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Abstract

We analyse a generalisation of the stochastic gene expression model studied recently in Fromion
et al. (SIAM Journal of Applied Mathematics, 2013) and Robert (Probability Surveys, 2019) that
keeps track of the production of both mRNA and protein molecules, using techniques from the
theory of point processes, as well as ideas from the theory of matrix-analytic methods. Here, both
the activity of a gene and the creation of mRNA are modelled with an arbitrary Markovian Arrival
Process governed by finitely many phases, and each mRNA molecule during its lifetime gives rise
to protein molecules in accordance with a Poisson process. This modification is important, as
Markovian Arrival Processes can be used to approximate many types of point processes on the
nonnegative real line, meaning this framework allows us to further relax our assumptions on the
overall process of transcription.

Keywords: infinite-server queues, Markov arrival process, matrix analytic methods, stochastic gene
expression.
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1 Introduction

In this paper we are interested in analysing stochastic models of gene expression, which is the process
through which genes within a cell produce both messenger RNA (mRNA) and protein molecules. Gene
expression models date back to the 1970s with the works of Rigney and Schieve [46], Berg [6], and
Rigney [44, 45], with later work occurring in the 1990s, see e.g. Ko [36] and Peccoud and Ycart [41].

Over the last 15-20 years, interest in creating/analysing suitable models of gene expression has
increased considerably within the molecular biology community, with contributions being made by re-
searchers from many different disciplines within not only the natural sciences, but also engineering and
the mathematical sciences. Our primary objective in this paper is to show how certain techniques from
applied probability can be used to analyze a broad class of gene expression models that includes many
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of the most well-studied models found in the literature. These techniques allow us to recover various
known results while we also establish new and interesting results concerning the joint distributions and
moments of the number of mRNA and protein molecules at each time 𝑡 ≥ 0.

In order to properly place more recent contributions to this research area in context, it will help to
first introduce the three-stage model of gene expression found in the recent article of Robert [47]. This
three-stage model is both a generalization of the classical stochastic model of gene expression (called
the “telegraph model”) presented in [41], and a special case of our model. In many mathematical
analyses of protein production in cells, the production process of both mRNA and protein molecules
by a fixed gene (a fixed segment of DNA) in a cell is considered. This process is often described via
the evolution through time of a random vector (𝐼 (𝑡), 𝑀 (𝑡), 𝑃(𝑡)), where 𝐼 (𝑡) ∈ {0, 1} describes the
state of the gene at time 𝑡, and 𝑀 (𝑡) and 𝑃(𝑡) denote the number of mRNA and protein molecules,
respectively, present in the cell at time 𝑡. When 𝐼 (𝑡) = 1 the gene is said to be active at time 𝑡; otherwise
(when 𝐼 (𝑡) = 0) the gene is inactive at this time. When the gene is active, an RNA polymerase may
bind to it and start to copy the gene via sequential production of nucleotides: once this elongation
process is complete, a new messenger RNA (mRNA) molecule is formed (so 𝑀 (𝑡) increases by 1 if
this process completes at time 𝑡). Molecular biologists refer to the overall process of creating new
mRNA molecules from segments of DNA as transcription. mRNA molecules currently in the process
of being transcripted are often referred to as nascent mRNA molecules. Once the elongation phase
of a nascent mRNA molecule is complete, it becomes a mature mRNA molecule. In many stochastic
models of gene expression, it is assumed that the elongation time associated with the production of
each mRNA molecule is negligible, meaning all such elongation times are set equal to zero, but models
have been created recently that allow for such elongation times to be both nonzero and random. In fact,
it has been argued that tracking nascent mRNA may be more important than tracking mature mRNA
molecules, see e.g. Choubey et al. [13], Choubey [12] and Filatova et al. [15].

Once a mature mRNA molecule has been created, a ribosome may in turn bind with it and move
along its chain of nucleotides to build a protein (so 𝑃(𝑡) increases by 1) via a chain of amino acids:
this process is referred to as translation. Again, in many models of gene expression it is assumed that
the amount of time it takes a ribosome to produce a protein molecule, once it manages to bind to the
mRNA molecule is negligible, but some recent models have incorporated random production times.

Both proteins and mRNA molecules are assumed to have finite, random lifetimes (at the end of such
a lifetime 𝑀 (𝑡) or 𝑃(𝑡) decreases by 1). The special case of Robert’s three-stage model where lifetimes
are all exponential, and all elongation times are zero is referred to as the “classical three-stage model”
see e.g. Paulsson [40]. Due to the relatively low numbers of both mRNA and protein molecules within
a typical cell, the process of gene expression is often modeled with a continuous-time, discrete-state
stochastic processes [40]. We refer readers seeking a textbook-level discussion on stochastic gene
expression to Chapter 6 of Bressloff [9]: another text that could be of interest to such readers is
Anderson and Kurtz [2].

1.1 Literature Review

Stochastic gene expression is a young but extremely active area of research, and a host of models have
been proposed in the literature to attempt to capture various facets of transcription and translation. In
the interest of eventually comparing and contrasting our results with what others have done in this area,
we provide a brief summary of the types of phenomena other gene expression models have attempted

2



to capture. More precisely we will discuss a substantial subset of the vast literature that we think is
most relevant to the present work.

In [16, 47], the authors advocate that the three-stage model of stochastic gene expression can be
fruitfully analysed with the theory of Poisson random measures. Of particular relevance to our work
is their use of ideas that are heavily related to the theory of infinite-server queueing systems fed by
Poisson arrival processes. One major advantage of this approach is that it facilitates the removal of
the exponential assumption in various places within the model. From this viewpoint one can derive
many interesting quantities (e.g. means and variances of mRNA and protein counts) even when all
elongation times, mRNA lifetimes and protein lifetimes are allowed to be generally distributed.

Our primary objective is to complement the approach found in [16, 47] by showing how other estab-
lished results/tools from the applied probability community can be used to analyse, rather thoroughly,
various generalizations of the telegraph model. These generalisations allow for the gene to vary be-
tween activity and inactivity in accordance with an environment process (called a Markovian Arrival
Process, or MAP) that is much more general than a Markov-modulated Poisson process governed by
a two-state continuous-time Markov chain (CTMC). Our methods will involve a combination of both
point process theory and ideas from a subject often referred to in applied probability as matrix-analytic
methods. These methods were originally designed to find computable quantities that describe the
behavior of queueing systems where interarrival times and/or service times are not exponentially dis-
tributed. Many types of stochastic systems having parameters that vary with time due to the behavior
of some background environmental process can be studied with methods from the matrix-analytic
framework, meaning this theory could potentially provide the molecular biology community with
useful tools for deriving results that go beyond the results discussed here.

In the next two sections we present existing studies that fall within our general framework and outside
our general framework respectively.

1.1.1 Studies that fall in our framework

The telegraph model of [41] appears to have been inspired by the ideas given in [36], and it is
arguably the most well-known Markovian model of gene expression. In the telegraph model, the
stochastic process {𝐼 (𝑡); 𝑡 ≥ 0} is assumed to be a two-state continuous-time Markov chain (CTMC),
the lifetime of each mRNA molecule is assumed to be exponentially distributed and independent
of everything else, and the elongation time associated with each mRNA molecule is assumed to be
negligible. Protein molecules are not included in this model. The main results of [41] include (a)
a study of the time-dependent distribution of the number of mRNA molecules when it is further
assumed that each mRNA molecule has an infinite lifetime; (b) a derivation of the time-dependent
mean and variance when each mRNA molecule has an exponentially distributed lifetime, and (c)
a derivation of the equilibrium distribution of the number of mRNA molecules when each mRNA
molecule has an exponentially distributed lifetime. Later, in Iyer-Biswas et al. [25], the authors studied
the time-dependent distribution of the number of mRNA molecules in the telegraph model.

There are many ways in which the telegraph model can be generalised in order to make it more
realistic. One direction involves extending the phase space of the gene from two states to an arbitrarily
finite number of states, as a way of loosening the assumption that whenever the gene is active/inactive,
it stays in that state for an exponentially distributed amount of time before becoming inactive/active. In
the work of Zhou and Zhang [50], the authors assume the states of the gene vary with time in accordance
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to a finite-state CTMC whose transition diagram is that of a circular Markov chain, see e.g. Adan and
Resing [1]. The work of Herbach [22] further generalizes the model found in [50], by allowing the
states of the gene to vary in accordance to a finite-state CTMC with an arbitrary transition structure.
In both [50, 22], while the gene is in an active state, mRNA molecules are created in accordance to
a Poisson process with some rate and the elongation phase is assumed to be negligible, but mRNA
molecules are never created at any instants when the gene makes a phase transition. Another recent
paper related to [50, 22] is Jia and Li [33], where time-dependent distributions are studied.

In Ham et al. [19] the authors present a generalization of the telegraph model that admits a tractable
stationary (and time-dependent) distribution. In Cao et al. [10] the authors present another generaliza-
tion of the telegraph model that keeps track of both nascent and mature mRNA molecules, where the
gene fluctuates between three states: a nonpermissive state, and two different permissive states.

None of the papers cited in the previous three paragraphs model both mRNA molecules and protein
molecules simultaneously. In the work of Shahrezaei and Swain [48] the authors study the joint
distribution of 𝑀 (𝑡) and 𝑃(𝑡) while further assuming the gene is always active: their analysis involves
setting up the Kolmogorov forward equations associated with the continuous-time Markov chain that
captures the dynamics of this model, then solving the equations with the method of characteristics
under the further assumption that the lifetime of a protein molecule is typically much longer than
the lifetime of an mRNA molecule (this imprecise statement is made precise in their paper). This
method results in an expression for the joint generating function of 𝑀 (𝑡) and 𝑃(𝑡) that is in terms of
a hypergeometric function. A similar analysis is also used in [48] to study the joint distribution of
𝐼 (𝑡), 𝑀 (𝑡), and 𝑃(𝑡), again under the assumption that the lifetime of a protein molecule is typically
much longer than the lifetime of an mRNA molecule. A few years later, in the work of Bokes et al.
[7] the authors found the joint generating function of the mRNA and protein levels for the case where
the gene is always active, without having to assume mRNA lifetimes are much smaller than protein
lifetimes.

Another stream of literature is centered around the idea of introducing nonzero elongation times
within the transcription process and/or the translation process, without keeping track of the number
of nascent mRNA molecules. Recent work on stochastic gene expression has focused on relaxing
assumptions typically made about mRNA lifetimes, protein lifetimes, and elongation times. For
example, the model that is the primary focus of [47] (which is a generalisation of that from Fromion et
al. [16]) allows for elongation times and lifetimes with general distributions, with families of Poisson
processes corresponding to possible binding times. Bindings occur at these possible binding times
only if they occur while the gene is active (for the first kind of binding above) and during the lifetime
of the mRNA molecule (for the second kind of binding above) respectively. In the work of Jansen and
Pfaffelhuber [26] which predates [47], the authors model gene expression via random time changes
of independent Poisson processes, from which they derive the mean and variance of both mRNA
and protein levels, when the gene alternates between being active and inactive in accordance with a
two-state CTMC, and when the lifetimes of each mRNA and each protein are exponentially distributed.
It is notable that in their analysis, generally distributed elongation times are permitted.

Recently, experiments have been performed that suggest an improved understanding of gene ex-
pression can be gained by tracking nascent mRNA molecules. Early papers on this topic that present
mathematical models while having this goal in mind include Choubey et al. [13] and Choubey [12]. In
Filatova et al. [15], the authors essentially model elongation times as a sum of 𝐿 independent, exponen-
tially distributed random variables, so that each such nascent mRNA molecule must progress through
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𝐿 exponential phases before becoming a mature mRNA molecule. There they consider a Markovian
model that keeps track of the number of nascent mRNA models, and they derive various steady-state
moments of these random variables. The work of Szavits-Nossan and Grima [49] further builds on
[15] by considering a mean-field model in order to approximate various distributions associated with
this model. In the recent work of De Gunst et al. [18] the authors study a generalisation of the telegraph
model where mRNA molecules are conceived in accordance with a Poisson process while the gene is
in an active state, but that as soon as an mRNA molecule is conceived, further conception is blocked
until the newly-conceived molecule becomes a mature mRNA molecule. In [18], the elongation time
of each mRNA molecule is assumed to be hypoexponentially distributed (meaning its distribution is
simply the distribution of the sum of a finite number of independent, exponentially distributed random
variables).

The results we describe in Section 4 generalise the results found in [22], as our framework does not
require us to assume mRNA molecules are created by a Markov-modulated Poisson process. Indeed,
MAPs can theoretically be used to approximate many types of point processes on the nonnegative
real line–see Asmussen and Koole [3]–so we feel as though this could be an important step towards
analyzing even more general models of stochastic gene expression.

It is interesting to note that other research activities in stochastic gene expression have involved
ideas and techniques from the theory of matrix-analytic methods. Horowitz and Kulkarni [24] have
recently used Batch Markovian Arrival Processes (BMAP) to study bursts of mRNA molecules. They
argue that in their setting it is reasonable to model protein production with a BMAP (where proteins
are created in batches in accordance with a MAP) for the case where mRNA lifetimes are significantly
shorter than protein lifetimes. The authors of [24] focus more on studying rare events associated with
their model, but unlike their model, ours is a straight generalization of the classical three-stage model of
gene expression, where the activity/inactivity of the gene is modelled using a MAP, and all elongation
times and lifetimes are generally distributed. Finally, the analysis featured in [18] involves the use of
recently established results from the theory of level-dependent quasi-birth-death processes, which is
significantly different from our overall approach. We will illustrate how our results shed additional
light on the behavior of this model in Section 4.3.

1.1.2 Phenomena that our models do not explicitly address

Another subarea of research in this field involves constructing reasonable models that attempt to capture
naturally occurring feedback mechanisms that appear in the process of gene expression. For example,
each instant at which the gene becomes active is the result of an existing protein molecule binding with
the gene, so it would be reasonable to modify the model so that the rate at which the gene switches
from being inactive to being active depends on the number of protein molecules present in the cell.
Relevant literature addressing this phenomenon include Hornos et al. [23], Kumar et al. [37], Jia and
Grima [31], Jia et al. [29], and Jia et al. [28].

Another important phenomenon to consider is cell division. During the lifetime of a cell, a strand
of DNA will replicate, and soon after the cell will divide into two cells. During the process of cell
division, each molecule will either stay with the current cell, or move with the newly created cell (the
daughter cell). In the work of Beentjes et al. [5], the authors propose a series of stochastic models
that incorporate cell division, where the most general model studied in [5] that allows for a random
cell cycle models the cell cycle as being hypoexponentially distributed. This work was followed by
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Perez-Carrasco et al. [42] where the authors further build on the results from [5] by also incorporating
DNA replication in the model. Other previous papers featuring a study of cell division include Jȩdrak
et al. [27] and Jia and Grima [32].

Recently, there have been studies that attempt to feature two or more of the phenomena mentioned
above in models of stochastic gene expression, see e.g. Cao and Grima [11] as well as Dessalles et
al. [14]. In Ham et al. [20], various underlying parameters of the telegraph model are also allowed to
vary randomly with time. Another generalization of the telegraph model has been introduced by Jia
[30], in order to model the so-called dropout effect, which occurs when the mRNA level in a cell is
measured to be zero, even if mRNA molecules are present in the cell.

Finally we note that (as is the case for all of the literature described in Section 1.1.1) our model does
not allow interruptions during elongation periods. For example, if the gene switches to inactive during
the elongation period of an mRNA molecule, the production of that molecule is not interrupted.

1.2 Organisation

This paper is organised as follows. In Section 2, we define the MAP, and we state our main results that
describe the joint distribution of the number of nascent mRNA molecules, mature mRNA molecules,
and protein molecules at each time 𝑡 ≥ 0. In Section 3 we prove our main results, and we conclude
the paper in Section 4 by showing how more can be said about the distribution of mRNA molecules
at each time 𝑡 ≥ 0 when the lifetime of each mRNA molecule is exponentially distributed, and each
elongation time is negligible. We also provide many new results associated with the model studied in
[18], and we verify our results through numerical work and simulation.

2 The model and main results

In this paper we analyse an important extension of the three-stage model of gene expression from [47].
Here we assume RNA polymerases bind with an active gene at random points of a so-called Markovian
Arrival Process (MAP)—see below—having finite phase set 𝑆, meaning the transcription process of
the gene is governed by the MAP. Associated with each created mRNA molecule is its elongation
time (the time it takes for the mRNA molecule to be created from the RNA polymerase that binds
with the gene) and its lifetime: the elongation time is generally distributed with CDF 𝐸1, and the
lifetime is generally distributed with CDF 𝐿1. Furthermore, during the lifetime of an mRNA molecule,
ribosomes bind to it in accordance with a homogeneous Poisson process having rate 𝑘2. Each created
protein has associated with it both an elongation time (the time it takes a ribosome that binds with the
mRNA molecule to produce the protein molecule) and a lifetime: the elongation time of a protein is
generally distributed with CDF 𝐸2, while the lifetime of the protein is generally distributed with CDF
𝐿2. Throughout we assume that all elongation times and lifetimes are independent of each other, as
well as the MAP that governs when transcription is initiated.

Our main results are formulae describing the (joint) distribution of 𝑀nas(𝑡), 𝑀 (𝑡), and 𝑃(𝑡), and
their moments, where 𝑀nas(𝑡) denotes the number of nascent mRNA molecules present at time 𝑡. To be
more precise, for 𝑥 ∈ 𝑆 we will let P𝑥 denote a probability measure under which this process evolves
from initial conditions 𝑀nas(0) = 𝑀 (0) = 𝑃(0) = 0 and 𝐼 (0) = 𝑥. Then for each 𝑡 ∈ ℝ+ := [0,∞),
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each 𝑚1, 𝑚2, 𝑛 ∈ ℤ+ := {0, 1, 2, . . . }, we define the matrix J(𝑡, 𝑚1, 𝑚2, 𝑛) as

J(𝑡, 𝑚1, 𝑚2, 𝑛) :=
[
P𝑥 (𝑀nas(𝑡) = 𝑚1, 𝑀 (𝑡) = 𝑚2, 𝑃(𝑡) = 𝑛, 𝐼 (𝑡) = 𝑦)

]
𝑥,𝑦∈𝑆 . (1)

For fixed 𝑥 this gives the joint probability mass function (PMF) of (𝑀nas(𝑡), 𝑀 (𝑡), 𝑃(𝑡), 𝐼 (𝑡)). Letting
I denote the |𝑆 | × |𝑆 | identity matrix, and 0 the |𝑆 | × |𝑆 | zero matrix, note that for each 𝑚1, 𝑚2, 𝑛 ∈ ℤ+,

J(0, 𝑚1, 𝑚2, 𝑛) =
{

I, 𝑚1 = 𝑚2 = 𝑛 = 0;
0, otherwise.

A more compact description of the joint distribution of (𝑀nas(𝑡), 𝑀 (𝑡), 𝑃(𝑡), 𝐼 (𝑡)) can be made
through the use of probability generating functions (PGFs). For each 𝑡 ∈ ℝ+, each 𝑧1, 𝑧2, 𝑧3 ∈ 𝔻 :=
{𝑧 ∈ ℂ : |𝑧 | ≤ 1}, and each integer 𝑛 ≥ 0 we define the matrix

Ĵ𝑛 (𝑡, 𝑧1, 𝑧2, 𝑧3) :=
[
E𝑥 [𝑧𝑀nas (𝑡 )

1 𝑧
𝑀 (𝑡 )
2 𝑧

𝑃 (𝑡 )
3 1{𝐼 (𝑡 )=𝑦,𝑁 (𝑡 )≤𝑛}]

]
𝑥,𝑦∈𝑆 , (2)

whereE𝑥 denotes expectation with respect toP𝑥 , and 1𝐴 denotes the indicator of 𝐴 (i.e. 1𝐴 = 1 if the
event 𝐴 occurs, and 1𝐴 = 0 otherwise). The Dominated Convergence Theorem shows that as 𝑛→ ∞,
Ĵ𝑛 converges pointwise to Ĵ, where

Ĵ(𝑡, 𝑧1, 𝑧2, 𝑧3) :=
[
E𝑥 [𝑧𝑀nas (𝑡 )

1 𝑧
𝑀 (𝑡 )
2 𝑧

𝑃 (𝑡 )
3 1{𝐼 (𝑡 )=𝑦}]

]
𝑥,𝑦∈𝑆 . (3)

We can also study the moments (and cross-moments) of 𝑀nas(𝑡), 𝑀 (𝑡), and 𝑃(𝑡) directly via the
matrices

C𝑚1,𝑚2,𝑛 (𝑡) :=
[
E𝑥 [𝑀nas(𝑡)𝑚1𝑀 (𝑡)𝑚2𝑃(𝑡)𝑛1{𝐼 (𝑡 )=𝑦}]

]
𝑥,𝑦∈𝑆 , 𝑚1, 𝑚2, 𝑛 ∈ ℤ+. (4)

Our main results include formulae for J, Ĵ, and C in Theorems 2.4, 2.5, and 2.6, respectively. One
could in principle use either Theorem 2.4 or Theorem 2.5 to prove the others, but we give a direct proof
(utilising point process theory) in each case. Section 3 contains the proofs of our main results from
Section 2, and in Section 4, we use Theorem 2.5 to say more about the joint distribution of 𝐼 (𝑡) and
𝑀 (𝑡), when 𝐿1 is the CDF of an exponentially distributed random variable, and all elongation times
are equal to zero.

2.1 Markovian Arrival Processes

A MAP is a continuous-time Markov chain {(𝑁 (𝑡), 𝐼 (𝑡)); 𝑡 ≥ 0} having state spaceℤ+×𝑆 and transition
rate matrix Q, with 𝑆 being a finite set. We assume without loss of generality that 𝑆 := {0, 1 . . . , 𝑝}
for some integer 𝑝 ≥ 0, so the state space can be ordered lexicographically, and we order the states
in this way when we construct the rows and columns of Q. Here 𝑁 (𝑡) ∈ ℤ+ is a counting process (in
our gene expression model 𝑁 (𝑡) represents the number of mRNA polymerase bindings that occur in
the interval (0, 𝑡]) and 𝐼 (𝑡) ∈ 𝑆 denotes the phase that the system is in at time 𝑡, which in our model
corresponds to the state of the gene at time 𝑡 (e.g. in the three-stage model of gene expression analysed
in [47] 𝑆 = {0, 1}, where 𝐼 (𝑡) = 0 means that the gene is inactive). The transition rates of such a
process are governed by a pair of |𝑆 | × |𝑆 | matrices, K0 and K1. The off-diagonal entries of K0 (are
non-negative and) correspond to transition rates associated with phase transition instants that are not
counted by the counting process. Similarly, the off-diagonal entries of K1 correspond to transition rates
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associated with phase transitions that are counted by the counting process, and the diagonal entries of
K1 correspond to instants at which the counting process increases by one unit, without there being a
change in the phase process. In queueing models, transition instants corresponding to rates from K1
often represent arrival times of customers to a queueing system, which is where the name Markovian
Arrival Process comes from. Finally, the diagonal entries of K0 are then chosen so that each row sum
of Q is zero, and due to ℤ+ × 𝑆 being lexicographically ordered, Q can be expressed as follows:

Q =

©­­­­­­­«

K0 K1 0 0 · · ·
0 K0 K1 0 · · ·
0 0 K0 K1 · · ·
0 0 0 K0

. . .

...
...

...
. . .

. . .

ª®®®®®®®¬
.

We refer to {(𝑁 (𝑡), 𝐼 (𝑡)); 𝑡 ≥ 0} as the (K0,K1)-MAP. MAPs play a prominent role in what is known
in applied probability as the theory of matrix-analytic methods: a textbook-level treatment of these
topics is given in e.g. Latouche and Ramaswami [38] and He [21]. One way to construct a MAP is to
do so by thinking of it as being governed by a finite collection of independent, homogeneous Poisson
processes, where each Poisson process is associated with a particular element from Q (i.e. from K0 or
K1), where

K0 := [𝑘0(𝑧, 𝑤)]𝑧,𝑤∈𝑆 , K1 := [𝑘1(𝑧, 𝑤)]𝑧,𝑤∈𝑆 .

Each off-diagonal (i.e. 𝑘 ≠ 𝑧) element 𝑘0(𝑧, 𝑤) has associated with it a homogeneous Poisson process
{𝐴(0)

𝑧,𝑤 (𝑡); 𝑡 ≥ 0} with rate 𝑘0(𝑧, 𝑤), and each element 𝑘1(𝑧, 𝑤) has associated with it a homogeneous
Poisson process {𝐴(1)

𝑧,𝑤 (𝑡); 𝑡 ≥ 0} with rate 𝑘1(𝑧, 𝑤). All of these Poisson processes are independent
of each other, and they provide all of the randomness needed to construct {(𝑁 (𝑡), 𝐼 (𝑡)); 𝑡 ≥ 0} (from a
given initial state). The evolution of 𝐼 (·) is determined by the processes I = {𝐴(𝑖)

𝑧,𝑤 : 𝑖 ∈ {0, 1}, 𝑧, 𝑤 ∈
𝑆, 𝑧 ≠ 𝑤}: when the current state is 𝐼 (𝑡) = ℓ the next transition of 𝐼 (·) occurs at the next firing
time among the processes 𝐴( ·)

ℓ, · ∈ I (i.e. those with 𝑧 = ℓ), and the new state is the 𝑤 ≠ ℓ whose
Poisson process fired at this time. In particular, {𝐼 (𝑡); 𝑡 ≥ 0} is a CTMC having generator matrix
K0+K1. Readers interested in a more rigorous construction that shows how a collection of independent,
homogeneous Poisson processes can be used to govern CTMC are referred to Chapter 9 of Brémaud
[8]. Note that it is possible to modify this model so that a random number of mRNA molecules can be
conceived simultaneously. This requires replacing the MAP with a so-called Batch Markovian Arrival
Process (BMAP), having a generator matrix that can be expressed in block-partitioned form in terms
of not just K0 and K1, but other matrices K2,K3,K4, . . .. All of our main results can be modified to
this more general setting, but we will refrain from doing this in the interest of preserving readability.

The 𝑁 (𝑡) process can be constructed similarly from the full set of Poisson processes (or from the
𝐼 (𝑡) process and the 𝐴(1) Poisson processes). For each 𝑡 ≥ 0,

𝑁 (𝑡) :=
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝐼 (𝑠−)=𝑧}𝐴
(1)
𝑧,𝑤 (𝑑𝑠)

so that 𝑁 (𝑡) counts the number of firings (up to time 𝑡) of 𝐴(1)
𝑧, · processes that occur while 𝐼 is in the

corresponding state 𝑧, summed over 𝑧 ∈ 𝑆. Readers should interpret each integral encountered in this
paper as a Lebesgue-Stieltjes integral. In particular, we use the interval notation in the integral because
the function of integration (i.e. 𝐴(1)

𝑧,𝑤 in the expression above) may have a jump at an endpoint of 𝐼.
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Example 2.1. The telegraph model of Peccoud and Ycart [41] keeps track of mRNA created by a
single gene that alternates between being active and inactive in accordance with a two-state CTMC
with state space 𝑆 = {0, 1}. While the gene is active, mRNA molecules are created in accordance with
a Poisson process, and no mRNA molecules are created while the gene is inactive. We can express
this process in MAP language (while also using the notation found in [19]) as

K0 =

(
−𝜆 𝜆

𝜇 −(𝐾𝐴 + 𝜇)

)
, K1 =

(
0 0
0 𝐾𝐴

)
.

where 𝐾𝐴 is the rate at which RNA polymerase bindings occur with the (active) gene, 𝜆 is the rate
at which the gene (when inactive) becomes active, and 𝜇 is the rate at which the gene (when active)
becomes inactive. Readers should note that in the telegraph model of [41], each mRNA molecule has
a negligible elongation time and an exponentially distributed lifetime with rate 𝛿, independently of
everything else, but in our general setting elongation times and lifetime are modelled separately from
the MAP governing gene activity and mRNA conception.

Observe too that in this example (𝐼 (𝑡))𝑡≥0 is a 2-state CTMC with generator
(
−𝜆 𝜆

𝜇 −𝜇

)
, and

𝑁 (𝑡) =
∫
(0,𝑡 ]

1{𝐼 (𝑠−)=1}𝐴
(1)
1,1 (𝑑𝑠).

Example 2.2. The model analyzed in [10] corresponds to 𝑆 = {0, 1, 2} and

K0 =
©­­«
−𝑎1 𝑎1 0
𝑎0 −(𝑎0 + 𝑎2) 𝑎2
𝑎0 0 −(𝑎0 + 𝜌)

ª®®¬ , K1 =
©­­«

0 0 0
0 0 0
0 𝜌 0

ª®®¬ .
In the notation of [10] 𝑎1 = 𝜎𝑢, 𝑎0 = 𝜎𝑏 and 𝑎2 = 𝜆. In this model the gene alternates between three
possible states. Whenever the gene makes a transition from state 2 to state 1, an mRNA molecule is
conceived. We will analyze this model further in Section 4.

To illustrate the flexibility of this class of processes, consider the following example.

Example 2.3. Let 𝑆 = {0, 1, 2} and

K0 =
©­­«
−𝑎1 𝑎1 0
𝜆− −(𝜌1 + 𝜆− + 𝜆+) 𝜆+
𝑏0 𝑏1 −(𝑏0 + 𝑏1 + 𝜌2 + 𝜌2,1)

ª®®¬ , K1 =
©­­«

0 0 0
0 𝜌1 0
0 𝜌2,1 𝜌2

ª®®¬ .
An interpretation of this MAP in terms of a mRNA production model could be as follows: When the
gene is inactive there are no RNA polymerase bindings. There are two “active” phases. The (inactive)
gene becomes active-1 at rate 𝑎1, and when active-1 the gene becomes inactive at rate 𝜆− and active-2
with rate 𝜆+ (for each such transition no RNA polymerase bindings occur). Such bindings do occur at
rate 𝜌1 while the gene is active-1 and at rate 𝜌2+𝜌2,1 while the gene is active-2. The rate 𝜌2 corresponds
to bindings while the gene stays as active-2. The rate 𝜌2,1 corresponds to transitions where a binding
occurs with the active-2 gene and the gene immediately becomes active-1. While active-2, the gene
may also become active-1 (at rate 𝑏1) or inactive (at rate 𝑏0) via transitions that do not produce an
RNA molecule.
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2.2 Main Results

The main results of this paper will address the following three-stage model of stochastic gene expression,
which behaves in accordance with the following rules:

(A1) the transcription process within a cell is assumed to be governed by a MAP {(𝑁 (𝑡), 𝐼 (𝑡)); 𝑡 ≥ 0}
having finite phase set 𝑆 and matrices K0 and K1, where each jump point of 𝑁 corresponds to
an instant where an RNA polymerase binds with the (active) gene to begin producing an mRNA
molecule,

(A2) for each such binding, the amount of time it takes to create an mRNA molecule is generally
distributed with CDF 𝐸1, and independent of everything else (let (𝐷 (𝑖) )𝑖∈ℕ denote these (i.i.d.∼
𝐸1) elongation times),

(A3) the lifetime of each mRNA is assumed to be generally distributed with CDF 𝐿1, and independent
of everything else (let (𝐵 (𝑖) )𝑖∈ℕ denote these (i.i.d.∼ 𝐿1) lifetimes),

(A4) while an mRNA exists, it initiates the creation of proteins in accordance with a homogeneous
Poisson process having rate 𝑘2 > 0, independent of everything else,

(A5) when an mRNA initiates the creation of a protein, it takes a generally distributed amount of
time having CDF 𝐸2 to actually create the protein, with this creation time being independent of
everything else,

(A6) each protein exists in the cell for a generally distributed amount of time, having CDF 𝐿2,
independent of everything else.

We also assume throughout that the cdfs 𝐿1, 𝐿2, 𝐸1, and 𝐸2 are all proper, and correspond to
nonnegative random variables: saying e.g. 𝐿1 satisfies this criteria means lim𝑥↑0 𝐿1(𝑥) = 0 and
lim𝑥→∞ 𝐿1(𝑥) = 1. In fact, in order to guarantee that the random vector (𝐼 (𝑡), 𝑀nas(𝑡), 𝑀 (𝑡), 𝑃(𝑡))
converges in distribution as 𝑡 → ∞ to a non-degenerate limit we will also need to assume the random
variables associated with 𝐸1, 𝐿1, 𝐸2, and 𝐿2 have finite means.

It is important to point out that the MAP only determines the instants at which a RNA polymerase
binds with the (active) gene. For instance, if the gene switches from being active to being inactive
while an mRNA is currently going through its elongation phase, that elongation phase is not affected
in any way, nor is the lifetime following that phase. This may or may not be realistic, but this is how
elongation phases behave in both [26] and [47]. The three-stage model of gene expression from [40, 48]
can be described exactly within this framework: simply choose K0 and K1 to be the matrices given in
our description of the telegraph model from [41], choose 𝐸1 and 𝐸2 to satisfy 𝐸1(0−) = 𝐸2(0−) = 0
and 𝐸1(0) = 𝐸2(0) = 1 (i.e. elongation times are 0), and let 𝐿1 and 𝐿2 be the CDFs of exponentially
distributed random variables, having rates 𝛾1 and 𝛾2, respectively.

Before we begin stating our mathematical results, we first need to introduce some additional notation,
much of which is standard. Given a proper CDF 𝐹 defined on ℝ, we let 𝐹 denote its corresponding
tail function, meaning 𝐹 (𝑥) := 1 − 𝐹 (𝑥) for each 𝑥 ∈ ℝ. Recall also that the CDF of the sum of two
independent nonnegative random variables with CDFs 𝐹 and 𝐺 is given by the convolution 𝐹 ★ 𝐺,
which is defined as

(𝐹 ★𝐺) (𝑡) :=
∫
[0,𝑡 ]

𝐺 (𝑡 − 𝑠)𝑑𝐹 (𝑠), 𝑡 ≥ 0.
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As we proceed through this paper, we will require an understanding of the distribution of the number
of proteins present in the system at time 𝑠 + 𝑡 that were produced by an RNA polymerase binding
event that occurred at time 𝑠. This distribution depends on 𝑡 but not 𝑠, so without loss of generality
we consider the case 𝑠 = 0 in what follows. Associated with an RNA polymerase that binds with the
(active) gene at time zero is the (elongation) time 𝐷0 ∼ 𝐸1 that it takes to create an mRNA molecule,
and 𝐵0 ∼ 𝐿1, the lifetime of that mRNA molecule. Finally, let 𝑃({0}, 𝑡) denote the number of proteins
created by that mRNA molecule that are present in the cell at time 𝑡. We assume that this “bind at time
0” process is defined on some space with probability measure ∗ and associated expectation ∗.

Recall the definition (1), and note that J(0, 𝑚1, 𝑚2, 𝑛) = I1{𝑚1=𝑚2=𝑛=0} , where I denotes the identity
matrix. Our first main result shows that the matrices J(𝑡, 𝑚1, 𝑚2, 𝑛) satisfy a relatively simple recursion.
To state this as briefly as possible it is convenient to define J(𝑡,−1, 𝑚2, 𝑛) = 0 = J(𝑡, 𝑚1,−1, 𝑛) for
every 𝑚1, 𝑚2, 𝑛 ∈ ℤ+ and 𝑡 ≥ 0.

Theorem 2.4. Assume (A1)-(A6). For Lebesgue almost every 𝑡 > 0, the following holds:
For each 𝑚1, 𝑚2, 𝑛 ∈ ℤ+,

𝜕

𝜕𝑡
J(𝑡, 𝑚1, 𝑚2, 𝑛) = K0J(𝑡, 𝑚1, 𝑚2, 𝑛) + 𝐸1(𝑡)K1J(𝑡, 𝑚1 − 1, 𝑚2, 𝑛)

+
𝑛∑︁
𝑘=0

∗(𝐷0 ≤ 𝑡, 𝐷0 + 𝐵0 > 𝑡, 𝑃({0}, 𝑡) = 𝑛 − 𝑘)K1J(𝑡, 𝑚1, 𝑚2 − 1, 𝑘)

+
𝑛∑︁
𝑘=0

∗(𝐷0 + 𝐵0 ≤ 𝑡, 𝑃({0}, 𝑡) = 𝑛 − 𝑘)K1J(𝑡, 𝑚1, 𝑚2, 𝑘).

The recursion simplifies when 𝑚1 = 0 or 𝑚2 = 0 as one or more terms on the right hand side are
equal to 0.

Our second main result concerns the corresponding probability generating function. Recall (3) and
note that Ĵ(0, 𝑧1, 𝑧2, 𝑧3) = I. Define the function ℎ := [0,∞) × 𝔻 × 𝔻 × 𝔻 → ℂ as

ℎ(𝑡, 𝑧1, 𝑧2, 𝑧3) := ∗
[
𝑧
1{𝐷0>𝑡}
1 𝑧

1{𝐷0≤𝑡,𝐷0+𝐵0>𝑡}
2 𝑧

𝑃 ({0},𝑡 )
3

]
. (5)

Later, in Lemma 3.1, we will show how this ℎ function can be expressed in terms of the model
primitives.

We can associate with each square matrix M its matrix exponential eM, which is defined as

eM :=
∞∑︁
𝑚=0

1
𝑚!

M𝑚,

with M0 ≡ I. It is well-known that eM is a well-defined square matrix.

Theorem 2.5. Assume (A1)-(A6). Then for each 𝑧1, 𝑧2, 𝑧3 ∈ 𝔻:
For Lebesgue almost every 𝑡 > 0,

𝜕

𝜕𝑡
Ĵ(𝑡, 𝑧1, 𝑧2, 𝑧3) = (K0 + ℎ (𝑡, 𝑧1, 𝑧2, 𝑧3)K1)Ĵ(𝑡, 𝑧1, 𝑧2, 𝑧3). (6)

Furthermore, Ĵ0(𝑡, 𝑧1, 𝑧2, 𝑧3) = eK0𝑡 , and for each integer 𝑛 ≥ 0,

Ĵ𝑛+1(𝑡, 𝑧1, 𝑧2, 𝑧3) = eK0𝑡 +
∫ 𝑡

0
eK0𝑠ℎ (𝑡 − 𝑠, 𝑧1, 𝑧2, 𝑧3)K1Ĵ𝑛 (𝑡 − 𝑠, 𝑧1, 𝑧2, 𝑧3)𝑑𝑠. (7)
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Equation (6) from Theorem 2.5 is analogous in form to a result in Ramaswami and Neuts [43] for
infinite-server queues where customers arrive to the queue in accordance with a phase-type renewal
process. We can calculate Ĵ(𝑡, 𝑧1, 𝑧2, 𝑧3) numerically by either numerically solving (6), or by approx-
imating Ĵ(𝑡, 𝑧1, 𝑧2, 𝑧3) with Ĵ𝑛 (𝑡, 𝑧1, 𝑧2, 𝑧3) for a sufficiently large integer 𝑛, and this matrix can be
calculated numerically using (7). An extension of the results found in [43] to the case where batches of
arrivals occur in accordance with a Markovian arrival process can be found in Masuyama and Takine
[39].

We next address the problem of calculating the C𝑚1,𝑚2,𝑛 (𝑡) matrices, for each real 𝑡 ≥ 0 and each
triple of integers 𝑚1, 𝑚2, 𝑛 ≥ 0. Theoretically these moments can be derived from their joint PGF by
taking derivatives. We present a direct proof via point process theory which yields a recursive scheme
that in principle can be used to find all moments. Define 𝑞 𝑗 ,𝑘 : [0,∞) → [0,∞), for each 𝑗 ∈ {0, 1}
and each integer 𝑘 ≥ 0 as follows:

𝑞 𝑗 ,𝑘 (𝑡) := ∗
[
1
𝑗

{𝐷0≤𝑡 ,𝐷0+𝐵0>𝑡 }𝑃({0}, 𝑡)
𝑘
]
.

We follow the convention throughout that empty sums are equal to zero.

Theorem 2.6. Assume (A1)-(A6). Then the matrices C𝑚1,𝑚2,𝑛 (𝑡) satisfy the recursion

C𝑚1,𝑚2,𝑛 (𝑡) = e(K0+K1 )𝑡1{𝑚1=𝑚2=𝑛=0} +
𝑚1−1∑︁
𝑗1=0

(
𝑚1
𝑗1

) ∫ 𝑡

0
𝐸1(𝑠)e(K0+K1 ) (𝑡−𝑠)K1C 𝑗1,𝑚2,𝑛 (𝑠)𝑑𝑠

+
𝑚2−1∑︁
𝑗2=0

𝑛∑︁
𝑘=0

(
𝑚2
𝑗2

) (
𝑛

𝑘

) ∫ 𝑡

0
𝑞1,𝑛−𝑘 (𝑠)e(K0+K1 ) (𝑡−𝑠)K1C𝑚, 𝑗2,𝑘 (𝑠)𝑑𝑠

+
𝑛−1∑︁
𝑘=0

(
𝑛

𝑘

) ∫ 𝑡

0
𝑞0,𝑛−𝑘 (𝑠)e(K0+K1 ) (𝑡−𝑠)K1C𝑚1,𝑚2,𝑘 (𝑠)𝑑𝑠.

In particular, the matrices C1,0,0(𝑡), C0,1,0(𝑡) and C0,0,1(𝑡) are as follows:

C1,0,0(𝑡) =
∫ 𝑡

0
e(K0+K1 ) (𝑡−𝑠)𝐸1(𝑠)K1e(K0+K1 )𝑠𝑑𝑠

C0,1,0(𝑡) =
∫ 𝑡

0
e(K0+K1 ) (𝑡−𝑠) (𝐸1 ★ 𝐿1(𝑠) − 𝐸1(𝑠))K1e(K0+K1 )𝑠𝑑𝑠

C0,0,1(𝑡) =
∫ 𝑡

0
e(K0+K1 ) (𝑡−𝑠)𝑞0,1(𝑠)K1e(K0+K1 )𝑠𝑑𝑠.

These ‘moment matrices’ satisfy a simpler recursive structure than the matrices we studied in
Theorems 2.4 and 2.5, thanks to (K0 + K1)𝑡 and its derivative with respect to 𝑡 being commutative
with respect to matrix multiplication.

Note further that while our main results address the case 𝑀nas(0) = 𝑀 (0) = 𝑃(0) = 0, analogous
expressions can be derived for arbitrary 𝑀nas(0), 𝑀 (0), and 𝑃(0) if we are given distributions for the
remaining elongation periods or lifetimes for each molecule present at time 0. We leave this as an
exercise for the interested reader.

Note that other models exhibiting similar dynamics can be analyzed with the same technique. For
example, using this technique various time-dependent moments of nascent mRNA and mature mRNA
can be derived for the model from [15]. In this model, nascent mRNA must progress through 𝐿
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independent, identically distributed exponential phases with rate 𝑘 + 𝑑, where at the end of phase 𝑖,
1 ≤ 𝑖 ≤ 𝐿 − 1, the nascent mRNA either moves to phase 𝑖 + 1 with probability 𝑘/(𝑘 + 𝑑), or dies
with probability 𝑑/(𝑘 + 𝑑). At the end of phase 𝐿, the nascent mRNA molecule becomes a mature
mRNA molecule with probability 𝑘/(𝑘 + 𝑑), or it dies with probability 𝑑/(𝑘 + 𝑑). Finally, the lifetime
of each mature mRNA molecule is assumed to be exponentially distributed with rate 𝑑𝑚. Technically,
the model from [15] considers only the case where the gene switches back and forth between an active
and an inactive state, but we will allow the gene to behave in accordance with an arbitrary MAP.

For each 𝑖 ∈ {1, 2, . . . , 𝐿}, let 𝑀𝑖 (𝑡) denote the number of nascent mRNA molecules experiencing
phase 𝑖 at time 𝑡, and let 𝑀𝐿+1(𝑡) denote the number of mature mRNA molecules present at time 𝑡.
Next, define the matrices C𝑚1,𝑚2,...,𝑚𝐿+1 (𝑡) as

C𝑚1,𝑚2,...,𝑚𝐿+1 (𝑡) :=

[
E𝑥

[
1{𝐼 (𝑡 )=𝑦}

𝐿+1∏
ℓ=1

𝑀ℓ (𝑡)𝑚ℓ
] ]
𝑥,𝑦∈𝑆

, 𝑚1, . . . , 𝑚𝐿+1 ∈ ℤ+.

Let {𝑍 (𝑡); 𝑡 ≥ 0} denote a finite-state CTMC, having state space {1, 2, . . . , 𝐿, 𝐿+1, 𝐿+2} and transition
rate matrix R, where

R =

©­­­­­­­­­«

−(𝑘 + 𝑑) 𝑘 0 0 · · · 0 𝑑

0 −(𝑘 + 𝑑) 𝑘 0 · · · 0 𝑑

0 0 . . .
. . . · · · 0 𝑑

...
...

. . . 0 −(𝑘 + 𝑑) 𝑘 𝑑

0 0 0 · · · 0 −𝑑𝑚 𝑑𝑚

0 0 0 · · · 0 0 0

ª®®®®®®®®®¬
Using the same proof technique, the following result can be established.

Theorem 2.7. The matrices C𝑚1,𝑚2,...,𝑚𝐿+1 (𝑡) satisfy the recursion

C𝑚1,𝑚2,...,𝑚𝐿+1 (𝑡) = e(K0+K1 )𝑡1{𝑚1=𝑚2=· · ·=𝑚𝐿+1=0}

+
𝐿+1∑︁
ℓ=1

𝑚ℓ−1∑︁
𝑗ℓ=0

(
𝑚ℓ

𝑗ℓ

) ∫ 𝑡

0
e(K0+K1 ) (𝑡−𝑠)ℙ1(𝑍 (𝑠) = ℓ)K1C𝑚1,...,𝑚ℓ−1, 𝑗ℓ ,𝑚ℓ+1,...,𝑚𝐿+1 (𝑠)𝑑𝑠,

Note that the probabilities ℙ1(𝑍 (𝑠) = ℓ) can be expressed in closed-form: for 1 ≤ ℓ ≤ 𝐿,

ℙ1(𝑍 (𝑠) = ℓ) =
(
𝑘

𝑘 + 𝑑

)ℓ−1 ((𝑘 + 𝑑)𝑠)ℓ−1𝑒−(𝑘+𝑑)𝑠

(ℓ − 1)!

and (assuming that 𝑘 + 𝑑 ≠ 𝑑𝑚),

ℙ1(𝑍 (𝑠) = 𝐿 + 1) =
(

𝑘

𝑘 + 𝑑 − 𝑑𝑚

)𝐿 [
𝑒−𝑑𝑚𝑠 −

𝐿−1∑︁
ℓ=0

((𝑘 + 𝑑 − 𝑑𝑚)𝑠)ℓ𝑒−(𝑘+𝑑)𝑠

ℓ!

]
.

We omit the derivation of these probabilities, as they can be calculated using standard methods.
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2.3 Numerical Results

Our main results can be used to numerically approximate the time-dependent moments of the numbers
of nascent mRNA, mRNA, and proteins. In order to calculate these quantities, we need an efficient
method for calculating the 𝑞 𝑗 ,𝑘 functions, and in general we do not expect to be able to express each
𝑞 𝑗 ,𝑘 function in closed-form because each such function is in terms of integrals of tail probabilities
associated with generally distributed random variables. What we can do though is derive computable
expressions when elongation times and lifetimes are discrete.

The moment recursion featured in Theorem 2.6 exhibits a form that makes it highly amenable to
numerical work. Fix a real number 𝑇 > 0, and construct a partition of equally-spaced points {𝑢𝑖}𝑝𝑖=0
of [0, 𝑇], where 𝑢𝑖 = 𝑖𝛿, and 𝛿 = 𝑇/𝑝. Using this partition, we can use Theorem 2.6 to derive
the following approximate recursion, which follows from a naive Riemann sum approximation. For
𝑚1, 𝑚2, 𝑛 ∈ ℤ+ satisfying max(𝑚1, 𝑚2, 𝑛) ≥ 1,

C𝑚1,𝑚2,𝑛 (𝑢1) ≈ 𝛿
𝑚1−1∑︁
𝑗1=0

(
𝑚1
𝑗1

)
𝐸1(𝑢1)K1C 𝑗1,𝑚2,𝑛 (𝑢1) + 𝛿

𝑚2−1∑︁
𝑗2=0

𝑛∑︁
𝑘=0

(
𝑚2
𝑗2

) (
𝑛

𝑘

)
𝑞1,𝑛−𝑘 (𝑢1)K1C𝑚1, 𝑗2,𝑘 (𝑢1)

+ 𝛿
𝑛−1∑︁
𝑘=0

(
𝑛

𝑘

)
𝑞0,𝑛−𝑘 (𝑢1)K1C𝑚1,𝑚2,𝑘 (𝑢1)

and for 1 ≤ ℓ ≤ 𝑝 − 1,

C𝑚1,𝑚2,𝑛 (𝑢ℓ+1) ≈ e(K0+K1 ) 𝛿C𝑚1,𝑚2,𝑛 (𝑢ℓ) + 𝛿
𝑚1−1∑︁
𝑗1=0

(
𝑚1
𝑗1

)
𝐸1(𝑢ℓ+1)K1C 𝑗1,𝑚2,𝑛 (𝑢ℓ+1)

+ 𝛿
𝑚2−1∑︁
𝑗2=0

𝑛∑︁
𝑘=0

(
𝑚2
𝑗2

) (
𝑛

𝑘

)
𝑞1,𝑛−𝑘 (𝑢ℓ+1)K1C𝑚1, 𝑗2,𝑘 (𝑢ℓ+1) + 𝛿

𝑛−1∑︁
𝑘=0

(
𝑛

𝑘

)
𝑞0,𝑛−𝑘 (𝑢ℓ+1)K1C𝑚1,𝑚2,𝑘 (𝑢ℓ+1)

where we again recall that C0,0,0(𝑢ℓ) = e(K0+K1 )𝑢ℓ . This simple recursion seems to work quite well
when 𝑚1, 𝑚2, and 𝑛 are relatively small. We will use this recursion within an example at the end of
Section 4.

3 Proofs of the main results

In this Section we prove Theorems 2.4-2.6. We will use two tools from the theory of Poisson processes
(more generally point processes) which will be stated below. In the meantime we present a lemma that
quantifies the relationship between 𝐷0, 𝐵0, and 𝑃({0}, 𝑡). In order to simplify the statement of this
lemma, we define the function 𝑟 : ℝ2

+ → ℝ as

𝑟 (𝑎, 𝑏) := 𝑘2

∫ 𝑏

𝑎

(𝐸2 ★ 𝐿2(𝑡 − 𝑥) − 𝐸2(𝑡 − 𝑥))𝑑𝑥.

Henceforth, by convention “Poisson with mean 0” means almost surely equal to 0.
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Lemma 3.1. The function ℎ(𝑡, 𝑧1, 𝑧2, 𝑧3) := ∗
[
𝑧
1{𝐷0>𝑡}
1 𝑧

1{𝐷0≤𝑡,𝐷0+𝐵0>𝑡}
2 𝑧

𝑃 ({0},𝑡 )
3

]
satisfies

ℎ(𝑡, 𝑧1, 𝑧2, 𝑧3) = 𝑧1𝐸1(𝑡) + 𝑧2

∫
[0,𝑡 ]

𝐿1(𝑡 − 𝑢)𝑒−(1−𝑧3 )𝑟 (𝑢,𝑡 )𝑑𝐸1(𝑢)

+
∫
[0,𝑡 ]

∫
[0,𝑡−𝑢]

𝑒−(1−𝑧3 )𝑟 (𝑢,𝑢+𝑣)𝑑𝐿1(𝑣)𝑑𝐸1(𝑢). (8)

Moreover, the following statements are true:

∗
(
𝐷0 + 𝐵0 ≤ 𝑡, 𝑃({0}, 𝑡) = 𝑘

)
=

∫
[0,𝑡 ]

∫
[0,𝑡−𝑢]

(
𝑟 (𝑢, 𝑢 + 𝑣)

) 𝑘
𝑒−𝑟 (𝑢,𝑢+𝑣)

𝑘!
𝑑𝐿1(𝑣)𝑑𝐸1(𝑢),

(9)

∗
(
𝐷0 ≤ 𝑡, 𝐷0 + 𝐵0 > 𝑡, 𝑃({0}, 𝑡) = 𝑘

)
=

∫
[0,𝑡 ]

𝐿1(𝑡 − 𝑢)
(
𝑟 (𝑢, 𝑡)

) 𝑘
𝑒−𝑟 (𝑢,𝑡 )

𝑘!
𝑑𝐸1(𝑢), (10)

and the function 𝑞 𝑗 ,𝑘 (𝑡) := ∗
[
1
𝑗

{𝐷0≤𝑡 ,𝐷0+𝐵0>𝑡 }𝑃({0}, 𝑡)
𝑘
]

satisfies

𝑞 𝑗 ,𝑘 (𝑡) =
∫
[0,∞)

∫
[0,∞)

(
1{𝑢≤𝑡 ,𝑢+𝑣>𝑡 }

) 𝑗
𝜇𝑘

(
(𝑢 ∧ 𝑡, (𝑢 + 𝑣) ∧ 𝑡]

)
𝑑𝐿1(𝑣)𝑑𝐸1(𝑢), (11)

where 𝜇𝑘 ((𝑎, 𝑏]) is the 𝑘th moment of a Poisson random variable having mean 𝑟 (𝑎, 𝑏).

Proof. First, note that a protein initiated at time 𝑥 in the ∗-setting is present at time 𝑡 if its elongation
time (∼ 𝐸2) is at most 𝑡 − 𝑥, and its elongation time plus lifetime (∼ 𝐸2 ★ 𝐿2) is greater than 𝑡 − 𝑥.
Thus, conditional on both 𝐷0 and 𝐵0, 𝑃({0}, 𝑡) is a Poisson random variable with mean 𝜆𝑡 (𝐷0, 𝐵0),
where

𝜆𝑡 (𝑎, 𝑏) := 𝑘2

∫ min(𝑎+𝑏,𝑡 )

min(𝑎,𝑡 )
(𝐸2 ★ 𝐿2(𝑡 − 𝑥) − 𝐸2(𝑡 − 𝑥))𝑑𝑥 = 𝑟

(
min(𝑎, 𝑡),min(𝑎 + 𝑏, 𝑡)

)
.

Thus, for functions 𝑓1, 𝑓2, where 𝑓1 : [0,∞) × [0,∞) → [0,∞) is B([0,∞)) ⊗B([0,∞))-measurable,
and 𝑓2 : ℤ+ → [0,∞), by conditioning on both 𝐵0 and 𝐷0, we can write

∗
[
𝑓1(𝐷0, 𝐵0) 𝑓2(𝑃({0}, 𝑡))

]
= ∗

[
𝑓1(𝐷0, 𝐵0)∗

[
𝑓2(𝑃({0}, 𝑡))

��𝐷0, 𝐵0
] ]

=

∫ ∞

0

∫ ∞

0
𝑓1(𝑢, 𝑣)𝜙2(𝑡, 𝑢, 𝑣)𝑑𝐿1(𝑣)𝑑𝐸1(𝑢),

where 𝜙2(𝑡, 𝑢, 𝑣) is the expected value of 𝑓2(𝑁∗), where 𝑁∗ ∼Pois(𝜆𝑡 (𝑢, 𝑣)).
From this observation Formulas (8), (9), (10), and (11) can be derived quickly, so we will only spend

time establishing (8): since {𝐷0 > 𝑡} and {𝐷0 + 𝐵0 ≤ 𝑡} are disjoint events we have

∗
[
𝑧
1{𝐷0>𝑡}
1 𝑧

1{𝐷0≤𝑡,𝐷0+𝐵0>𝑡}
2 𝑧

𝑃 ({0},𝑡 )
3

]
= ∗

[
(𝑧11{𝐷0>𝑡 } + 𝑧21{𝐷0≤𝑡 ,𝐷0+𝐵0>𝑡 } + 1{𝐷0+𝐵0≤𝑡 })𝑧

𝑃 ({0},𝑡 )
3

]
.

Condition on 𝐷0, 𝐵0 as above, set 𝑓2(𝑛) = 𝑧𝑛3 and e.g. 𝑓1(𝑢, 𝑣) = 𝑧11{𝑢>𝑡 } for the first term in the
∗ expectation, and recall that the probability generating function for a Poisson(𝜆) random variable is
𝜙(𝑧) = 𝑒−𝜆(1−𝑧) to see that this is equal to∫ ∞

0

∫ ∞

0
[𝑧11{𝑢>𝑡 } + 𝑧21{𝑢≤𝑡 ,𝑢+𝑣>𝑡 } + 1{𝑢+𝑣≤𝑡 }]𝑒−(1−𝑧3 )𝑟 (𝑢∧𝑡 ,𝑢+𝑣∧𝑡 )𝑑𝐿1(𝑣)𝑑𝐸1(𝑢)

= 𝑧1𝐸1(𝑡) + 𝑧2

∫
[0,𝑡 ]

𝐿1(𝑡 − 𝑢)𝑒−(1−𝑧3 )𝑟 (𝑢,𝑡 )𝑑𝐸1(𝑢) +
∫
[0,𝑡 ]

∫
[0,𝑡−𝑢]

𝑒−(1−𝑧3 )𝑟 (𝑢,𝑢+𝑣)𝑑𝐿1(𝑣)𝑑𝐸1(𝑢),

which proves the claim (8). □
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We now introduce the two tools from the theory of point processes that we will apply in the proofs.
Note that the treatment below serves only to give a rudimentary understanding of these results, sufficient
to be comfortable with our application of them. Readers interested in technical details, proofs and/or
generalised statements are referred to one of many text books on the subject, e.g. [4, 34].

A Poisson process A := {A(𝑡); 𝑡 ≥ 0} with rate 𝑘 > 0 is a counting process that can also be viewed
as a random measure on the Borel sets B of [0,∞), with A(𝐵) denoting the number of points in
𝐵 ⊂ [0,∞). Note that for 𝑠 ≤ 𝑡, 𝔼[A([𝑠, 𝑡])] = 𝑘 (𝑡 − 𝑠). The general theory of point processes
provides a family of non-random probability measures {P𝑠; 𝑠 ≥ 0} on (Ω, F ) (with corresponding
expectations {E𝑠; 𝑠 ≥ 0}), called Palm probabilities, for which P𝑠 (𝐴) can be interpreted as the
probability of the event 𝐴 given that the process A has a point at 𝑠. These measures are non-trivial
since the event that A has a point at 𝑠 has probability 0. Note that we have already informally
encountered such a probability measure, namely P0, which we introduced as a probability measure
under which there was an mRNA binding at time 0, and we calculated expectations of quantities (that
didn’t depend any further on the Poisson process) arising from that binding.

For 𝑠 ≥ 0, let 𝛿𝑠 denote the measure on B that puts a unit mass at the point 𝑠 (i.e. 𝛿𝑠 (𝐵) = 1{𝑠∈𝐵}).
Given a Poisson process A, let A𝑠 := {A𝑠 (𝑡); 𝑡 ≥ 0} denote the point process that is equal to A except
that A𝑠 contains a point at 𝑠. The following result, attributed to Silvnyak and Mecke, can be found on
page 130 of [4]. It says that conditioning a Poisson process on having a point at time 𝑠 (we reiterate
that this is an event of probability 0) is equivalent to adding a point at time 𝑠 to the unconditioned
process.

Theorem 3.1. Let A be a Poisson process. Then for Lebesgue a.e. 𝑠, the law of A under the Palm
measure P𝑠 is equal to the law of A𝑠 under P.

For example, for an interval 𝐼, according to Theorem 3.1,

P𝑠 (A(𝐼) = 𝑛) = P(A𝑠 (𝐼) = 𝑛) =
{
P(A(𝐼) = 𝑛), if 𝑠 ∉ 𝐼,
P(A(𝐼) = 𝑛 − 1), if 𝑠 ∈ 𝐼 .

Let 𝑋 := {𝑋 (𝑠); 𝑠 ≥ 0} be a non-negative random process defined on (Ω, F ). The following is a
special case of the Campbell-Mecke Formula [4] for Poisson processes. It gives an expression for the
expectation (under ℙ) of the sum of the values of the 𝑋 (·) process at the points of the Poisson process
up to time 𝑡, in terms of the time average (up to 𝑡) of the Palm expectations.

Theorem 3.2. (Campbell-Mecke Formula) Let A be a Poisson process with rate 𝑘 and 𝑋 be a
non-negative (and F ⊗ B-measurable) process. Then for each 𝑡 ≥ 0,

E

[∫ 𝑡

0
𝑋 (𝑠)A(𝑑𝑠)

]
=

∫ 𝑡

0
E𝑠 [𝑋 (𝑠)]𝑘𝑑𝑠. (12)

In the special case where 𝑋 is non-random (with 𝑋 (𝑠) = 𝑥(𝑠) for each 𝑠), both sides of (12) are
equal to

∫ 𝑡
0 𝑥(𝑠)𝑘𝑑𝑠. In the special case where 𝑋 (𝑠) = 1{A(𝐼 )=𝑛} for some interval 𝐼, we have that the

left hand side of (12) is equal to

E[1{A(𝐼 )=𝑛}A([0, 𝑡])] = E[A([0, 𝑡]) |A(𝐼) = 𝑛]P(A(𝐼) = 𝑛)

=

(
E[A([0, 𝑡] \ 𝐼) |A(𝐼) = 𝑛] +E[A([0, 𝑡] ∩ 𝐼) |A(𝐼) = 𝑛]

)
P(A(𝐼) = 𝑛)

=

(
𝑘 | [0, 𝑡] \ 𝐼 | + 𝑛 | [0, 𝑡] ∩ 𝐼 ||𝐼 |

)
P(A(𝐼) = 𝑛), (13)
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where |𝐵| denotes the Lebesgue measure of 𝐵. The right hand side of (12) is equal to∫ 𝑡

0
E𝑠 (A(𝐼) = 𝑛)𝑘𝑑𝑠 = 𝑘

∫
[0,𝑡 ]\𝐼

P(A(𝐼) = 𝑛)𝑑𝑠 + 𝑘
∫
[0,𝑡 ]∩𝐼

P(A(𝐼) = 𝑛 − 1)𝑑𝑠

= 𝑘P(A(𝐼) = 𝑛) | [0, 𝑡] \ 𝐼 | + 𝑘P(A(𝐼) = 𝑛 − 1) | [0, 𝑡] ∩ 𝐼 |, (14)

where we have used Theorem 3.1 in the first line. It is now an elementary exercise to verify that (13)
and (14) are equal.

We now have the tools we need to prove our main results.

We define the conception time of any mRNA or protein molecule as the time of the binding of the
RNA polymerase (that led to the creation of the molecule) with the (active) gene. Throughout our
derivations, for each 𝑡 ≥ 0, and each 𝐵 ∈ B([0,∞)), 𝑀 (𝐵, 𝑡) (resp. 𝑃(𝐵, 𝑡), 𝑀nas(𝐵, 𝑡)) represents
the number of mRNA (resp. protein, nascent mRNA) molecules present at time 𝑡 with conception time
in 𝐵. The elongation time and lifetime associated to the first arrival in the MAP are denoted by 𝐷 (1)

and 𝐵 (1) respectively. In each case our proof starts with the observation that (for particular choices of
𝑓1, 𝑓2, and 𝑓3) we have

𝑓1(𝑀nas(𝑡)) 𝑓2(𝑀 (𝑡)) 𝑓3(𝑃(𝑡))
= 𝑓1(0) 𝑓2(0) 𝑓3(0)1{𝑁 (𝑡 )=0}

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)>𝑡−𝑠}

× 𝑓1
(
1 + 𝑀nas((𝑠, 𝑡], 𝑡)

)
𝑓2

(
𝑀 ((𝑠, 𝑡], 𝑡)

)
𝑓3

(
𝑃((𝑠, 𝑡], 𝑡)

)
𝐴
(1)
𝑧,𝑤 (𝑑𝑠)

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1) ≤𝑡−𝑠,𝐷 (1)+𝐵(1)>𝑡−𝑠}

𝑓1
(
𝑀nas((𝑠, 𝑡], 𝑡)

)
𝑓2

(
1 + 𝑀 ((𝑠, 𝑡], 𝑡)

)
𝑓3

(
𝑃({𝑠}, 𝑡) + 𝑃((𝑠, 𝑡], 𝑡)

)
𝐴
(1)
𝑧,𝑤 (𝑑𝑠)

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)+𝐵(1) ≤𝑡−𝑠}

𝑓1
(
𝑀nas((𝑠, 𝑡], 𝑡)

)
𝑓2

(
𝑀 ((𝑠, 𝑡], 𝑡)

)
𝑓3

(
𝑃({𝑠}, 𝑡) + 𝑃((𝑠, 𝑡], 𝑡)

)
𝐴
(1)
𝑧,𝑤 (𝑑𝑠). (15)

The first term on the right hand side of (15) is the case that there is no conception by time 𝑡, while
in the remaining terms the first conception time is 𝑠 ∈ (0, 𝑡]. Depending on 𝐷 (1) , 𝐵 (1) this mRNA
conceived at time 𝑠 might be nascent at time 𝑡 (which contributes to 𝑀nas(𝑡), and this corresponds to
the second term in (15)), or has finished its elongation period by time 𝑡, and in this case it may be still
alive (see the third term in (15)) or not (see the final term in (15)) at time 𝑡.

We then multiply both sides by 1{𝐼 (𝑡 )=𝑦} and use the particular form of 𝑓1, 𝑓2, 𝑓3 to write 𝑓𝑖 (𝑛 +𝑚)
in terms of 𝑓𝑖 (𝑘) etc. (in our first two proofs, each 𝑓𝑖 factorizes, and in our third proof we use the
binomial expansion). We take expectations of both sides and apply both Theorems 3.2 and 3.1 to
the right hand side. Exploiting independence allows us to factorize the resulting Palm expectation.
Simplifying, expressing in matrix form, and differentiating with respect to 𝑡 completes the proof.
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Proof of Theorem 2.4. Let 𝑡 > 0, 𝑚1, 𝑚2, 𝑛 ∈ ℤ+. Using (15) with 𝑓1(𝑚) = 1{𝑚=𝑚1} , 𝑓2(𝑚) =

1{𝑚=𝑚2} and 𝑓3(𝑚) = 1{𝑚=𝑛} we obtain,

1{𝑀nas (𝑡 )=𝑚1,𝑀 (𝑡 )=𝑚2,𝑃 (𝑡 )=𝑛,𝐼 (𝑡 )=𝑦}

= 1{𝑁 (𝑡 )=0,𝐼 (𝑡 )=𝑦}1{𝑚1=𝑚2=𝑛=0} (16)

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)>𝑡−𝑠}

× 1{𝑀nas ( (𝑠,𝑡 ],𝑡 )=𝑚1−1,𝑀 ( (𝑠,𝑡 ],𝑡 )=𝑚2,𝑃 ( (𝑠,𝑡 ],𝑡 )=𝑛,𝐼 (𝑡 )=𝑦}𝐴
(1)
𝑧,𝑤 (𝑑𝑠)

+
𝑛∑︁
𝑘=0

∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1) ≤𝑡−𝑠,𝐷 (1)+𝐵(1)>𝑡−𝑠}1{𝑃 ({𝑠},𝑡 )=𝑛−𝑘}

× 1{𝑀nas ( (𝑠,𝑡 ],𝑡 )=𝑚1,𝑀 ( (𝑠,𝑡 ],𝑡 )=𝑚2−1,𝑃 ( (𝑠,𝑡 ],𝑡 )=𝑘,𝐼 (𝑡 )=𝑦}𝐴
(1)
𝑧,𝑤 (𝑑𝑠)

+
𝑛∑︁
𝑘=0

∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)+𝐵(1) ≤𝑡−𝑠}1{𝑃 ({𝑠},𝑡 )=𝑛−𝑘}

× 1{𝑀nas ( (𝑠,𝑡 ],𝑡 )=𝑚1,𝑀 ( (𝑠,𝑡 ],𝑡 )=𝑚2,𝑃 ( (𝑠,𝑡 ],𝑡 )=𝑘,𝐼 (𝑡 )=𝑦}𝐴
(1)
𝑧,𝑤 (𝑑𝑠).

Note that if e.g. 𝑚1 = 0 then 1{𝑀nas ( (𝑠,𝑡 ],𝑡 )=𝑚1−1} = 0 above. After taking expectations of both sides,
while applying the Campbell-Mecke formula to e.g. the process

𝑋𝑡 ,𝑘 (𝑠) := 1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧,𝐷 (1)+𝐵(1) ≤𝑡−𝑠,𝑃 ({𝑠},𝑡 )=𝑛−𝑘}1{𝑀nas ( (𝑠,𝑡 ],𝑡 )=0,𝑀 ( (𝑠,𝑡 ],𝑡 )=0,𝑃 ( (𝑠,𝑡 ],𝑡 )=𝑘,𝐼 (𝑡 )=𝑦} ,

for the last term on the right-hand-side (and similar processes for the other terms on the right hand
side) of (16), we find that for each 𝑥 ∈ 𝑆, and 𝑡 ≥ 0,

P𝑥 (𝑀nas(𝑡) = 𝑚1, 𝑀 (𝑡) = 𝑚2, 𝑃(𝑡) = 𝑛, 𝐼 (𝑡) = 𝑦)
= P𝑥 (𝑁 (𝑡) = 0, 𝐼 (𝑡) = 𝑦)1{𝑚1=𝑚2=𝑛=0} (17)

+
∑︁
𝑧,𝑤∈𝑆

∫ 𝑡

0
P (𝑧,𝑤)
𝑥,𝑠

(
𝑁 (𝑠−) = 0, 𝐼 (𝑠−) = 𝑧, 𝐷 (1) > 𝑡 − 𝑠, 𝐼 (𝑡) = 𝑦,

𝑀nas((𝑠, 𝑡], 𝑡) = 𝑚1 − 1, 𝑀 ((𝑠, 𝑡], 𝑡) = 𝑚2, 𝑃((𝑠, 𝑡], 𝑡) = 𝑛
)
𝑘1(𝑧, 𝑤)𝑑𝑠

+
𝑛∑︁
𝑘=0

∑︁
𝑧,𝑤∈𝑆

∫ 𝑡

0
P (𝑧,𝑤)
𝑥,𝑠

(
𝑁 (𝑠−) = 0, 𝐼 (𝑠−) = 𝑧, 𝐷 (1) ≤ 𝑡 − 𝑠, 𝐷 (1) + 𝐵 (1) > 𝑡 − 𝑠, 𝑃({𝑠}, 𝑡) = 𝑛 − 𝑘,

𝑀nas((𝑠, 𝑡], 𝑡) = 𝑚1, 𝑀 ((𝑠, 𝑡], 𝑡) = 𝑚2 − 1, 𝑃((𝑠, 𝑡], 𝑡) = 𝑘, 𝐼 (𝑡) = 𝑦
)
𝑑𝑠

+
𝑛∑︁
𝑘=0

∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

P (𝑧,𝑤)
𝑥,𝑠

(
𝑁 (𝑠−) = 0, 𝐼 (𝑠−) = 𝑧, 𝐷 (1) + 𝐵 (1) ≤ 𝑡 − 𝑠,

𝑃({𝑠}, 𝑡) = 𝑛 − 𝑘, 𝑀nas((𝑠, 𝑡], 𝑡) = 𝑚1, 𝑀 ((𝑠, 𝑡], 𝑡) = 𝑚2,
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𝑃((𝑠, 𝑡], 𝑡) = 𝑘, 𝐼 (𝑡) = 𝑦
)
𝑘1(𝑧, 𝑤)𝑑𝑠,

where {P (𝑧,𝑤)
𝑥,𝑠 }𝑠≥0 denotes the family of Palm distributions associated with the Poisson process 𝐴(1)

𝑧,𝑤

(when the underlying probability measure is P𝑥). Next, observe e.g. in the last term that the event
{𝑁 (𝑠−) = 0, 𝐼 (𝑠−) = 𝑧} depends only on the behaviour of all points on the interval (0, 𝑠), the event
{𝑀nas((𝑠, 𝑡], 𝑡) = 𝑚1, 𝑀 ((𝑠, 𝑡], 𝑡) = 𝑚2, 𝑃((𝑠, 𝑡], 𝑡) = 𝑘, 𝐼 (𝑡) = 𝑦} depends only on the behaviour of
the point processes in the set (𝑠, 𝑡] (while simultaneously keeping in mind that 𝐼 (𝑠) = 𝑤) and the event
{𝐷 (1) + 𝐵 (1) ≤ 𝑡 − 𝑠} does not depend on the point process at all for fixed 𝑠.

Applying now Theorem 3.1 yields, for each 𝑡 ≥ 0 and Lebesgue almost-all 𝑠 ∈ [0, 𝑡], the probability
in the last term on the right hand side of (17) is

P (𝑧,𝑤)
𝑥,𝑠

(
𝑁 (𝑠−) = 0, 𝐼 (𝑠−) = 𝑧, 𝐷 (1) + 𝐵 (1) ≤ 𝑡 − 𝑠,

𝑃({𝑠}, 𝑡) = 𝑛 − 𝑘, 𝑀nas((𝑠, 𝑡], 𝑡) = 𝑚1, 𝑀 ((𝑠, 𝑡], 𝑡) = 𝑚2, 𝑃((𝑠, 𝑡], 𝑡) = 𝑘, 𝐼 (𝑡) = 𝑦
)

= P𝑥
(
𝑁 (𝑠) = 0, 𝐼 (𝑠) = 𝑧

)
∗

(
𝐷0 + 𝐵0 ≤ 𝑡 − 𝑠, 𝑃({0}, 𝑡 − 𝑠) = 𝑛 − 𝑘

)
×P𝑤

(
𝑀nas(𝑡 − 𝑠) = 𝑚1, 𝑀 (𝑡 − 𝑠) = 𝑚2, 𝑃(𝑡 − 𝑠) = 𝑘, 𝐼 (𝑡 − 𝑠) = 𝑦

)
.

The other terms are handled similarly. Hence,

P𝑥 (𝑀nas(𝑡) = 𝑚1, 𝑀 (𝑡) = 𝑚2, 𝑃(𝑡) = 𝑛, 𝐼 (𝑡) = 𝑦)
= P𝑥 (𝑁 (𝑡) = 0, 𝐼 (𝑡) = 𝑦)1{𝑚1=𝑚2=𝑛=0}

+
∑︁
𝑧,𝑤∈𝑆

∫ 𝑡

0
P𝑥

(
𝑁 (𝑠) = 0, 𝐼 (𝑠) = 𝑧

)
∗

(
𝐷0 > 𝑡 − 𝑠, 𝑃({0}, 𝑡 − 𝑠) = 𝑛 − 𝑘

)
𝑘1(𝑧, 𝑤)

×P𝑤
(
𝑀nas(𝑡 − 𝑠) = 𝑚1 − 1, 𝑀 (𝑡 − 𝑠) = 𝑚2, 𝑃(𝑡 − 𝑠) = 𝑛, 𝐼 (𝑡 − 𝑠) = 𝑦

)
𝑑𝑠

+
𝑛∑︁
𝑘=0

∑︁
𝑧,𝑤∈𝑆

∫ 𝑡

0
P𝑥

(
𝑁 (𝑠) = 0, 𝐼 (𝑠) = 𝑧

)
∗

(
𝐷0 ≤ 𝑡 − 𝑠, 𝐷0 + 𝐵0 > 𝑡 − 𝑠, 𝑃({0}, 𝑡 − 𝑠) = 𝑛 − 𝑘

)
𝑘1(𝑧, 𝑤)

×P𝑤
(
𝑀nas(𝑡 − 𝑠) = 𝑚1, 𝑀 (𝑡 − 𝑠) = 𝑚2 − 1, 𝑃(𝑡 − 𝑠) = 𝑘, 𝐼 (𝑡 − 𝑠) = 𝑦

)
𝑑𝑠

+
𝑛∑︁
𝑘=0

∑︁
𝑧,𝑤∈𝑆

∫ 𝑡

0
P𝑥

(
𝑁 (𝑠) = 0, 𝐼 (𝑠) = 𝑧

)
∗

(
𝐷0 + 𝐵0 ≤ 𝑡 − 𝑠, 𝑃({0}, 𝑡 − 𝑠) = 𝑛 − 𝑘

)
P𝑤

(
𝑀nas(𝑡 − 𝑠) = 𝑚1, 𝑀 (𝑡 − 𝑠) = 𝑚2, 𝑃(𝑡 − 𝑠) = 𝑘, 𝐼 (𝑡 − 𝑠) = 𝑦

)
𝑑𝑠.

Observe also that from the Kolmogorov forward equations associated with the CTMC {(𝑁 (𝑡), 𝐼 (𝑡)); 𝑡 ≥
0}, the probability ℙ𝑥 (𝑁 (𝑡) = 0, 𝐼 (𝑡) = 𝑦) is the element found in row 𝑥, column 𝑦 of the matrix
exponential eK0𝑡 . Expressing the above system in matrix form we obtain

J(𝑡, 𝑚1, 𝑚2, 𝑛) = eK0𝑡1{𝑚1=𝑚2=𝑛=0}

+
∫ 𝑡

0
∗

(
𝐷0 > 𝑡 − 𝑠, 𝑃({0}, 𝑡 − 𝑠) = 𝑛 − 𝑘

)
eK0𝑠K1J(𝑡 − 𝑠, 𝑚1 − 1, 𝑚2, 𝑘)𝑑𝑠
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+
𝑛∑︁
𝑘=0

∫ 𝑡

0
∗

(
𝐷0 ≤ 𝑡 − 𝑠, 𝐷0 + 𝐵0 > 𝑡 − 𝑠, 𝑃({0}, 𝑡 − 𝑠) = 𝑛 − 𝑘

)
× eK0𝑠K1J(𝑡 − 𝑠, 𝑚1, 𝑚2 − 1, 𝑘)𝑑𝑠

+
𝑛∑︁
𝑘=0

∫ 𝑡

0
∗

(
𝐷0 + 𝐵0 ≤ 𝑡 − 𝑠, 𝑃({0}, 𝑡 − 𝑠) = 𝑛 − 𝑘

)
eK0𝑠K1J(𝑡 − 𝑠, 𝑚1, 𝑚2, 𝑘)𝑑𝑠.

Using the change of variables 𝑢 = 𝑡 − 𝑠 this becomes

J(𝑡, 𝑚1, 𝑚2, 𝑛) = eK0𝑡
[
1{𝑚1=𝑚2=𝑛=0} +

∫ 𝑡

0
∗

(
𝐷0 > 𝑢, 𝑃({0}, 𝑢) = 𝑛 − 𝑘

)
e−K0𝑢K1J(𝑢, 𝑚1 − 1, 𝑚2, 𝑘)𝑑𝑢

+
𝑛∑︁
𝑘=0

∫ 𝑡

0
∗

(
𝐷0 ≤ 𝑢, 𝐷0 + 𝐵0 > 𝑢, 𝑃({0}, 𝑢) = 𝑛 − 𝑘

)
× e−K0𝑢K1J(𝑢, 𝑚1, 𝑚2 − 1, 𝑘)𝑑𝑢

+
𝑛∑︁
𝑘=0

∫ 𝑡

0
∗

(
𝐷0 + 𝐵0 ≤ 𝑢, 𝑃({0}, 𝑢) = 𝑛 − 𝑘

)
e−K0𝑢K1J(𝑢, 𝑚1, 𝑚2, 𝑘)𝑑𝑠

]
.

Multiplying both sides of the equality (on the left) by e−K0𝑡 , then taking derivatives of both sides
with respect to 𝑡 establishes the result. □

We now turn our attention to the probability generating function Ĵ. The idea behind the proof we
give for Theorem 2.5 is analogous to the idea we used to derive Theorem 2.4. Again, this appears to
be closely related to the argument from pages 68 and 69 of [38] for the PH/G/∞ queue, except there
the authors do not think in terms of point processes.

Proof of Theorem 2.5. Observe that for each 𝑦 ∈ 𝑆 and 𝑡 > 0, using (15) with 𝑓1(𝑚) = 𝑧𝑚1 , 𝑓2(𝑚) = 𝑧𝑚2 ,
and 𝑓3(𝑚) = 𝑧𝑚3 , we obtain

𝑧
𝑀nas (𝑡 )
1 𝑧

𝑀 (𝑡 )
2 𝑧

𝑃 (𝑡 )
3 1{𝐼 (𝑡 )=𝑦}

= 1{𝑁 (𝑡 )=0,𝐼 (𝑡 )=𝑦} +
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)>𝑡−𝑠}𝑧1

𝑧
𝑀nas ( (𝑠,𝑡 ],𝑡 ]
1 𝑧

𝑀 ( (𝑠,𝑡 ],𝑡 )
2 𝑧

𝑃 ( (𝑠,𝑡 ],𝑡 )
3 𝐴

(1)
𝑧,𝑤 (𝑑𝑠)

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1) ≤𝑡−𝑠,𝐷 (1)+𝐵(1)>𝑡−𝑠}𝑧2𝑧
𝑃 ({𝑠},𝑡 )
3

𝑧
𝑀nas ( (𝑠,𝑡 ],𝑡 )
1 𝑧

𝑀 ( (𝑠,𝑡 ],𝑡 )
2 𝑧

𝑃 ( (𝑠,𝑡 ],𝑡 )
3 𝐴

(1)
𝑧,𝑤 (𝑑𝑠)

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)+𝐵(1) ≤𝑡−𝑠}𝑧
𝑃 ({𝑠},𝑡 )
3

𝑧
𝑀nas ( (𝑠,𝑡 ],𝑡 )
1 𝑧

𝑀 ( (𝑠,𝑡 ],𝑡 )
2 𝑧

𝑃 ( (𝑠,𝑡 ],𝑡 )
3 𝐴

(1)
𝑧,𝑤 (𝑑𝑠).
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Taking expectations, and applying Theorems 3.2 and 3.1 yields, for each 𝑥, 𝑦 ∈ 𝑆,

E𝑥 [𝑧𝑀nas (𝑡 )
1 𝑧

𝑀 (𝑡 )
2 𝑧

𝑃 (𝑡 )
3 1{𝐼 (𝑡 )=𝑦}]

= P𝑥 (𝑁 (𝑡) = 0, 𝐼 (𝑡) = 𝑦)

+
∑︁
𝑧,𝑤∈𝑆

∫ 𝑡

0
P𝑥 (𝑁 (𝑠) = 0, 𝐼 (𝑠) = 𝑧)𝑘1(𝑧, 𝑤)ℎ(𝑡 − 𝑠, 𝑧1, 𝑧2, 𝑧3)E𝑤 [𝑧𝑀nas (𝑡−𝑠)

1 𝑧
𝑀 (𝑡−𝑠)
2 𝑧

𝑃 (𝑡−𝑠)
3 1{𝐼 (𝑡 )=𝑦}]𝑑𝑠.

In matrix form this is

Ĵ(𝑡, 𝑧1, 𝑧2, 𝑧3) = eK0𝑡 +
∫ 𝑡

0
ℎ(𝑡 − 𝑠, 𝑧1, 𝑧2, 𝑧3)eK0𝑠K1Ĵ(𝑡 − 𝑠, 𝑧1, 𝑧2, 𝑧3)𝑑𝑠

= eK0𝑡
[
I +

∫ 𝑡

0
ℎ(𝑢, 𝑧1, 𝑧2, 𝑧3)e−K0𝑢K1Ĵ(𝑢, 𝑧1, 𝑧2, 𝑧3)𝑑𝑢

]
,

and taking the partial derivative of both sides with respect to 𝑡 gives

𝜕

𝜕𝑡
Ĵ(𝑡, 𝑧1, 𝑧2, 𝑧3) = (K0 + ℎ(𝑡, 𝑧1, 𝑧2, 𝑧3)K1)Ĵ(𝑡, 𝑧1, 𝑧2, 𝑧3)

proving (6). Finally, note that (7) can be established using a similar idea: indeed, a simple modification
of this proof shows that for each integer 𝑛 ≥ 0 (where 𝑁 ((𝑠, 𝑡]) := 𝑁 (𝑡) − 𝑁 (𝑠)),

𝑧
𝑀nas (𝑡 )
1 𝑧

𝑀 (𝑡 )
2 𝑧

𝑃 (𝑡 )
3 1{𝐼 (𝑡 )=𝑦,𝑁 (𝑡 )≤𝑛+1}

= 1{𝑁 (𝑡 )=0,𝐼 (𝑡 )=𝑦} +
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)>𝑡−𝑠}𝑧1

𝑧
𝑀nas ( (𝑠,𝑡 ],𝑡 ]
1 𝑧

𝑀 ( (𝑠,𝑡 ],𝑡 )
2 𝑧

𝑃 ( (𝑠,𝑡 ],𝑡 )
3 1{𝐼 (𝑡 )=𝑦,𝑁 ( (𝑠,𝑡 ] )≤𝑛}𝐴

(1)
𝑧,𝑤 (𝑑𝑠)

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1) ≤𝑡−𝑠,𝐷 (1)+𝐵(1)>𝑡−𝑠}𝑧2𝑧
𝑃 ({𝑠},𝑡 )
3

𝑧
𝑀nas ( (𝑠,𝑡 ],𝑡 )
1 𝑧

𝑀 ( (𝑠,𝑡 ],𝑡 )
2 𝑧

𝑃 ( (𝑠,𝑡 ],𝑡 )
3 1{𝐼 (𝑡 )=𝑦,𝑁 ( (𝑠,𝑡 ] )≤𝑛}𝐴

(1)
𝑧,𝑤 (𝑑𝑠)

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)+𝐵(1) ≤𝑡−𝑠}𝑧
𝑃 ({𝑠},𝑡 )
3

𝑧
𝑀nas ( (𝑠,𝑡 ],𝑡 )
1 𝑧

𝑀 ( (𝑠,𝑡 ],𝑡 )
2 𝑧

𝑃 ( (𝑠,𝑡 ],𝑡 )
3 1{𝐼 (𝑡 )=𝑦,𝑁 ( (𝑠,𝑡 ] )≤𝑛}𝐴

(1)
𝑧,𝑤 (𝑑𝑠).

Again, after taking expectations, applying Theorems 3.2 and 3.1, and rewriting the resulting equations
as a matrix equation, we get

Ĵ𝑛+1(𝑡, 𝑧1, 𝑧2) = eK0𝑡 +
∫ 𝑡

0
eK0𝑠ℎ(𝑡 − 𝑠, 𝑧1, 𝑧2)K1Ĵ𝑛 (𝑡 − 𝑠, 𝑧1, 𝑧2)𝑑𝑠

which establishes (7). □

It remains to prove Theorem 2.6.
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Proof of Theorem 2.6. Using (15) with 𝑓1(𝑘) = 𝑘𝑚1 , 𝑓2(𝑘) = 𝑘𝑚2 , and 𝑓3(𝑘) = 𝑘𝑛 gives

𝑀nas(𝑡)𝑚1𝑀 (𝑡)𝑚2𝑃(𝑡)𝑛1{𝐼 (𝑡 )=𝑦}

= 1{𝑚1=𝑚2=𝑛=0}1{𝑁 (𝑡 )=0,𝐼 (𝑡 )=𝑦}

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)>𝑡−𝑠} (1 + 𝑀nas((𝑠, 𝑡], 𝑡))𝑚1

𝑀 ((𝑠, 𝑡], 𝑡)𝑚2𝑃((𝑠, 𝑡], 𝑡)𝑛𝐴(1)
𝑧,𝑤 (𝑑𝑠)

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1) ≤𝑡−𝑠,𝐷 (1)+𝐵(1)>𝑡−𝑠}𝑀nas((𝑠, 𝑡], 𝑡)𝑚1

(1 + 𝑀 ((𝑠, 𝑡], 𝑡))𝑚2 (𝑃({𝑠}, 𝑡) + 𝑃((𝑠, 𝑡], 𝑡))𝑛𝐴(1)
𝑧,𝑤 (𝑑𝑠)

+
∑︁
𝑧,𝑤∈𝑆

∫
(0,𝑡 ]

1{𝑁 (𝑠−)=0,𝐼 (𝑠−)=𝑧}1{𝐷 (1)+𝐵(1) ≤𝑡−𝑠}𝑀nas((𝑠, 𝑡], 𝑡)𝑚1𝑀 ((𝑠, 𝑡], 𝑡)𝑚2

(𝑃({𝑠}, 𝑡) + 𝑃((𝑠, 𝑡], 𝑡))𝑛𝐴(1)
𝑧,𝑤 (𝑑𝑠).

After expanding the integrands with applications of the binomial theorem, taking expectations and
applying Theorems 3.2 and 3.1, we observe that for each 𝑥, 𝑦 ∈ 𝑆,

E𝑥 [𝑀nas(𝑡)𝑚1𝑀 (𝑡)𝑚2𝑃(𝑡)𝑛1{𝐼 (𝑡 )=𝑦}]
= P𝑥 (𝑁 (𝑡) = 0, 𝐼 (𝑡) = 𝑦)1{𝑚1=𝑚2=𝑛=0}

+
∑︁
𝑧,𝑤∈𝑆

∫ 𝑡

0
P𝑥

(
𝑁 (𝑠) = 0, 𝐼 (𝑠) = 𝑧

) 𝑚1∑︁
𝑗1=0

(
𝑚1
𝑗1

)
𝐸1(𝑡 − 𝑠)

× 𝑘1(𝑧, 𝑤)E𝑤
[
𝑀nas(𝑡 − 𝑠) 𝑗1𝑀 (𝑡 − 𝑠)𝑚2𝑃(𝑡 − 𝑠)𝑛1{𝐼 (𝑡−𝑠)=𝑦}

]
𝑑𝑠

+
∑︁
𝑧,𝑤∈𝑆

∫ 𝑡

0
P𝑥

(
𝑁 (𝑠) = 0, 𝐼 (𝑠) = 𝑧

) 𝑚2∑︁
𝑗2=0

𝑛∑︁
𝑘=0

(
𝑚2
𝑗2

) (
𝑛

𝑘

)
∗

[
1{𝐷0≤𝑡−𝑠,𝐷0+𝐵0>𝑡−𝑠}𝑃({0}, 𝑡 − 𝑠)𝑛−𝑘

]
× 𝑘1(𝑧, 𝑤)E𝑤

[
𝑀nas(𝑡 − 𝑠)𝑚1𝑀 (𝑡 − 𝑠) 𝑗2𝑃(𝑡 − 𝑠)𝑘1{𝐼 (𝑡−𝑠)=𝑦}

]
𝑑𝑠

+
∑︁
𝑧,𝑤∈𝑆

∫ 𝑡

0
P𝑥

(
𝑁 (𝑠) = 0, 𝐼 (𝑠) = 𝑧

) 𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
∗

[
1{𝐷0+𝐵0≤𝑡−𝑠}𝑃({0}, 𝑡 − 𝑠)𝑛−𝑘

]
× 𝑘1(𝑧, 𝑤)E𝑤

[
𝑀nas(𝑡 − 𝑠)𝑚1𝑀 (𝑡 − 𝑠)𝑚2𝑃(𝑡 − 𝑠)𝑘1{𝐼 (𝑡−𝑠)=𝑦}

]
𝑑𝑠.

In matrix form (and following a substitution 𝑢 = 𝑡 − 𝑠) this system can be expressed, after some
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algebra, as

C𝑚1,𝑚2,𝑛 (𝑡) = eK0𝑡

[
1{𝑚1=𝑚2=𝑛=0} +

𝑚1−1∑︁
𝑗1=0

(
𝑚1
𝑗1

) ∫ 𝑡

0
𝐸1(𝑠)e−K0𝑢K1C 𝑗1,𝑚2,𝑛 (𝑢)𝑑𝑢

+
𝑚2−1∑︁
𝑗2=0

𝑛∑︁
𝑘=0

(
𝑚2
𝑗2

) (
𝑛

𝑘

) ∫ 𝑡

0
𝑞1,𝑛−𝑘 (𝑢)e−K0𝑢K1C𝑚1, 𝑗2,𝑘 (𝑢)𝑑𝑢

+
𝑛−1∑︁
𝑘=0

(
𝑛

𝑘

) ∫ 𝑡

0
𝑞0,𝑛−𝑘 (𝑢)e−K0𝑢K1C𝑚1,𝑚2,𝑘 (𝑢)𝑑𝑢

+
∫ 𝑡

0
e−K0𝑢K1C𝑚1,𝑚2,𝑛 (𝑢)𝑑𝑢

]
where in our simplifications, we repeatedly make use of the following observation: for each integer
𝑛 ≥ 1, and each integer 𝑘 ∈ {0, 1, . . . , 𝑛 − 1},

∗
[
1{𝐷0≤𝑡−𝑠,𝐷0+𝐵0>𝑡−𝑠}𝑃({0}, 𝑡 − 𝑠)𝑛−𝑘

]
+ ∗

[
1{𝐷0+𝐵0≤𝑡−𝑠}𝑃({0}, 𝑡 − 𝑠)𝑛−𝑘

]
= ∗

[
1{𝐷0≤𝑡−𝑠}𝑃({0}, 𝑡 − 𝑠)𝑛−𝑘

]
= ∗

[
𝑃({0}, 𝑡 − 𝑠)𝑛−𝑘

]
= 𝑞0,𝑛−𝑘 (𝑡 − 𝑠)

because 1{𝐷0>𝑡−𝑠}𝑃({0}, 𝑡 − 𝑠)𝑛−𝑘 = 0 almost-surely under ∗.

The next step is to express C𝑚1,𝑚2,𝑛 (𝑡) in terms of the C 𝑗1, 𝑗2,𝑘 functions, for each ( 𝑗1, 𝑗2, 𝑘) satisfying
0 ≤ 𝑗1 ≤ 𝑚1, 0 ≤ 𝑗2 ≤ 𝑚2, 0 ≤ 𝑘 ≤ 𝑛, and 𝑗1 + 𝑗2 + 𝑘 < 𝑚1 + 𝑚2 + 𝑛,. In order to do this rigorously
we first assume that the distribution functions 𝐸1, 𝐸2, 𝐿1, and 𝐿2 are all continuous on [0,∞) (we will
remove this assumption at the end of the proof, via a standard limiting argument). Differentiating with
respect to 𝑡 yields

𝜕

𝜕𝑡
C𝑚1,𝑚2,𝑛 (𝑡) = (K0 + K1)C𝑚1,𝑚2,𝑛 (𝑡) + F(𝑡)

where F : [0,∞) → |𝑆 | × |𝑆 | is defined as

F(𝑡) :=
𝑚1−1∑︁
𝑗1=0

(
𝑚1
𝑗1

)
𝐸1(𝑡)K1C 𝑗1,𝑚2,𝑛 (𝑡) +

𝑚2−1∑︁
𝑗2=0

𝑛∑︁
𝑘=0

(
𝑚2
𝑗2

) (
𝑛

𝑘

)
𝑞1,𝑛−𝑘 (𝑡)K1C𝑚1, 𝑗2,𝑘 (𝑡)

+
𝑛−1∑︁
𝑘=0

(
𝑛

𝑘

)
𝑞0,𝑛−𝑘 (𝑡)K1C𝑚1,𝑚2,𝑘 (𝑡).

This matrix ODE can be solved using standard methods. Indeed, for each 𝑡 > 0,

e−(K0+K1 )𝑡 𝜕

𝜕𝑡
C𝑚1,𝑚2,𝑛 (𝑡) − e−(K0+K1 )𝑡 (K0 + K1)C𝑚1,𝑚2,𝑛 (𝑡) = e−(K0+K1 )𝑡F(𝑡).

Since eA𝑡A = AeA𝑡 we have by the product rule and the fundamental theorem of calculus, that for each
𝑡 > 0,

e−(K0+K1 )𝑡C𝑚1,𝑚2,𝑛 (𝑡) − I1{𝑚1=𝑚2=𝑛=0} =

∫ 𝑡

0
e−(K0+K1 )𝑠F(𝑠)𝑑𝑠
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i.e.

C𝑚1,𝑚2,𝑛 (𝑡) = e(K0+K1 )𝑡1{𝑚1=𝑚2=𝑛=0} +
∫ 𝑡

0
e(K0+K1 ) (𝑡−𝑠)F(𝑠)𝑑𝑠.

Replacing F(𝑠) with the expression it represents completes the derivation. Finally, to handle the case
where 𝐸1, 𝐸2, 𝐿1, and 𝐿2 are arbitrary, we can make use of the fact that each of these distribution
functions can be interpreted as the weak limit of a sequence of phase-type distributions: see e.g.
Chapter 3 of Kelly [35]. □

4 Models with Exponential mRNA lifetimes

In this section we further analyze the joint distribution of 𝐼 (𝑡) and 𝑀 (𝑡), when mRNA lifetimes
are exponentially distributed with rate 𝛿 and elongation times are equal to zero. In this setting
{(𝐼 (𝑡), 𝑀 (𝑡)), 𝑡 ≥ 0} is a continuous-time Markov chain.

For each real 𝑡 ≥ 0, each integer 𝑚 ≥ 0, and each 𝑧 ∈ 𝔻, define the matrices

J(𝑡, 𝑚) :=
∞∑︁
𝑚1=0

∞∑︁
𝑛=0

J(𝑡, 𝑚1, 𝑚, 𝑛) =
[
P𝑥 (𝑀 (𝑡) = 𝑚, 𝐼 (𝑡) = 𝑦)

]
𝑥,𝑦∈𝑆

and

Ĵ(𝑡, 𝑧) := Ĵ(𝑡, 1, 𝑧, 1) =
[
E𝑥 [𝑧𝑀 (𝑡 )

1{𝐼 (𝑡 )=𝑦}]
]
𝑥,𝑦∈𝑆 .

Instead of calculating the matrices J(𝑡, 𝑚) and Ĵ(𝑡, 𝑧) directly, we focus on calculating their Laplace
transforms. For each 𝛼 ∈ ℂ+ := {𝛼 ∈ ℂ : Re(𝛼) > 0} and each 𝑧 ∈ 𝔻, define the Laplace transform
matrix 𝚽(𝛼, 𝑧) as

𝚽(𝛼, 𝑧) = [Φ𝑥,𝑦 (𝛼)]𝑥,𝑦∈𝑆 =

∫ ∞

0
𝑒−𝛼𝑡 Ĵ(𝑡, 𝑧) 𝑑𝑡,

where the integration is performed element-wise. This matrix is well defined for all 𝛼 ∈ ℂ+. Next, for
each integer 𝑚 ≥ 0, define the matrix 𝚿𝑚(𝛼) (with integration performed element-wise) as

𝚿𝑚(𝛼) :=
∫ ∞

0
𝑒−𝛼𝑡J(𝑡, 𝑚) 𝑑𝑡.

This matrix is also well-defined for all 𝛼 ∈ ℂ+, and clearly

𝚽(𝛼, 𝑧) =
∞∑︁
𝑚=0

𝑧𝑚𝚿𝑚(𝛼).

Define the matrix L(𝛼) for each 𝛼 ∈ ℂ+ as

L(𝛼) := (𝛼I − K0 − K1)−1 .

This matrix is well-defined for each 𝛼 ∈ ℂ+, since K0 + K1 corresponds to the transition rate matrix
of a finite-state CTMC. Readers should also recall that for each 𝑥, 𝑦 ∈ 𝑆, the element found in row 𝑥,
column 𝑦 of L(𝛼), denoted [L(𝛼)]𝑥,𝑦 , satisfies

[L(𝛼)]𝑥,𝑦 =
∫ ∞

0
𝑒−𝛼𝑡P𝑥 (𝐼 (𝑡) = 𝑦)𝑑𝑡.
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Given 𝑗 ∈ ℤ+ and matrices A0,A1, . . . ,A 𝑗−1, define
∏ 𝑗−1
𝑖=0 A𝑖 to be the identity matrix if the product

is empty (i.e. if 𝑗 = 0) and otherwise

𝑛−1∏
𝑖=0

A𝑖 = A0A1 . . .A 𝑗−1.

We are now ready to state the main result of this section.

Proposition 4.1. For each 𝑧 ∈ 𝔻, and each 𝛼 ∈ ℂ+,

𝚽(𝛼, 𝑧) =
∞∑︁
𝑗=0

(𝑧 − 1) 𝑗
[
𝑗−1∏
𝑖=0

(L(𝛼 + 𝑖𝛿)K1)
]

L(𝛼 + 𝑗𝛿). (18)

As a consequence, for each integer 𝑚 ≥ 0,

𝚿𝑚(𝛼) =
∞∑︁
𝑗=0

(−1) 𝑗
(
𝑗 + 𝑚
𝑚

) [
𝑗+𝑚−1∏
𝑖=0

(L(𝛼 + 𝑖𝛿)K1)
]

L(𝛼 + 𝑚 + 𝑗𝛿). (19)

Proof. Firstly, note that when all elongation times are equal to zero, and the lifetime of each mRNA
molecule is exponentially distributed with rate 𝛿, we find that for each 𝑡 ≥ 0, and each 𝑧 ∈ ℂ+,

ℎ(𝑡, 𝑧) := ∗
[
𝑧1{𝐷0≤𝑡,𝐷0+𝐵0>𝑡}

]
= ℎ(𝑡, 1, 𝑧, 1) = 1 − 𝑒−𝛿𝑡 + 𝑧𝑒−𝛿𝑡 = 1 − (1 − 𝑧)𝑒−𝛿𝑡

and plugging this expression into (6) yields

𝜕

𝜕𝑡
Ĵ(𝑡, 𝑧) =

(
K0 + K1 − (1 − 𝑧)𝑒−𝛿𝑡K1

)
Ĵ(𝑡, 𝑧). (20)

Equation (20) can be solved using Laplace transforms: after multiplying both sides of (20) by 𝑒−𝛼𝑡 ,
then integrating with respect to 𝑡 over [0,∞) (with respect to Lebesgue measure) while remembering
the initial condition Ĵ(0, 𝑧) = I, we get

𝛼𝚽(𝛼, 𝑧) − I = (K0 + K1)𝚽(𝛼, 𝑧) − (1 − 𝑧)K1𝚽(𝛼 + 𝛿, 𝑧). (21)

Rearranging terms in (21) and multiplying both sides by L(𝛼) gives

𝚽(𝛼, 𝑧) = L(𝛼) − (1 − 𝑧)L(𝛼)K1𝚽(𝛼 + 𝛿, 𝑧). (22)

Repeated applications of (22) yield, for each integer 𝑛 ≥ 0,

𝚽(𝛼, 𝑧) =
𝑛∑︁
𝑗=0

(𝑧 − 1) 𝑗
[
𝑗−1∏
ℓ=0

(L(𝛼 + ℓ𝛿)K1)
]

L(𝛼 + 𝑗𝛿)

+ (𝑧 − 1)𝑛+1

[
𝑛∏
ℓ=0

(L(𝛼 + ℓ𝛿)K1)
]
𝚽(𝛼 + (𝑛 + 1)𝛿, 𝑧). (23)

In order to prove the first claim of the proposition, it suffices to show that as 𝑛→ ∞,

(𝑧 − 1)𝑛+1

[
𝑛∏
ℓ=0

(L(𝛼 + ℓ𝛿)K1)
]
𝚽(𝛼 + (𝑛 + 1)𝛿, 𝑧) → 0,
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where the above convergence is element-wise. Throughout the argument, for a given square matrix A,
let [A]𝑖, 𝑗 denote the element found in Row 𝑖, Column 𝑗 of A.

Set 𝐶 := max𝑖, 𝑗 | [K1]𝑖, 𝑗 |, and observe first that for each ℓ ≥ 1, and each 𝑖, 𝑗 ∈ {0, 1, 2, . . . , 𝑝},

| [L(𝛼 + ℓ𝛿)K1]𝑖, 𝑗 | =
����� 𝑝∑︁
𝑘=0

[L(𝛼 + ℓ𝛿)]𝑖,𝑘 [K1]𝑘, 𝑗

����� ≤ 𝑝∑︁
𝑘=0

| [L(𝛼 + ℓ𝛿)]𝑖,𝑘 | | [K1]𝑘, 𝑗 |

≤ 𝐶
𝑝∑︁
𝑘=0

| [L(𝛼 + ℓ𝛿)]𝑖,𝑘 | ≤ 𝐶
𝑝∑︁
𝑘=0

∫ ∞

0
𝑒−(Re(𝛼)+ℓ 𝛿 )𝑡

P𝑖 (𝐼 (𝑡) = 𝑘)𝑑𝑡

= 𝐶

∫ ∞

0
𝑒−(Re(𝛼)+ℓ 𝛿 )𝑑𝑡 =

𝐶

Re(𝛼) + ℓ𝛿 <
𝐶

ℓ𝛿
.

Having this observation in mind, observe next that for each ℓ1, ℓ2 ≥ 1,

| [L(𝛼 + ℓ1𝛿)K1L(𝛼 + ℓ2𝛿)K1]𝑖, 𝑗 | ≤
𝑝∑︁
𝑘=0

| [L(𝛼 + ℓ1𝛿)K1]𝑖,𝑘 | | [L(𝛼 + ℓ2𝛿)K1]𝑘, 𝑗 |

≤ 𝐶2

ℓ1ℓ2𝛿2

𝑝∑︁
𝑘=0

(1) < (𝑝 + 1)𝐶2

ℓ1ℓ2𝛿2 .

Using induction, it follows that for each 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑝},[
𝑛∏
ℓ=1

(L(𝛼 + ℓ𝛿)K1)
]
𝑖, 𝑗

≤ (𝑝 + 1)𝑛−1𝐶𝑛

𝛿𝑛𝑛!
→ 0

as 𝑛→ ∞. Letting 𝑛→ ∞ in (23) gives

𝚽(𝛼, 𝑧) =
∞∑︁
𝑗=0

(𝑧 − 1) 𝑗
[
𝑗−1∏
𝑖=0

(L(𝛼 + 𝑖𝛿)K1)
]

L(𝛼 + 𝑗𝛿), (24)

proving (18).

Finally, it follows from (18) that for each integer 𝑚 ≥ 0,

𝚿𝑚(𝛼) =
1
𝑚!

𝜕𝑚

𝜕𝑧𝑚
𝚽(𝛼, 𝑧)

��
𝑧=0 =

∞∑︁
𝑗=0

(−1) 𝑗
(
𝑗 + 𝑚
𝑚

) [
𝑗+𝑚−1∏
𝑖=0

(L(𝛼 + 𝑖𝛿)K1)
]

L(𝛼 + 𝑚 + 𝑗𝛿) (25)

which yields (19), thus proving Proposition 4.1. □

It is also easy to use Theorem 2.6 to derive a simple matrix recursion for the Laplace transform
of the moments of mRNA molecules, when their elongation times are zero and their lifetimes are
exponentially distributed with rate 𝛾. For each integer 𝑚 ≥ 0, define

M𝑚(𝛼) :=
∫ ∞

0
𝑒−𝛼𝑡C0,𝑚,0(𝑡)𝑑𝑡.

Since (as in Theorem 2.6) C0,0,0(𝑡) = P𝑥 (𝐼 (𝑡) = 𝑦) = 𝑒 (K0+K1 )𝑡 we have

M0(𝛼) =
∫ ∞

0
𝑒−𝛼𝑡𝑒 (K0+K1 )𝑡𝑑𝑡 = L(𝛼).

The following can be derived in a straightforward manner from Theorem 2.6.
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Proposition 4.2. For each integer 𝑚 ≥ 0,

M𝑚+1(𝛼) =
𝑚∑︁
𝑗=0

(
𝑚 + 1
𝑗

)
L(𝛼)K1M 𝑗 (𝛼 + 𝛿).

We could have also used Proposition 4.1 to derive these (Laplace transforms of) moment matrices
by taking derivatives with respect to 𝑧 and setting 𝑧 = 1, but this procedure would have given us
factorial moment matrices instead of the moment matrices we actually wish to study. It is well-known
that the moment matrices can be expressed in terms of the factorial moment matrices, but we suspect
the recursion from Proposition 4.2 is easier to use.

Remark 4.1. We can use Proposition 4.1 to analyze the equilibrium joint distribution of the state
of the gene and the mRNA level. Let (𝐼 (∞), 𝑀 (∞)) denote a random vector whose law corre-
sponds to the weak limit of the positive recurrent Markov chain (𝐼 (𝑡), 𝑀 (𝑡)) as 𝑡 → ∞. Writing
J(𝑚) :=

[
P𝑥 (𝑀 (∞) = 𝑚, 𝐼 (∞) = 𝑦)

]
𝑥,𝑦∈𝑆 and Ĵ(𝑧) := Ĵ(𝑧, 1) =

[
E𝑥 [𝑧𝑀 (∞)

1{𝐼 (∞)=𝑦}]
]
𝑥,𝑦∈𝑆 for

the stationary limits and applying (24) at 𝛼 = 𝛿 we obtain

Ĵ(𝑧) = lim
𝛼→0

𝛼𝚽(𝛼) = lim
𝛼→0

𝛼L(𝛼) · (I − (1 − 𝑧)K1𝚽(𝛿))

= Ĵ(1) ©­«I +
∞∑︁
𝑗=1

(𝑧 − 1) 𝑗K1

[
𝑗−1∏
𝑖=1

(L(𝑖𝛿)K1)
]
L( 𝑗𝛿)ª®¬ . (26)

where Ĵ(1) = lim𝛼→0 𝛼L(𝛼) = [P𝑥 (𝐼 (∞) = 𝑦)]𝑥,𝑦∈𝑆 is the matrix consisting of 𝑛 equal rows
representing the stationary distribution of 𝐼.

Formula (18) simplifies considerably when K1 is of rank one (i.e. when there exist two column
vectors v, w satisfying K1 = vw⊤). In many cases this simplification leads to expressions in terms of
generalized hypergeometric functions.

Definition 4.1. The generalized hypergeometric function 𝑚𝐹𝑛 associated with the complex numbers
𝑎1, 𝑎2, . . . , 𝑎𝑚, 𝑏1, 𝑏2, . . . , 𝑏𝑛, is a power series that is defined as follows:

𝑚𝐹𝑛 (𝑎1, . . . , 𝑎𝑚; 𝑏1, . . . , 𝑏𝑛; 𝑧) :=
∞∑︁
𝑘=0

[ ∏𝑚
ℓ=1(𝑎ℓ) (𝑘 )∏𝑛
ℓ′=1(𝑏ℓ′) (𝑘 )

]
𝑧𝑘

𝑘!

where for each 𝑥 ∈ ℂ, (𝑥) (0) := 1, and (𝑥) (𝑘 ) := 𝑥(𝑥 + 1) · · · (𝑥 + (𝑘 − 1)) for each integer 𝑘 ≥ 1.

Generalized hypergeometric functions are defined and discussed in Graham et al. [17].

Theorem 4.2. Suppose K1 ∈ ℝ𝑝+1×𝑝+1 is of the form K1 = vw⊤, where v,w ∈ ℝ𝑝+1. Then

𝚽(𝛼, 𝑧) = L(𝛼) + L(𝛼)v
∞∑︁
𝑗=1

(𝑧 − 1) 𝑗𝑏 𝑗 (𝛼)w⊤L(𝛼 + 𝑗𝛿), (27)

where 𝑏 𝑗 (𝛼) =
∏ 𝑗−1
𝑖=1 tr(L(𝛼 + 𝑖𝛿)K1) and tr(·) denotes the trace function.

Proof. Let B ∈ ℝ𝑝+1×𝑝+1 be arbitrary. Writing w = (𝑤0, . . . , 𝑤𝑝)⊤, v = (𝑣0, . . . , 𝑣𝑝)⊤, it is clear that
the element found in Row 𝑖, Column 𝑗 of vw⊤ is 𝑣𝑖𝑤 𝑗 . Since

tr(BK1) =
𝑝∑︁
𝑖=0

𝑝∑︁
ℓ=0

𝑏𝑖,ℓ𝑣ℓ𝑤𝑖 =

𝑝∑︁
𝑖=0

𝑤𝑖

𝑝∑︁
ℓ=0

𝑏𝑖,ℓ𝑣ℓ = w⊤Bv
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we get

K1BK1 = v(w⊤Bv)w⊤ = (w⊤Bv)vw⊤ = (w⊤Bv)K1 = tr(BK1)K1

which in turn implies, for each 𝑗 ≥ 1,

𝑗−1∏
𝑖=0

(L(𝛼 + 𝑖𝛿)K1) =
(
𝑗−1∏
𝑖=1

tr(L(𝛼 + 𝑖𝛿)K1))
)

L(𝛼)K1.

Formula (27) then follows from (24). □

4.1 A Two-State Environment

In our next corollary, we study the joint distribution of the state of the gene and the number of mRNA
molecules present at time 𝑡, for the case where the matrix K1 = vw⊤. This model is a generalization of
the telegraph model of Peccoud and Ycart [41]. Note that the time-dependent behavior of the telegraph
model was addressed in Iyer-Biswas et al. [25].

Corollary 4.1. Suppose that

K0 =

(
−𝜆 − 𝑐(𝜌 + 𝜏) 𝜆

𝜇 −𝜇 − 𝑑 (𝜌 + 𝜏)

)
, K1 =

(
𝑐𝜌 𝑐𝜏

𝑑𝜌 𝑑𝜏

)
,

for 𝜆, 𝜇, 𝑐, 𝑑, 𝜌, 𝜏 ∈ [0,∞). Then

𝚽(𝛼, 𝑧) = 1
𝛼(𝛼 + 𝜆 + 𝜇 + 𝑑𝜌 + 𝑐𝜏)

[ (
𝛼 + 𝜇 + 𝑑𝜌 𝜆 + 𝑐𝜏
𝜇 + 𝑑𝜌 𝛼 + 𝜆 + 𝑐𝜏

)
+

× 1
𝛼(𝑐𝜌 + 𝑑𝜏) + (𝜌 + 𝜏) (𝑐𝜇 + 𝑑 (𝜆 + 𝑐(𝜌 + 𝜏))

×
∞∑︁
𝑗=1

(
(𝑧 − 1) 𝑗

∏ 𝑗−1
𝑖=0 (𝛼(𝑐𝜌 + 𝑑𝜏) + 𝑖𝛿(𝑐𝜌 + 𝑑𝜏) + (𝜌 + 𝜏) (𝑐𝜇 + 𝑑 (𝜆 + 𝑐(𝜌 + 𝜏)))∏ 𝑗−1

𝑖=0 (𝛼 + 𝛿 + 𝑖𝛿)∏ 𝑗−1
𝑖=0 (𝛼 + 𝛿 + 𝜆 + 𝜇 + 𝑑𝜌 + 𝑐𝜏 + 𝑖𝛿)

×
(
𝑑𝜆 + 𝑐(𝛼 + 𝜇 + 𝑑 (𝜌 + 𝜏))
𝑐𝜇 + 𝑑 (𝛼 + 𝜆 + 𝑐(𝜌 + 𝜏))

) (
(𝛼 + 𝑗𝛿)𝜌 + (𝜇 + 𝑑𝜌) (𝜌 + 𝜏)
(𝛼 + 𝑗𝛿)𝜏 + (𝜆 + 𝑐𝜏) (𝜌 + 𝜏)

)⊤
)]
. (28)

Proof. We have the situation of Theorem 4.2 with K1 = vw⊤, v = (𝑐, 𝑑)⊤ and w⊤ = (𝜌, 𝜏). In this case

L(𝛼) = 1
𝐶 (𝛼)

(
𝛼 + 𝜇 + 𝑑𝜌 𝜆 + 𝑐𝜏
𝜇 + 𝑑𝜌 𝛼 + 𝜆 + 𝑐𝜏

)
where 𝐶 (𝛼) = 𝛼(𝛼 + 𝜆 + 𝜇 + 𝑑𝜌 + 𝑐𝜏). Since

L(𝛼)K1 =
1

𝐶 (𝛼)

(
𝜌(𝑑𝜆 + 𝑐(𝛼 + 𝜇 + 𝑑 (𝜌 + 𝜏))) 𝜏(𝑑𝜆 + 𝑐(𝛼 + 𝜇 + 𝑑 (𝜌 + 𝜏)))
𝜌(𝑐𝜇 + 𝑑 (𝛼 + 𝜆 + 𝑐(𝜌 + 𝜏))) 𝜏(𝑐𝜇 + 𝑑 (𝛼 + 𝜆 + 𝑐(𝜌 + 𝜏)))

)
it follows that

tr(L(𝛼)K1) =
𝛼(𝑐𝜌 + 𝑑𝜏) + (𝜌 + 𝜏) (𝑐𝜇 + 𝑑 (𝜆 + 𝑐(𝜌 + 𝜏))

𝛼(𝛼 + 𝜆 + 𝜇 + 𝑑𝜌 + 𝑐𝜏) .
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Moreover

L(𝛼)v =
1

𝐶 (𝛼)

(
𝑑𝜆 + 𝑐(𝛼 + 𝜇 + 𝑑 (𝜌 + 𝜏))
𝑐𝜇 + 𝑑 (𝛼 + 𝜆 + 𝑐(𝜌 + 𝜏))

)
, w⊤L(𝛼) =

1
𝐶 (𝛼)

(
𝛼𝜌 + (𝜇 + 𝑑𝜌) (𝜌 + 𝜏)
𝛼𝜏 + (𝜌 + 𝜏) (𝜆 + 𝑐𝜏)

)⊤

.

Then (28) follows from (27) after some simplifications. □

Example 4.3 (Extended Telegraph Model). Consider the following extension of the telegraph model.
The gene switches from inactive to active with rate 𝜆+𝜆∗. Here 𝜆 is associated with simple transitions of
𝐼 (𝑡) whereas 𝜆∗ is the rate at which a transition to the active state happens together with a simultaneous
production of an mRNA. As in the telegraph model (where 𝜆∗ = 0), in the active state mRNAs are
produced with rate 𝐾𝐴. We thus obtain the matrices

K0 =

(
−(𝜆 + 𝜆∗) 𝜆

𝜇 −(𝜇 + 𝐾𝐴)

)
, K1 =

(
0 𝜆∗
0 𝐾𝐴

)
. (29)

In terms of the above corollary 𝑐 = 𝜆∗/𝐾𝐴, 𝑑 = 1, 𝜌 = 0 and 𝜏 = 𝐾𝐴, so that after some calculations
we obtain from (28)

𝚽(𝛼, 𝑧) = 1
𝛼 + 𝛽

(
1 −𝑐
0 0

)
+ 1
𝛼(𝛼 + 𝜇 + 𝜆 + 𝜆∗)

×
∞∑︁
𝑗=0

(
(𝐾𝐴(𝑧 − 1)) 𝑗 ∏ 𝑗−1

𝑖=0 (𝛼 + 𝛽 + 𝑖𝛿)∏ 𝑗

𝑖=1(𝛼 + 𝑖𝛿)∏ 𝑗

𝑖=1(𝛼 + 𝜇 + 𝜆 + 𝜆∗ + 𝑖𝛿)

(
𝑐𝛼+𝛽
𝛼+𝛽
1

) (
𝜇

𝛼 + 𝑗𝛿 + 𝜆 + 𝜆∗

)⊤
)

where we used the abbreviation 𝛽 = 𝜆 + 𝜆∗ + 𝜆∗𝜇/𝐾𝐴. We can express the components of the matrix
𝚽(𝛼, 𝑧) in terms of generalized hypergeometric functions. Letting

𝐻0(𝛼, 𝑧) =
1

𝛼(𝛼 + 𝜆 + 𝜇 + 𝜆∗) 2𝐹2

(
1, 𝛼+𝛽

𝛿
; 1 + 𝛼

𝛿
, 1 + 𝛼+𝜆+𝜆∗+𝜇

𝛿
; 𝐾𝐴 (𝑧−1)

𝛿

)
,

𝐻1(𝛼, 𝑧) =
1

𝛼(𝛼 + 𝜆 + 𝜇 + 𝜆∗) 2𝐹2

(
1, 1 + 𝛼+𝛽

𝛿
; 1 + 𝛼

𝛿
, 1 + 𝛼+𝜆+𝜆∗+𝜇

𝛿
; 𝐾𝐴 (𝑧−1)

𝛿

)
,

the entries Φ𝑥,𝑦 of 𝚽 are linear combinations of 𝐻0 and 𝐻1:

Φ0,0(𝛼, 𝑧) =
1

𝛼 + 𝛽 + 𝜇(𝑐𝛼 + 𝛽)
𝛼 + 𝛽 𝐻0(𝛼, 𝑧),

Φ0,1(𝛼, 𝑧) = − 𝑐

𝛼 + 𝛽 + (𝑐𝛼 + 𝛽) 𝐻1(𝛼, 𝑧) − 𝜇𝑐
𝑐𝛼 + 𝛽
𝛼 + 𝛽 𝐻0(𝛼, 𝑧),

Φ1,0(𝛼, 𝑧) = 𝜇𝐻0(𝛼, 𝑧),
Φ1,1(𝛼, 𝑧) = (𝛼 + 𝛽)𝐻1(𝛼, 𝑧) − 𝜇𝑐𝐻0(𝛼, 𝑧).

Since 𝜕
𝜕𝑧 2𝐹2(𝑎1, 𝑎2; 𝑏1, 𝑏2; 𝑧) =

𝑎1𝑎2
𝑏1𝑏2 2𝐹2(𝑎1 + 1, 𝑎2 + 1; 𝑏1 + 1, 𝑏2 + 1; 𝑧), higher derivatives of the

generalized hypergeometric function are given by

𝜕𝑛

𝜕𝑧𝑛
2𝐹2

(
𝑎1, 𝑎2; 𝑏1, 𝑏2; 𝑧

)
=

(𝑎1)𝑛 (𝑎2)𝑛
(𝑏1)𝑛 (𝑏2)𝑛 2𝐹2

(
𝑎1 + 𝑛, 𝑎2 + 𝑛; 𝑏1 + 𝑛, 𝑏2 + 𝑛; 𝑧

)
.

With this the calculation of the transient probability transform matrix 𝚿𝑛 (𝛼) is straightforward.
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Letting 𝛼 → 0 in 𝛼𝚽(𝛼, 𝑧) we obtain the stationary probabilities in terms of confluent hypergeo-
metric functions of the first kind,

E[𝑧𝑀 (∞)
1{𝐼 (∞)=0}] =

𝜇

𝜆 + 𝜇 + 𝜆∗ 1𝐹1

(
𝛽

𝛿
; 1 + 𝜆+𝜆∗+𝜇

𝛿
; 𝐾𝐴 (𝑧−1)

𝛿

)
,

E[𝑧𝑀 (∞)
1{𝐼 (∞)=1}] =

1
𝜆 + 𝜇 + 𝜆∗

(
𝛽 1𝐹1

(
1 + 𝛽

𝛿
; 1 + 𝜆+𝜆∗+𝜇

𝛿
; 𝐾𝐴 (𝑧−1)

𝛿

)
− 𝜇𝑐 1𝐹1

(
𝛽

𝛿
; 1 + 𝜆+𝜆∗+𝜇

𝛿
; 𝐾𝐴 (𝑧−1)

𝛿

))
.

In particular, as is obvious from the setting anyway, P(𝐼 (∞) = 0) = 𝜇/(𝜇 + 𝜆 + 𝜆∗) and P(𝐼 (∞) =
0) = (𝜆 + 𝜆∗)/(𝜇 + 𝜆 + 𝜆∗).

4.2 A Three-State Example

We now revisit Example 2.2, which corresponds to the model analyzed in Cao et al. [10]. In our
context, the current state of the gene and the creation of mRNA molecules are governed by a MAP
with matrices

K0 =
©­­«
−𝑎1 𝑎1 0
𝑎0 −(𝑎0 + 𝑎2) 𝑎2
𝑎0 0 −(𝑎0 + 𝜌)

ª®®¬ , K1 =
©­­«
0 0 0
0 0 0
0 𝜌 0

ª®®¬ .
Clearly K1 satisfies K1 = vw⊤ where v = (0, 0, 1)⊤ and w⊤ = (0, 𝜌, 0). Letting 𝐶 (𝛼) = 𝛼(𝑎0 + 𝑎1 +
𝛼) (𝑎0 + 𝑎2 + 𝛼 + 𝜌), we obtain

L(𝛼) = 1
𝐶 (𝛼)

©­­«
(𝑎0 + 𝛼) (𝑎0 + 𝑎2 + 𝛼 + 𝜌) 𝑎1(𝑎0 + 𝛼 + 𝜌) 𝑎1𝑎2
𝑎0(𝑎0 + 𝑎2 + 𝛼 + 𝜌) (𝑎1 + 𝛼) (𝑎0 + 𝛼 + 𝜌) 𝑎2(𝑎1 + 𝛼)
𝑎0(𝑎0 + 𝑎2 + 𝛼 + 𝜌) 𝑎0𝑎1 + (𝑎1 + 𝛼)𝜌 𝑎0𝛼 + (𝑎1 + 𝛼) (𝑎2 + 𝛼)

ª®®¬
L(𝛼)v =

1
𝐶 (𝛼)

©­­«
𝑎1𝑎2

𝑎2(𝑎1 + 𝛼)
𝑎0𝛼 + (𝑎1 + 𝛼) (𝑎2 + 𝛼)

ª®®¬
w⊤L(𝛼) = 𝜌

𝐶 (𝛼)

(
𝑎0(𝑎0 + 𝑎2 + 𝛼 + 𝜌), (𝑎1 + 𝛼) (𝑎0 + 𝛼 + 𝜌), 𝑎2(𝑎1 + 𝛼)

)
.

Since tr(L(𝛼)K1) = 𝑎2 (𝑎1+𝛼)𝜌
𝐶 (𝛼) it follows that

𝑏 𝑗 (𝛼) =
𝑗−1∏
𝑖=1

tr(L(𝛼 + 𝑖𝛿)K1) = (𝜌𝑎2) 𝑗−1
𝑗−1∏
𝑖=1

𝑎1 + 𝛼 + 𝑖𝛿
𝐶 (𝛼 + 𝑖𝛿) .

By (27) we then obtain

𝚽(𝛼, 𝑧) = L(𝛼) + 1
(𝑎1 + 𝛼)𝐶 (𝛼)

©­­«
𝑎1𝑎2

𝑎2(𝑎1 + 𝛼)
𝑎0𝛼 + (𝑎1 + 𝛼) (𝑎2 + 𝛼)

ª®®¬
×

∞∑︁
𝑗=1

(𝜌𝑎2(𝑧 − 1)) 𝑗 ∏ 𝑗−1
𝑖=0 (𝑎1 + 𝛼 + 𝑖𝛿)∏ 𝑗−1

𝑖=0 𝐶 (𝛼 + 𝛿 + 𝑖𝛿)

©­­«
𝑎0(𝑎0 + 𝑎2 + 𝛼 + 𝑗𝛿 + 𝜌)

(𝑎1 + 𝛼 + 𝑗𝛿) (𝑎0 + 𝛼 + 𝑗𝛿 + 𝜌)
𝑎2(𝑎1 + 𝛼 + 𝑗𝛿)

ª®®¬
⊤

.
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From this expression one can calculate the elements of 𝚽 and express them in terms of hypergeometric
functions. For example Φ0,2 becomes

Φ0,2(𝛼, 𝑧) =
𝑎1𝑎2
𝐶 (𝛼) +

𝑎1𝑎2
(𝑎1 + 𝛼)𝐶 (𝛼)

∞∑︁
𝑗=1

(𝜌𝑎2(𝑧 − 1)) 𝑗 ∏ 𝑗−1
𝑖=0 (𝑎1 + 𝛼 + 𝑖𝛿)∏ 𝑗−1

𝑖=0 𝐶 (𝛼 + 𝛿 + 𝑖𝛿)
(𝑎1 + 𝛼 + 𝑗𝛿)

=
𝑎1𝑎2
𝐶 (𝛼)

©­«1 +
∞∑︁
𝑗=1

(𝜌𝑎2(𝑧 − 1)) 𝑗
𝑗!

∏ 𝑗−1
𝑖=0 (1 + 𝑖)∏ 𝑗−1

𝑖=0 (1 + 𝑎1+𝛼
𝛿

+ 𝑖)∏ 𝑗−1
𝑖=0 𝐶 (𝛼 + 𝛿 + 𝑖𝛿)

ª®¬
=
𝑎1𝑎2
𝐶 (𝛼) 2𝐹3

(
1, 1 + 𝑎1 + 𝛼

𝛿
; 1 + 𝛼

𝛿
, 1 + 𝛼 + 𝑎0 + 𝑎1

𝛿
, 1 + 𝛼 + 𝑎0 + 𝑎2 + 𝜌

𝛿
,
𝜌𝑎2(𝑧 − 1)

𝛿2

)
.

4.3 The Off/On/Seq-L model of De Gunst et al.

Recently, in De Gunst et al. [18] the authors introduce an interesting modification of the telegraph
model. In their model, the gene alternates being active and inactive, but each time an mRNA molecule
is conceived, it is a nascent mRNA molecule for an amount of time that is hypoexponentially distributed
(the distribution of a sum of independent exponentially distributed random variables, where the rates
among the sum may be distinct). Furthermore, in their model it is impossible for there to be more
than one nascent mRNA molecule present in the system at any time, which basically means no other
mRNA molecules can be conceived while a nascent mRNA molecule is present. Finally, as soon as
the nascent mRNA molecule becomes a mature mRNA molecule, the gene resumes operating in the
active state. The authors of [18] approach the problem by observing that if you keep track of both the
state of the gene, and the number of mature mRNA molecules present in the cell at time 𝑡, you can
model this system as a level-dependent Quasi-Birth-Death (QBD) process.

The Off/On/Seq-𝐿 model falls within our framework if we set all elongation times in our model equal
to zero, while simultaneously incorporating the hypoexponential elongation times into the state space
of the gene (i.e. the MAP). This is possible because in this model, no more than one nascent mRNA
molecule can exist. All mRNA lifetimes are exponentially distributed with rate 𝜇, independently of
everything else.

If we put the On/Off/Seq-L model in our context, we let the state space of the MAP be 𝑆 =

{0, 1, 2, , . . . , 𝐿}, and define

K0 =

©­­­­­­­­­­­­«

−𝑞0 𝑞0 0 0 0 · · · 0
𝑞1 −(𝑞1 + 𝜆1) 𝜆1 0 0 0 0
0 0 −𝜆2 𝜆2 0 0 0

0 0 0 −𝜆3 𝜆3
. . . 0

0 0 0 0 −𝜆4
. . . 0

...
...

...
. . .

. . .
. . .

. . .

0 0 0 0 0 0 −𝜆𝐿

ª®®®®®®®®®®®®¬
, K1 =

©­­­­«
0 0 0 0 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · 0
0 𝜆𝐿 0 0 · · · 0

ª®®®®¬
.

Again, K1 is a matrix having rank one and we can express K1 as K1 = vw⊤, where

v = (0, 0, . . . , 1)⊤, w = (0, 𝜆𝐿 , 0, . . . , 0)⊤.

It follows that L(𝛼)v = ((L(𝛼))0,𝐿 , . . . , (L(𝛼))𝐿,𝐿)⊤ and w⊤L(𝛼) = 𝜆𝐿 ((L(𝛼))1,0, . . . , (L(𝛼))1,𝐿).
Furthermore, tr(L(𝛼)K1) = 𝜆𝐿 (L(𝛼))1,𝐿 . The Laplace transform matrix L(𝛼) is very tractable for
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this model. Indeed,

[L(𝛼)]1,1 =

[
𝛼

(
1 + 𝑞1

𝑞0 + 𝛼

)
+ 𝜆1

(
1 −

𝐿∏
ℓ=2

𝜆ℓ

𝜆ℓ + 𝛼

)]−1

, [L(𝛼)]1,0 =
𝑞1

𝑞0 + 𝛼
[L(𝛼)]1,1

and for 2 ≤ 𝑦 ≤ 𝐿,

[L(𝛼)]1,𝑦 =
𝜆1

𝜆𝑦 + 𝛼

𝑦−1∏
ℓ=2

𝜆ℓ

𝜆ℓ + 𝛼
[L(𝛼)]1,1.

Finally,

[L(𝛼)]0,𝐿 =
𝑞0

𝑞0 + 𝛼
𝜆1

𝜆𝐿 + 𝛼

𝐿−1∏
ℓ=2

𝜆ℓ

𝜆ℓ + 𝛼
[L(𝛼)]1,1

and for 2 ≤ 𝑥 ≤ 𝐿,

[L(𝛼)]𝑥,𝐿 =

𝜆1 + 𝛼
(
1 + 𝑞1

𝑞0+𝛼

)
𝜆𝐿 + 𝛼

𝐿−1∏
ℓ=𝑥

𝜆ℓ

𝜆ℓ + 𝛼
[L(𝛼)]1,1.

These formulas can be used to write down a series representation for each element of 𝚽(𝛼, 𝑧):

𝚽(𝛼, 𝑧) =
∞∑︁
𝑗=0

(𝑧 − 1) 𝑗
(
𝑗−1∏
𝑖=0

L(𝛼 + 𝑖𝛿)K1

)
L(𝛼 + 𝑗𝛿)

= L(𝛼) +
∞∑︁
𝑗=1

(𝑧 − 1) 𝑗
(
𝑗−1∏
𝑖=1

tr(L(𝛼 + 𝑖𝛿)K1)
)

L(𝛼)K1L(𝛼 + 𝑗𝛿)

which implies

[𝚽(𝛼, 𝑧)]𝑥,𝑦 = [L(𝛼)]𝑥,𝑦 + [L(𝛼)]𝑥,𝐿
∞∑︁
𝑗=1

(𝑧 − 1) 𝑗𝜆 𝑗
𝐿

(
𝑗−1∏
𝑖=1

[L(𝛼 + 𝑖𝛿)]1,𝐿

)
[L(𝛼 + 𝑗𝛿)]1,𝑦 .

Hence,

[𝚿0(𝛼)]𝑥,𝑦 = [L(𝛼)]𝑥,𝑦 + [L(𝛼)]𝑥,𝐿
∞∑︁
𝑗=1

(−1) 𝑗𝜆 𝑗
𝐿

(
𝑗−1∏
𝑖=1

[L(𝛼 + 𝑖𝛿)]1,𝐿

)
[L(𝛼 + 𝑗𝛿)]1,𝑦

and for each integer 𝑚 ≥ 1,

[𝚿𝑚(𝛼)]𝑥,𝑦 = [L(𝛼)]𝑥,𝐿
∞∑︁
𝑘=0

(
𝑘 + 𝑚
𝑚

)
(−1)𝑘𝜆𝑘+𝑚𝐿

(
𝑘+𝑚−1∏
𝑖=1

[L(𝛼 + 𝑖𝛿)]1,𝐿

)
[L(𝛼 + (𝑘 + 𝑚)𝛿)]1,𝑦 .

Multiplying both sides by 𝛼, then letting 𝛼 ↓ 0 yields

lim
𝑡→∞

ℙ𝑥 (𝐼 (𝑡) = 𝑦, 𝑀 (𝑡) = 0) = 𝑝(𝑦) + 𝑝(𝐿)
∞∑︁
𝑗=1

(−1) 𝑗𝜆 𝑗
𝐿

(
𝑗−1∏
𝑖=1

[L(𝑖𝛿)]1,𝐿

)
[L( 𝑗𝛿)]1,𝑦 (30)
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and for each integer 𝑚 ≥ 1,

lim
𝑡→∞

ℙ𝑥 (𝐼 (𝑡) = 𝑦, 𝑀 (𝑡) = 𝑚) = 𝑝(𝐿)
∞∑︁
𝑘=0

(
𝑘 + 𝑚
𝑚

)
(−1)𝑘𝜆𝑘+𝑚𝐿

(
𝑘+𝑚−1∏
𝑖=1

[L(𝑖𝛿)]1,𝐿

)
[L((𝑘 + 𝑚)𝛿)]1,𝑦 .

(31)

In these expressions 𝑝(𝑦) = P(𝐼 (∞) = 𝑦) denotes the stationary distribution (in particular this does
not depend on 𝑥) for the process {𝐼 (𝑡); 𝑡 ≥ 0}, which is given by

𝑝(1) = 𝑞0

𝑞1 + 𝑞0
∑𝐿
𝑦=1

𝜆1
𝜆𝑦

, 𝑝(𝑦) =

𝑞1
𝑞0
𝑝(1) ; 𝑦 = 0

𝜆1
𝜆𝑦
𝑝(1) ; 𝑦 ∈ {2, 3, . . . , 𝐿}

. (32)

4.4 Simulation and numerical results for the Off/On/Seq-L model

In this section we chose the parameters for the Off/On/Seq-L model to be

𝑞0 = 0.7, 𝑞1 = 1.1, 𝜆1 = 1.2, 𝜆2 = 1.6, 𝜆3 = 3.5, 𝛾1 = 0.1 (33)

unless otherwise indicated. We chose these parameters in an admittedly arbitrary manner, in order to
generate an interesting distribution of the number of mRNA molecules both at each finite time, and in
equilibrium. We also assume throughout that 𝐼 (0) = 0.

Using (33) we calculated the stationary probabilities P(𝑀 (∞) = 𝑚) and compared them with
simulation runs. As shown in Fig.1,(a) and (b), the numerical results coincide well with simulated
values. For the parameters chosen a Poisson distribution with mean E[𝑀 (∞)] also fits quite well.
Figure (c) shows the simulated values for P0(𝑀 (𝑡) = 𝑚) for different values of 𝑡.

Fig. 1: (a) The stationary probabilitiesP(𝑀 (∞) = 𝑚) for 𝑚 = 0, 1, 2, . . . , 12, calculated numerically
from (30) and (31) and derived from a simulation with one million samples (with simulation stopped
at time 𝑡 = 500). Additionally the same probabilities are calculated for a Poisson distribution with
mean E[𝑀 (∞)] ≈ 3.275. (b) as before but showing the difference w.r.t. the numerical solution. (c)
Probabilities P𝑥 (𝑀 (𝑡) = 𝑚) for 𝑚 = 0, 1, 2, . . . , 12 at different times 𝑡, obtained from a simulation
with 100 000 samples.

Figure 2 compares the stationary distribution for the number of mRNAs for different mRNA lifetime
distributions. We performed a simulation with time horizon 𝑡 = 100 and 100 000 samples with
exponential lifetimes, Bernoulli lifetimes and deterministic lifetimes (all with the same mean). For the
parameters chosen the three lifetime distributions lead to almost identical limit distributions for 𝑀 (𝑡).
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Fig. 2: (a) Simulated distribution of 𝑀 (𝑡), 𝑡 = 100 with 100 000 samples. Different lifetime distri-
butions for the mRNAs with mean 10: exponential distribution with parameter 𝛾1 = 0.1, Bernoulli
distribution withP(𝐵 (1) = 1) = P(𝐵 (1) = 19) = 0.5, deterministic lifetime: P(𝐵 (1) = 10) = 1. (b) as
in (a) but now differences w.r.t. the exponential case.

To show the sensitivity of the limiting distribution of the number of mRNA to changes in parameters,
we varied one parameter with the others held fixed (with values as in (33)). Figure 3 shows how the
probabilities P(𝑀 (∞) = 𝑚), the mean E[𝑀 (∞)] and the variance Var(𝑀 (∞)) differ for varying 𝑞0,
𝑞1 and 𝛾1.

Fig. 3: Top row: Stationary probabilitiesP(𝑀 (∞) = 𝑚) for𝑚 = 0, 1, 2, . . . , 12 as obtained from (30)
and (31). Bottom row: Expected values and variances for 𝑀 (∞) calculated from the probabilities.
The parameter 𝑞0 is varied in (a), (d); 𝑞1 in (b), (e); 𝛾1 in (c), (f).

We observe from Figure 3 (d) that as 𝑞0 increases, while the other values within (33) remain fixed,
the law of 𝑀 (∞) becomes ‘less-and-less’ Poisson. If we now reset the value of 𝑞0 to be 𝑞0 = 0.7, the
distribution of 𝑀 (∞) appears to be almost Poisson. In the interest of seeing what happens to the law
of 𝑀 (𝑡) for each finite 𝑡, we used Theorem 2.6 to approximate the mean, variance, and Fano factor
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(ratio of variance to mean) of 𝑀 (𝑡). The resulting curves, sketched over the set 0 < 𝑡 < 100, are given
below: these were generated while assuming 𝐼 (0) = 0 with probability one.

Fig. 4: Time dependent characteristics of the mRNA number for exponential lifetimes (solid) and
Bernoulli lifetime (dashed) (a) E[𝑀 (𝑡)] (b) Var(𝑀 (𝑡)) (c) Var(𝑀 (𝑡))/E[𝑀 (𝑡)]

It is clear that for both types of mRNA lifetime distributions, the Fano factor of 𝑀 (𝑡) is consistently
about 0.04 units below unity for all but very small values of 𝑡.

5 Conclusion

We have shown that, for a general three-stage model of stochastic gene expression, various quantities
can be derived that shed light on the time-dependent joint distribution of the current state of the
gene, the number of mature mRNA molecules present in the cell, and the number of mature protein
molecules present in the cell. Our main results establish interesting formulas when mRNA molecules
are conceived in accordance with an arbitrary Markovian Arrival Process, where the elongation times
and lifetimes of the mRNA molecules are generally distributed, and when the elongation times and
lifetimes of the protein molecules are generally distributed. Markovian Arrival Processes are used in
order to construct models where mRNA molecules can be conceived both at various instants at which
the gene makes a state transition, as well as in a Poisson manner where the rate depends on the current
state of the gene.

We then showed that when we only track mRNA molecules and assume negligible elongation times
and exponentially distributed lifetimes, even more elegant expressions can be derived for the time-
dependent joint distributions, and the joint stationary distribution, of the state of the gene and the
number of mRNA molecules present in the cell. It is notable that many recent gene expression models
fall within our framework, and we hope that the ideas found herein will inspire others to build more
elaborate models that capture dynamics our models do not currently capture. For example, it is not
clear how to use the analysis provided here to study models where the state of the gene is further
influenced by the number of proteins currently found in the cell: simpler Markovian models that
account for such feedback mechanisms include (but are not limited to) the recent works [29, 31]. It
would also be interesting to see to what extent recent studies of models that incorporate cell division,
such as [5, 42], can be generalized while simultaneously providing new insights into gene expression.
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