where

L(~x) =
∑
e∈E

xe −
1

α

∑
A⊂E

pA log
(∑
e∈A

xαe

)
. (11)

Hence, the vector field F becomes anti-gradient after the change of variables

Φ(~x) = ~y, ye = 2
√
xe.

That is, the image y(t) = Φ(x(t)) under Φ of a trajectory x(t) of a vector
field ẋ = F (x) satisfies

ẏe =
1
√
xe
· ẋe =

1
√
xe
· (−xe

∂L

∂xe
)

= −
√
xe
∂L ◦ Φ−1

∂ye

∂ye
∂xe

= −
√
xe ·

1
√
xe
· ∂L ◦ Φ−1

∂ye
= − ∂L

∂ye
, (12)

where L := L ◦ Φ−1. Let D := {(ye)e∈E : mine∈E ye ≥ 2
√
ε}.

Now, we apply this change of variables to the WARM process. That is,
we consider the random increments

rn,e = Ye(n+ 1)− Ye(n) (13)

of the random variables Ye := 2
√
Xe. If we can show that PG,λV ,α(XE >

ε,D) = 0 for every ε > 0, then PG,λV ,α(XE > 0, D) = 0.
Hence, let ε > 0 be arbitrary. Then, Xe(n) > ε for every e ∈ E and

every n ≥ 0, so that

Xe(n+ 1)−Xe(n) =
1

n+ 1
ρn,e = O(

1

n+ 1
).

Applying a map Φ that is smooth in the domain {x : mine∈E xe > ε}, we
obtain

rn,e =
∂ye
∂xe
|Xe(n) ·

ρn,e
n+ 1

+O
( ρ2

n,e

(n+ 1)2

)
.

Now, taking the conditional expectation w.r.t. Fn, we get

E[rn,e | Fn] = − 1

n+ 1

∂ye
∂xe
|Xe(n)E[ρn,e | Fn] +O(

1

n2
) (14)

= − 1

n+ 1

∂L
∂ye
|Ye(n) +O(

1

n2
),
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where we have used that E[ρn,e | Fn] = Fe( ~X(n)) and (12).
Hence, the process (13) can be represented as

Ye(n+ 1) = Ye(n) + E[rn,e | Fn] + (rn,e − E[rn,e | Fn])

= Ye(n)− 1

n+ 1
(
∂L
∂ye
|Ye(n) + ξn,e),

where the “random term”

ξn,e := (n+ 1)
((

E[rn,e | Fn]− rn,e
)

+
(
− 1

n+ 1

∂L
∂ye
− E[rn,e | Fn]

))
. (15)

decomposes into two drift components: the difference of rn with its (condi-
tional) expectation and the difference between the conditional expectation
of rn and the L-antigradient flow step.

In the right hand side of (15), the former summand is of zero expectation,
while the latter one is estimated via (14). Thus, E[ξn,e] = O( 1

n).
This is exactly the setting considered in [16], which is devoted to the

study of the stochastic gradient flow: Eq. (1) therein defines a sequence of
random variables taking values in Rk

θn+1 = θn − αn(∇ f(θn) + ξn).

Then, [16, Theorem 2.1] states that under several assumptions the limit of
such a sequence θn exists almost surely. Let us check these assumptions.
The first one, Assumption 2.1, is almost immediate: up to a constant shift
of the time index, in our case, we have αn = 1

n , and hence

lim
n→∞

αn = 0,
∑
n≥1

αn =∞.

Next, Assumption 2.3 of [16] in any compact domain is implied by the
analyticity of the function L (see the discussion on the two last paragraphs
of [16, p. 1717]) as it is exactly the Lojasiewicz inequality. The function
L is analytic in the domain D, and the main theorem in [16] in fact (by
the same arguments) also implies the almost sure convergence on the set of
trajectories that stay in a domain where the assumptions are satisfied.

The most technical assumption is Assumption 2.2. Let γn :=
∑

i<n αi,
and define the moment of time a(n, s) as

a(n, s) := max{k ≥ n : γk − γn ≤ s}. (16)
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Then, Assumption 2.2 requires that for some r > 1 for any s the random
variable

ξ := lim sup
n→∞

max
n≤k≤a(n,s)

∥∥∥∥∥∥
∑
n≤i≤k

αiγ
r
i ξi

∥∥∥∥∥∥ (17)

is almost surely finite on the set of trajectories staying in D. Very roughly
speaking, it is this assumption where one controls both the created variance
and the drift, coming from the random variables ξk.

For our case we have αn = 1
n , hence

γk = log k + C + o(1), a(n, s) = (es + o(1)) · n.

As larger values of s imply larger values of a(n, s), and the right hand side
of (17) is increasing in a(n, s), it suffices to check the finiteness for 2n taken
instead of a(n, s) (as it also implies the finiteness for 4n, 8n, etc.).

Let us check this assumption; in fact, we will show that any r (in par-
ticular, r = 2) will do. We start by decomposing

ξn = qn + ξ̄n,

where qn := E[ξn | Fn]. Recall that we have qn = O( 1
n). Also, as |ρt,e| ≤ 1

t+1 ,
the random variables ξn’s are uniformly bounded.

Then, the series
∑

n≥1 |αnγrnqn| converges since the bound for qn implies

that its terms are bounded by O( logr n
n2 ). On the other hand, the sequence

of intermediate sums
Sn :=

∑
n≥1

αnγ
r
nξ̄n

is a (coordinatewise) martingale, and we have

E[(αnγ
r
nξ̄n,e)

2|Fn−1] = O(
log2r n

n2
)

with a uniform constant. As the series
∑

n≥1
log2r n
n2 converges, the mar-

tingale Sn,e has a uniformly bounded second moment and hence converges
almost surely. Thus, the same applies to the series∑

n≥1

αnγ
r
nξn,e =

∑
n≥1

αnγ
r
nqn,e +

∑
n≥1

αnγ
r
nξ̄n,e.

Hence, almost surely the series ∑
n≥1

αnγ
r
nξn
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converges (as it converges coordinatewise), provided that along the itera-
tions we stay in the domain D. In particular, the pairwise differences of its
intermediate sums, that are of the form∑

n≤i≤k
αiγ

r
i ξi,

are almost surely bounded uniformly in n and k. In particular, we get the
desired

lim sup
n→∞

max
n≤k<a(n,t)

∥∥∥∥∥∥
∑
n≤i≤k

αiγ
r
i ξi

∥∥∥∥∥∥ <∞.
�

6 Proof of Theorems 2 and 3

Using the auxiliary results from Section 3, we now complete the proof of
Theorem 3.

Proof of Theorem 3. We claim that

PG,λV ,α(R,AF ) > 0⇔ ∂F is removable and PF,λVF ,α(R, E+ = F ) > 0.

(18)

Once (18) is established, the first claim follows by taking R = Ω. Moreover,
given the the first claim holds, if PG,λV ,α(AF ) > 0 then also PF,λVF ,α(E+ =
F ) > 0 and vice versa so we can replace (18) with

PG,λV ,α(R|AF ) > 0⇔ ∂F is removable and PF,λVF ,α(R|E+ = F ) > 0,

(19)

which proves the second claim.
To prove (18), note that by definition of AF and Proposition 1 and

Theorem 1, for any R ∈ σ(Nt(e) : t ≥ 0, e ∈ F ) we have

PG,λV ,α(R,AF ) = PG,λV ,α(R, ∂F ⊂ Ec+, F ⊂ E+) = PG,λV ,α(R, ∂F ⊂ Ec∞, F ⊂ E+).

Moreover, by Proposition 5 the right-hand side is positive if and only if
PG,λV ,α(R, ∂F ⊂ N , F ⊂ E+) > 0. Hence, applying Proposition 2 and
Proposition 4 with G′ = (V,E \ ∂F ), we arrive at

PG,λV ,α(R,AF ) > 0⇔ ∂F is removable and PG,λV ,α(R,F ⊂ E+|∂F ⊂ N ) > 0

⇔ ∂F is removable and PG′,λV ,α(R,F ⊂ E+) > 0,
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But since F is a connected component of G′ and the WARM process behaves
independently on different connected components we have that

PG′,λV ,α(R,F ⊂ E+) = PF,λVF ,α(R, E+ = F ),

which gives (18). �

We now use Theorem 3 to prove Theorem 2.

Proof of Theorem 2. Let α > 2 (resp. α > 25). Suppose that with posi-
tive probability E+ contains a finite connected component for which the first
claim (resp. second claim) of the theorem fails. Since the set consisting of
the finite connected subsets of G is countable (here we are using the fact
that G is countable), there must exist a finite connected subgraph F ⊂ G
for which PG,λV ,α(AF ) > 0 but such that F is not a tree (resp. has diameter
larger than 3). By Theorem 3, we have PF,λVF ,α(E+ = F ) > 0. By Theo-
rem 1 the limits exist a.s. and there exists x ∈ S such that σ(S) = F . By
[10, Corollary 1] F must be a tree (resp. [10, Theorem 2(a)], F must have
diameter at most 3), which gives a contradiction. �

7 Proof of Theorem 4 and Corollary 1

Henceforth we assume that Condition 2 holds. The proof of Theorem 4 is
based on the following ancillary results.

Proposition 9. For M ≥ 4 and α > 2, all fully supported equilibria on
[0,M ] are linearly unstable.

Proposition 10.

(i) There is no equilibrium supported on [0, 3] for α ∈ (1, α∗).

(ii) There is a linearly stable equilibrium supported on [0, 3] for α > α∗.

Proposition 10(ii) is proved in [8, proof of Theorem 8] (take r = 1 in
that result), so we will only need to prove (i).

Finally, for α close to 1, large connected components appear, see e.g.
Figure 4.

Proposition 11. Let k ≥ 1 be arbitrary. Then, there exists α2k > 1 such
that for α ∈ (1, α2k) the graph G = [0, 2k] admits a fully-supported linearly
stable equilibrium with weights ~x(k;α) = (xi(k;α))i∈0,...,2k−1 such that

lim
α↓1

~x(k;α) =
1

k(k + 1)
(k, 1, k − 1, 2, . . . , k − 1, 1, k), (20)
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Figure 4: Approximations of the stable equilibria in Proposition 11 on the
intervals [0, 6] and [0, 8] respectively when α = 1.1. The pictures in each case
are based on simulating the process for a large number of steps, followed by
deterministic dynamics to speed up convergence.

The proofs of Propositions 9, 10, and 11 will be deferred to the ap-
pendix. We now explain why they imply Theorem 4.

Proof of Theorem 4. To prove the claim (0) first note that the set of
edges E′ = {(2i, 2i + 1) : i ∈ Z} is removable. Let Ai = {(2i, 2i + 1) ∈ N}
denote the event that the edge (2i, 2i+ 1) is never used. The events Ai are
dependent, however given the occurrence or otherwise of each Aj for j 6= i,
Ai has probability at least

pα :=

(∏
k∈N

kα

kα + 1

)2

> 0

of occurring. The lower bound is the probability that the middle edge is
never used in the graph [0, 3] with firing rates equal to 0 at the extremities.
It arises by considering a pair of sequences of uniform random variables used
to choose edges at firing times at the sites 2i and 2i+1 respectively, similarly
to the construction in Section 2.

It is elementary that θLi(α) = 1 for line graphs L1, L2 containing 1 and 2
edges respectively (since in both cases each edge is incident to a leaf). Claim
(i) of the Theorem now follows from Theorem 3 since both {(−1, 0), (1, 2)}
and {(−1, 0), (2, 3)} are removable sets of edges. Claims (ii), (iii) and (iv)
follow similarly from Theorems 1 and 3 combined with Propositions 9, 10,
and 11. �
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The proof of Corollary 1 is based on the following key result on the
instability of equilibria supported on even cycles. This is a generalisation
of [8, Proposition 2], i.e. that the uniform distribution on any even cycle is
linearly unstable for all α > 1.

Lemma 2. Let G be a finite graph containing an even cycle, α > 1 and
δ = 1. Then, any fully supported equilibrium on G is linearly unstable.

Proof. Recall first from [8] (see also (11)) that in the appropriately chosen
coordinates, our flow is an anti-gradient one, associated with the function

L(~x) =
∑
i≤n

xi −
1

α · |V |
∑
v∈V

log
(∑
ei∼v

xαi

)
. (21)

Hence, if for an equilibrium point (that is, a critical point of L) there
exists a direction for which the second derivative of L is strictly negative,
this equilibrium is linearly unstable. We will find such a direction by finding
a parametric curve ~x = ~x(s), such that ~x(0) is our equilibrium and the

second derivative d2

ds2
L(~x(s)) is strictly negative.

To construct such a curve, let us first pass to the coordinates yi = xαi .

Then, xi = y
1/α
i is a concave function of yi. Now, assume that the colours

i = 1, . . . , 2m form the even cycle from the assumptions of the lemma. Then,
given an initial point x and the corresponding powers y, consider a straight
segment in the y coordinates: let

ỹj(s) =

{
yj + (−1)j · s j ≤ 2m,

yj otherwise.

Then, for any vertex on the even cycle the corresponding sum yj +yj+1 does
not change along this segment. Hence, the logarithmic part of the function
L stays unchanged on this curve. At the same time, each xi is a concave
function of s, and hence their sum also is. Thus, the restriction of L to the
curve x̃j(s) = ỹj(s)

1/α is strictly concave, what concludes the proof. �

Proof of Corollary 1. Suppose that with positive probability there exists
a finite component F of E+ containing an even cycle. Since the collection of
finite subsets of edges is countable there must exist a finite F containing an
even cycle such that PG,λV ,α(AF ) > 0. Thus by Theorem 3, θF,λVF ,α > 0.
By Theorem 1 there must be a fully supported equilibrium for the WARM
on F that is not linearly unstable. This contradicts Lemma 2, and therefore
proves the first claim of the Corollary.
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For the second claim N, observe that in the triangular lattice for each
m ≥ 1 there is an odd cycle Cn of length n = 2m + 1 containing the
origin, such that (∂Cn)c consists of two disjoint components: a single infinite
connected component, and Cn (i.e. there are no vertices in the “interior” of
Cn). Thus, ∂Cn is removable. Moreover, [8, Proposition 2(iv)] implies that
if α is sufficiently close to 1, then the uniform distribution on Cn is linearly
stable. The claim N now follows from Theorems 1, 3, and Proposition 7.

The proof of the final claim, F is similar, using Theorem 4. �

A Appendix

Here we prove Propositions 9, 10, and 11, with the first of these being the
most difficult.

Given an equilibrium state (ae)e∈E on some finite graph, for each edge e
and each vertex v incident to it denote by qe,v the proportion of the firings
at this vertex that (on average) goes to e:

qe,v :=
aαe∑
f∼v a

α
f

. (22)

The following necessary condition for an equilibrium to be not linearly un-
stable was shown in [10] (from taking second partial derivatives of the func-
tion L).

Lemma 3 ([10, Eq. (18)]). Let G = (V,E) be a finite graph and (ae)e∈E be
an equilibrium that is not linearly unstable. Then for any e such that ae > 0
we have ∑

v∼e
λv · qe,v(1− α(1− qe,v)) ≥ 0. (23)

In particular, for the case of the line graph [0,M ] (with vertices V =
{0, 1, . . . ,M} and edges labelled 1 to M according to their right endpoint)
and λV ≡ 1, this immediately implies the following.

Corollary 2. Let M ≥ 1, and α > 1. Let (ai)i∈[M ] be a fully supported equi-
librium on the line graph [0,M ] (with λV ≡ 1) that is not linearly unstable.
Then for each i = 1, . . . ,M ,

qi,i−1(1− α(1− qi,i−1)) + qi,i(1− α(1− qi,i)) ≥ 0. (24)
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Another consequence of Lemma 3 is that for α > 1, for any equilibrium
that is not linearly unstable, every surviving edge e takes a share qe,v ≥ 1− 1

α
from at least one of the adjacent vertices v; for α > 2, it is more than half
of these firings, so following the teminology of [10], we call it the champion
at v. Indeed, the product

ϕ(q) := q(1− α(1− q)),

that is under the summation sign in (24), is positive on the interval [0, 1]
only for q > 1− 1

α . For the line graph, this also implies the following.

Corollary 3. Let α > 2 and M ≥ 2. For any fully supported equilibrium
(ai)i∈[M ] on the line graph [0,M ] (with λV ≡ 1) that is not linearly unstable,
there exists m ∈ {1, . . . ,M − 1} such that

a1 < · · · < am, and am+1 > am+2 > · · · > aM ,

where if m = 1 (resp. m = M − 1) the left (resp. right) hand chain of
inequalities makes no assertion.

Proof. As α > 2, the only way for an inner edge to be selected more than
half of the time from a particular adjacent vertex is to have a weight strictly
greater than the other edge adjacent to it. Thus the weights decrease mono-
tonically as one goes away from an edge of maximal weight maxi ai. �

Proof of Proposition 9 (assuming Lemmas 4 and 5 below). We prove the re-
sult by contradiction. Let M ≥ 4 and α > 2, and suppose that (ai)i∈[M ]

is a fully supported equilibrium on [0,M ] that is not linearly unstable.
For convenience we will assume that the ai have not been normalised,
i.e.

∑
i ai =

∑
v λv. Consider the next-to-the-boundary edges, with weights

a2 and aM−1. Upon reflecting if necessary, we can assume that a2 ≤ aM−1,
and by Corollary 3 we have that a1 < a2 ≤ a3. We will then see that
the equilibrium conditions are incompatible (for λV ≡ 1) with the condi-
tion (24) for a particular edge i = 2. This will provide us with the desired
contradiction.

Namely, let

q− = q2,1 =
aα2

aα1 + aα2
, q+ = q2,2 =

aα2
aα2 + aα3

(25)

be the proportions of firings that this edge is getting from the adjacent
vertices. Since a2 ≤ a3 we have q+ ≤ 1/2, and therefore as discussed after
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Corollary 2 we must have q− ≥ 1− 1/α. Moreover, recalling that the ai are
not normalised and λv = 1 for all v, we have

a1 = 1 + (1− q−), a2 = q− + q+. (26)

Let us now split the consideration into two cases, “small” α ≤ 7 and “large”

0 1 2 3 M

a1 a2 a3

1 1− q− q− q+ 1− q+ 1

α > 7.
When α ≤ 7 we will show that for any q+ ≤ 1

2 there is no solution to the
system of equations on q−, a1, a2 such that a2 > a1 (that is required to ensure
the condition (24)). Roughly speaking, the edges [0, 1] and [1, 2] get from
their outer vertices 0 and 2 proportions q1,0 = 1 and q+ ≤ 1

2 respectively,
while competing via their common vertex 1. It turns out that the power
α ≤ 7 is not sufficiently high for there to exist an equilibrium with a2 > a1;
this is done in Lemma 4 below.

To handle the case α > 7, we note that since q− ≤ 1, (24) implies that

ϕ(q+) ≥ −1,

and in turn it implies an upper bound for αq+ by a constant C := 3−
√

2;
see Lemma 5 below. Note that once such a bound is established, the rest is
easy. Indeed, we have an upper bound

a2 ≤ 1 + q+ ≤ 1 +
C

α
;

thus

(a2/a1)α ≤ (1 +
C

α
)α < eC < 4.9.

This implies that the proportion

1− q− = q1,1 =
1

1 + (a2/a1)α
>

1

5.9
.

which contradicts q− > 1− 1
α since α > 7. �

Let us prove the two remaining statements:
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Lemma 4. For any 2 < α ≤ 7 there exist no positive a1, a2, a3, q− such that
a1 < a2 ≤ a3 and that (25) and (26) are satisfied.

Proof. Assume the contrary. Then from a2 ≤ a3 we have q+ ≤ 1
2 , and hence

a2 = q− + q+ ≤ q− +
1

2
.

On the other hand, a1 = 1 + (1 − q−) = 2 − q−, and the quotient between
the edges’ weights can be written as

x =
a2

a1
≤
q− + 1

2

2− q−
.

Since a2 > a1 and hence x > 1, this implies

q−
1− q−

= xα ≤ x7 ≤

(
q− + 1

2

2− q−

)7

,

and recall that q− ≥ 1− 1
α > 1/2.

Figure 5: The graphs of functions y = ( q
1−q )1/7 (solid) and y = (0.5+q

2−q )

(dashed), plotted over q ∈ (1
2 , 1), cut off at y = 2.
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However, it is not difficult to check that for all q ∈ (1
2 , 1) one has (see

Fig. 5) (
q

1− q

)1/7

>
q + 1

2

2− q
, (27)

giving a contradiction. To verify (27) denote the functions on the left and
right of (27) by gL(q) and gR(q) respectively. Both of these functions are
strictly increasing and continuous. As gR(1) = 3

2 is finite, we automatically
have the inequality (27) for q ≥ q0 := g−1

L (gR(1)). Since gR(q0) < gR(1) =
gL(q0) we can repeat the above to get that the inequality (27) holds for
q > q1 := g−1

L (gR(q0)). Iterating this argument, we see that it also holds for
q > F (k)(1) for any number of iterations k, where F (q) = g−1

L (gR(q)). Now
note that F (5)(1) < 1

2 , hence proving (27) on all the interval (1
2 , 1) and thus

concluding the proof of the lemma. �

To handle the α > 7 case, we have only to prove the following lemma.

Lemma 5. Let α > 7 and q ∈ (0, 1
2). If ϕ(q) ≥ −1 then αq < 3−

√
2.

Proof. The inequality ϕ(q) ≥ −1 on (0, 1
2) is equivalent to the inequality

q ≤ q∗, where q∗ is the root of the equation ϕ(q∗) = −1 in this interval. This
equation is quadratic,

αq2
∗ − (α− 1)q∗ + 1 = 0, (28)

and its root in (0, 1
2) is given by

q∗(α) =
α− 1−

√
α2 − 6α+ 1

2α
. (29)

Now, it suffices to show that the product αq∗(α) = α−1−
√
α2−6α+1
2 is de-

creasing on α ∈ (7,∞). Indeed, this will imply the desired

αq ≤ αq∗(α) ≤ 7 · q∗(7) =
6−
√

8

2
= 3−

√
2 = C.

This monotonicity can be easily checked by showing that the first deriva-
tive is negative. �

A.1 Proof of Proposition 10

Recall that (ii) of the Proposition is already proved in [8].
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Proof of Proposition 10(i). In the proof, we distinguish between symmetric
and asymmetric equilibria. Firstly, [8, proof of Theorem 8] in the special
case r = 1 excludes symmetric fully supported equilibria on [0, 3] when
α < α∗.

For the asymmetric case, let u be the weight of the interior edge. The
equation for the edge incident to a leaf is

x =
1

4
+

1

4

xα

xα + uα
. (30)

This can be rearranged to

f(x) := 4xα+1 − 2xα + 4uαx− uα = 0,

and

uα =
2xα(1− 2x)

4x− 1
. (31)

We assert that for α ∈ [1,
√

8 + 3) the function f(x) is strictly increasing in
x ∈ (1/4, 1/2). This implies that for such α there is at most one x satisfying
(30), so there are no asymmetric equilibria. This will complete the proof of
the proposition since α∗ <

√
8 + 3.

To prove the assertion, observe that

f ′(x) = 4(α+ 1)xα − 2αxα−1 + 4uα.

Inserting (31) for uα gives

4x− 1

2xα−1
f ′(x) = 2(α+ 1)(4x− 1)x− α(4x− 1) + 4x(1− 2x).

Since 4x−1
2xα−1 > 0, f ′(x) > 0 if and only if

2(α+ 1)(4x− 1)x− α(4x− 1) + 4x(1− 2x) > 0.

Rearranging gives

g(x) := α(8x2 − 6x+ 1) + 2x > 0.

Now, for fixed α, g has a minimum at x0 = 3α−1
8α . Substituting this value of x

back into g(x) and simplifying gives g(x0) > 0 if and only if −α2+6α−1 > 0.
The roots of this quadratic are −

√
8+3 ≈ 0.172 and

√
8+3 ≈ 5.828. Hence,

if α ∈ [1,
√

8 + 3), then g(x) > 0 for all x and hence f ′(x) > 0. �
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A.2 Proof of Proposition 11

Proposition 11 is a consequence of the following result from [11]:

Theorem 5 ([11]). For α = 1 the right hand side of (20) is a linearly stable
equilibrium for the graph [0, 2k] when α = 1.

For the reader’s benefit we present a brief summary of the proof of this
result.

Sketch proof of Theorem 5. One can directly check that the vector on the
right hand side of (20) is an equilibrium for α = 1. Moreover, for α = 1 it is
the unique fully supported equilibrium, and is linearly stable: the matrix
of second derivatives of L at this point is negative definite.

Indeed, the Lyapunov function L (see e.g. (21)) for α = 1, is a sum
of an affine function

∑
i xi (that does not affect convexity) and of a lin-

ear combination (indexed by vertices v) of non-strictly convex functions

log
(∑

ei∼v xi

)
. For each of these functions, its second derivative in any

direction is strictly negative, unless this direction is included in the hyper-
plane

∑
ei∼v xi = const. However, it is easy to check that in our case the

intersection of such hyperplanes consists of a single point: for the line graph,
we have equations of the type xi + xi+1 = const as well as x1 = const and
x2k = const from the endpoints. Hence, the second derivative of L at the
equilibrium point in any direction is strictly negative, and thus the equilib-
rium for α = 1 is linearly stable. �

Proof of Proposition 11. By Theorem 5 the right hand side of (20) is a
fully supported stable equilibrium on [0, 2k] in the case α = 1.

Note that we may view the equilibrium equations as equations in both
{xe}e∈E and α. Now, a non-degenerate minimum of a function L (or a
linearly stable equilibrium of the corresponding anti-gradient flow F ) cannot
be destroyed by a small perturbation (for the flow F , it follows from the
implicit function theorem). Hence, for α sufficiently close to 1, there is also
a fully supported equilibrium close to the aforementioned one, that is still
linearly stable (due to the continuity of the derivative). �

Acknowledgments

CH’s research is supported by the Centre for Stochastic Geometry and Ad-
vanced Bioimaging, funded by grant 8721 from the Villum Foundation.
MH’s research is supported by Future Fellowship FT160100166 from the
Australian Research Council. VK’s research is partially supported by the

37



project ANR Gromeov (ANR-19-CE40-0007), as well as by by the Labora-
tory of Dynamical Systems and Applications NRU HSE, of the Ministry of
science and higher education of the RF grant ag. No. 075-15-2019-1931.

References

[1] B. Arthur, Y. Ermoliev, and Y. Kaniovskii. Path dependent processes
and the emergence of macro-structure. Eur. J. Oper. Res. 30:294–303,
(1987).
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urn with graph based interactions. Random Struct. Alg., 46(4):614–634,
(2015).
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inforced Pólya urns with graph-based competition. Ann. Appl. Probab.,
26(4):2494–2539 (2016).

[9] C. Hirsch, M. Holmes, and V. Kleptsyn. WARM percolation on a
regular tree in the strong reinforcement regime. preprint

[10] M. Holmes and V. Kleptsyn. Proof of the WARM whisker conjecture for
neuronal connections. Chaos: an interdisciplinary journal of nonlinear
science. 27. (2017)

[11] M. Holmes and V. Kleptsyn. Infinite WARM graphs II: Critical regime.
in preparation (2020).

38



[12] K. Khanin and R. Khanin. A probabilistic model for establishment of
neuron polarity. J. Math. Biol., 42:26–40, (2001).

[13] M. Launay and V. Limic. Generalized interacting urn models.
http://arxiv.org/abs/1207.5635, (2012).

[14] R. Pemantle. A survey of random processes with reinforcement. Prob-
ability Surveys 4:1–79, (2007).
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