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Abstract. A Markov chain Xi on a finite state space S has
transition matrix P and initial state i. We may run the chains
(Xi : i ∈ S) in parallel, while insisting that any two such chains co-
alesce whenever they are simultaneously at the same state. There
are |S| trajectories which evolve separately, but not necessarily in-
dependently, prior to coalescence. What can be said about the
number k(µ) of coalescence classes of the process, and what is the
set K(P ) of such numbers k(µ), as the coupling µ of the chains
ranges over couplings that are consistent with P? We continue ear-
lier work of the authors (‘Non-coupling from the past’, in In and
Out of Equilibrium 3, Springer, 2021) on these two fundamental
questions, which have special importance for the ‘coupling from
the past’ algorithm.

We concentrate partly on a family of couplings termed block
measures, which may be viewed as couplings of lumpable chains
with coalescing lumps. Constructions of such couplings are pre-
sented, and also of non-block measure with similar properties.

1. Introduction

Finite-state space Markov chains form a key topic in probability
theory, and they are taught in many undergraduate courses worldwide.
They are considered to be well understood, and their theory fully es-
tablished. Applications across science are significant and multifarious.
In this paper we explore some interesting questions concerning coales-
cence that remain unresolved, and indeed in part unasked.

Throughout this paper, S is a finite, non-empty set (without loss of
generality, we may take S = {1, 2, . . . , n}), and P = (pi,j : i, j ∈ S)
is an irreducible stochastic matrix. Let X = (Xt : t = 0, 1, . . . ) be a
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Markov chain on the state space S with transition matrix P . The long-
term behaviour of X is well known: if X is (irreducible and) aperiodic,
then P has a unique invariant distribution π = (πj : j ∈ S), and
P(Xt = j) → πj for j ∈ S, as t → ∞. For introductions to the theory
of Markov chains, the reader is referred to the books [9, 10, 14].

For i ∈ S, denote by X i = (X i
t : t = 0, 1, . . . ) the Markov chain

X = (Xt) conditioned on starting in state i, that is, conditioned on the
event that X0 = i. In the current article we explore the simultaneous
evolution of the chains X i, i ∈ S, in the setting where any two paths
stay together after they meet; that is, if X i

t = Xj
t then X i

t+s = Xj
t+s for

all s ∈ N := {1, 2, 3, . . . }. For general P , multiple joint distributions
of evolutions exist that are ‘consistent’ with P in the sense that they
have the required marginal distributions.

In this setting, we say that X i and Xj coalesce (or just that i and j
coalesce) if they meet (that is, if X i

t = Xj
t for some t). The principal

issue investigated here is to determine the degree of coalescence of the
family (X i : i ∈ S) as t → ∞. This question is made more explicit
in Section 3, and is connected to earlier work on so-called avoidance
coupling; see Remark 3.4.

The current work is a development of earlier work of the authors,
[8], directed mainly at coalescence in so-called ‘coupling from the past’
(CFTP). CFTP is an important technique for exact simulation from
a given distribution on a state space S, and is related to the topic of
‘Monte Carlo Markov chains’ (MCMC). Whereas MCMC runs forwards
in time, CFTP runs backwards. The CFTP algorithm is successful in
situations where all the chains (X i) coalesce. We explain this connec-
tion in Remark 3.2. Some background information from [8] is included
in this work as an aid to the reader.

Here is a summary of the contents of this article. A ‘grand coupling’
is a coupling of the chains (X i : i ∈ S). Such couplings are defined in
Section 2, where the special ‘independence coupling’ is introduced. In
Theorem 2.3 we answer the question of when the independence cou-
pling is the unique grand coupling. Section 3 is devoted to forward
coalescence. Lumpable chains and block measures are introduced in
Section 4, and the associated main results appear in Sections 5 and
6. A condition for a lumpable chain to give rise to a block measure is
presented in Theorem 5.3; conversely, the existence of non-block mea-
sures is explored in Theorem 6.1 in the special case of the transition
matrix with equally probable transitions. In the final Section 7, we
initiate an investigation of the structure of the set of grand couplings
corresponding to transition matrices.
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We close with a remark. The general questions approached here seem
quite fundamental to a complete theory of finite state-space Markov
chains, and yet they have received only limited attention so far. This
is reflected in the partial state of knowledge revealed in [8] and the
current paper. This work may be viewed as a contribution to the
theory of iterated random functions.

We write N for the set {1, 2, . . . } of natural numbers, and P for a
generic probability measure.

2. Grand couplings of Markov chains

We shall consider only irreducible Markov chains on a finite state
space S. Let FS be the set of functions from S to S, and let PS be the
set of irreducible stochastic matrices on S.

Definition 2.1 ([8]). A probability measure µ on FS is consistent with
P ∈ PS, in which case we say that the pair (P, µ) is consistent, if

(2.1) pi,j = µ
(
{f ∈ FS : f(i) = j}

)
, i, j ∈ S.

Let LP denote the set of probability measures µ on FS that are con-
sistent with P ∈ PS. ◀

Let P ∈ PS. Any probability measure µ ∈ LP may be used as the ba-
sis of a coupling of the chains (X i : i ∈ S), as we now demonstrate. Let
F1, F2, . . . be random functions that are independent and distributed
on FS according to µ, and set

(2.2) X i
t = Ft ◦ Ft−1 ◦ · · · ◦ F1(i), i ∈ S.

(This is a convenient abuse of notation; more properly, the right side of
(2.2) defines processes having the same law as the sequence (X i).) For
t ∈ {0, 1, . . . }, let Zt = (X i

t : i ∈ S). Then Z = (Zt : t = 0, 1, . . . ) is
a Markov chain with state space SS, started in the state (1, 2, . . . , n).
The ‘multichain’ Z is in general reducible, since the number of distinct
entries in Zt+1 is less than or equal to that in Zt.

By the consistency property (2.1), the sequence X i = (X i
t : t =

0, 1, . . . ) has the same law as X conditioned on the event that X0 = i.
Moreover, if X i

t = Xj
t then trivially X i

t+s = Xj
t+s for all s ∈ N (since

each Ft is a function); that is, once the paths from i and j meet, they
stay together thenceforth.

A measure µ ∈ LP is sometimes called a grand coupling of P . It is
elementary that LP ̸= ∅, as indicated in the following example.
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Example 2.2 (Independence coupling). Let P ∈ PS, and let µind be
given by the product form

µind({f}) =
∏
i∈S

pi,f(i), f ∈ FS.

Then

µind({f : f(i) = j}) =
∑

f :f(i)=j

∏
u∈S

pu,f(u) = pi,j
∑

f :f(i)=j

∏
u̸=i

pu,f(u)

= pi,j
∑

(j1,...,ji−1,ji+1,...,jn)∈Sn−1

∏
u̸=i

pu,ju

= pi,j
∏
u̸=i

[∑
ju∈S

pu,ju

]
= pi,j

∏
u̸=i

1,

so that µind ∈ LP . The measure µind is called the independence coupling
as it gives rise to n = |S| chains X i with transition matrix P , starting
from each i ∈ S respectively, that evolve independently until they
meet. If P is aperiodic then, by Doeblin’s theorem (see Theorem 2.5),
for every pair i, j ∈ S the chains X i, Xj meet in finite time. Such
chains stick together thenceforth, and thus all n chains a.s. meet in
finite time (in some common random state). ◀

The next theorem contains a criterion for µind to be the unique grand
coupling.

Theorem 2.3. For P ∈ PS, we have |LP | ≥ 2 if and only if P has
at least two rows each of which contains some entry lying in the open
interval (0, 1).

Proof. It can be useful to think in terms of the transition diagram of the
chain, i.e., the labelled directed graph G with vertex-set S, and with
a directed edge from any i to any j such that pi,j > 0; such an edge is
labelled with the value pi,j. The in-degree (respectively, out-degree) of
a state is the number of edges directed towards it (respectively, away
from it).

Let R be the set of rows that contain some entry in the interval
(0, 1). Since P is stochastic, such a row must contain at least two such
entries.

(a) Let |R| ≤ 1; we will show that the independence coupling is the
unique grand coupling. We explain first the case |R| = 0, for which
every row contains a single non-zero entry 1, and thus all edge-labels
in G are 1. Each state i has out-degree 1, and we write [i, ti⟩ for the
unique directed edge leading from i. There are exactly n = |S| edges in
G. Since P is irreducible, G is a directed self-avoiding cycle of length
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n. Therefore, LP contains only the probability measure µ = δf that is
supported on the single function f defined by f : i 7→ ti for i ∈ S. In
this trivial situation, µ is the independence coupling µind.

Suppose that |R| = 1, and assume without loss of generality that
the row labelled 1 is the unique row containing an entry in (0, 1). Let
J = {j : p1,j ∈ (0, 1)}. Edges of G of the form [1, j⟩ for j ∈ J have
labels in (0, 1) and all other edges are labelled 1. For i ̸= 1, write [i, ti⟩
for the unique edge directed away from i. We have

P(X1
1 = j) = pi,j for j ∈ J,(2.3)

P(X i
1 = ti) = 1 for i ̸= 1.(2.4)

There is a unique probability measure µ consistent with the above,
namely

(2.5) µ({f}) = p1,f(1)
∏
i̸=1

δf(i),ti , f ∈ FS,

where δ is the Kronecker delta. This is simply the independence cou-
pling. Therefore, |LP | = 1.

(b) Conversely, suppose |R| ≥ 2, and pick two rows lying in R, say
the ith and jth with i ̸= j. Find r, s such that pi,rpj,s > 0. There is
no loss of generality for the proof that follows if we assume i = 1 and
j = 2, and we assume this henceforth. We may assume further that

(2.6) 0 < p2,s ≤ p1,r < 1.

Before defining µ explicitly, we describe the stochastic evolution of the
first time-step of the family (X i : i ∈ S) of Markov chains.

For i ∈ {2, 3, . . . , n}, we let X i
1 be chosen according to P , that is,

(2.7) P(X i
1 = j) = pi,j, j ∈ S.

Furthermore, Z := {X i
1 : i = 2, 3, . . . } is a set of independent random

variables.
We turn to X1

1 , which we take to be independent of Z \ {X2
1}. Fur-

thermore,

P(X1
1 = r | X2

1 = s) = 1,(2.8)

P(X1
1 = j | X2

1 ̸= s) =


p1,r − p2,s
1− p2,s

if j = r,

p1,j
1− p2,s

if j ̸= r.
(2.9)

It is an exercise in conditional probability that the mass function of
X1

1 is (p1,j : j ∈ S). Equations (2.8)–(2.9) amount to a coupling of X1
1

and X2
1 under which (2.8) holds. Since p1,r < 1, (2.8) fails by (2.6)
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under the independence coupling µind. Therefore, µ ̸= µind and hence
|LP | ≥ 2.

Equations (2.7)–(2.9) may be expressed by defining µ as follows:

(2.10) µ({f}) =



p2,s
∏

i̸=1,2 pi,f(i) if f(1) = r, f(2) = s,
p1,r − p2,s
1− p2,s

∏
i̸=1 pi,f(i) if f(1) = r, f(2) ̸= s,

1

1− p2,s

∏
i pi,f(i) if f(1) ̸= r, f(2) ̸= s,

0 otherwise.

One may check directly that µ ∈ LP , but it is quicker to verify the
probabilities implied by (2.7)–(2.9). ■

Remark 2.4 (Random transition matrix). By Theorem 2.3, a ‘typi-
cal’ transition matrix P has multiple grand couplings. We make this
statement more precise as follows. For given S, we model a ‘typical’
transition matrix as the |S| × |S| matrix with elements

pi,j = qi,j/Qi,

where the qi,j are independent and uniformly distributed on (0, 1), and
Qi =

∑
j qi,j. Let Q denote the law of such P . Note that Q-a.e. P has

all entries in (0, 1) and hence is irreducible and aperiodic. Moreover,
by Theorem 2.3, Q-a.e. P admits multiple grand couplings. Further
results for a random transition matrix may be found in Remark 3.7,
Lemma 5.1, and Section 7. ◀

We will make frequent use of the following well known fact due to
Doeblin [5] (see also [9, p. 260]).

Theorem 2.5 ([5]). Let (X i : i ∈ S) be independent Markov chains
on a finite state space S with common irreducible, aperiodic transition
matrix Q, with X i

0 = i a.s. for each i ∈ S. For i, j ∈ S, there exists
a.s. a finite time T such that X i

T = Xj
T .

The following classical result of Birkhoff and von Neumann will be
useful later.

Theorem 2.6 ([3, 13]). A stochastic matrix P on the finite state space
S is doubly stochastic if and only if it lies in the convex hull of the set
ΠS of permutation matrices.

3. Coalescence of trajectories

Consider a Markov chain X on the state space S = {1, 2, . . . , n} with
irreducible transition matrix P , and let µ ∈ LP be a grand coupling.
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We consider the coalescence of the chains X i in this section, and begin
with some notation from [8].

As in Section 2 (see (2.2)), let F1, F2, . . . be independent random

functions distributed according to µ, and set X i
t =

�

F t(i) where i ∈ S
and

(3.1)
�

F t := Ft ◦ Ft−1 ◦ · · · ◦ F1.

Then (X i : i ∈ S) is a family of coupled Markov chains running for-
wards in time, each having transition matrix P , and such thatX i starts
in state i.

For i, j ∈ S, let

(3.2) Ti,j = inf{t : X i
t = Xj

t }.
We say that i and j coalesce (and write i ∼ j) if Ti,j < ∞. The forward
coalescence time is given by

T = inf
{
t :

�

F t(·) is a constant function
}
= sup

i,j∈S
Ti,j.(3.3)

We say that coalescence occurs if P(T < ∞) = 1.

Lemma 3.1. The relation ∼ is a (random) equivalence relation.

Proof. It suffices to prove the transitivity of ∼. Let i ∼ j and j ∼ k.
Since S is finite, there exists T such that X i

t = Xj
t = Xk

t for t ≥ T .
The claim follows ■

The equivalence classes of ∼ are termed the coalescence classes of
(X i : i ∈ S). The number of coalescence classes is a.s. constant (see
[8, Lemma 2]), and we denote this number by k(µ) and call it the
coalescence number of µ. We define

(3.4) K(P ) = {k(µ) : µ ∈ LP}.

Remark 3.2 (Coupling from the past (CFTP)). CFTP is a promi-
nent algorithm introduced by Propp and Wilson [15, 16, 18] for per-
fect simulation from the invariant distribution of an irreducible, ape-
riodic Markov chain on a finite state space. The CFTP algorithm

may be defined by replacing the function
�

F t in (3.1) by the function
�

F t := F1 ◦ F2 ◦ · · · ◦ Ft. The backward coalescence time is defined by

(3.5) C = inf
{
t :

�

F t(·) is a constant function
}
,

and backward coalescence is said to occur if P(C < ∞). On the event

{C < ∞},
�

FC may be regarded as a random state, and the main
theorem of CFTP asserts that, if backward coalescence occurs, then
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�

FC is distributed as the invariant distribution of the transition matrix
P .

The relationship between forward and backward coalescence was ex-
plored in [8]. It turns out that C and T are identically distributed.
Furthermore, the CFTP process has the same set K(P ) of coales-
cence numbers as the forward process. In contrast, there is a sig-
nificant difference between forward and backward coalescence in that,

if
�

F t(i) =
�

F t(j), then
�

F t+1(i) =
�

F t+1(j), whereas the corresponding
statement for backward coalescence is false in general. The last oc-
curs whenever the coalescing classes in the forward direction are non-
deterministic (see, for example, the forthcoming Examples 3.10 and
4.5(b)). ◀

The following two questions are fundamental to understanding coa-
lescence.

Question 3.3.

1. Can we determine the set K(P ) for given P?
2. Which µ ∈ LP have k(µ) = 1?

We shall see in Theorem 3.13 that the independence coupling µind

of Example 2.2 satisfies k(µind) ≤ k(µ) for all µ ∈ LP , and moreover
k(µind) = 1 if and only if P is aperiodic.

Henceforth, expressions involving the word ‘coalescence’ shall refer
to forward coalescence. Let µ be a probability measure on FS, and let
supp(µ) denote the support of µ. Let F = (Fs : s ∈ N) be a vector of
independent and identically distributed random functions, each with
law µ. The law of F is the product measure µ =

∏
i∈N µ.

Remark 3.4 (Avoidance coupling). Let P ∈ PS and let

kmax = kmax(P ) := max{k(µ) : µ ∈ LP}.

That is, kmax is the maximum k such that: there exists some grand
coupling µ for which there exist k (possibly random) initial states whose
trajectories avoid one another for all time. The identification of kmax

might be termed the ‘avoidance problem with simultaneous updating’.
The related problem of avoidance coupling with sequential updating
was initiated in [1] for random walk on a graph and has been developed
further by others (see, for example, [2]). ◀

Recall that, since P is finite and irreducible, it has a unique invariant
distribution (see, for example, [9, Thm 6.4.3]).

Theorem 3.5. Let P ∈ PS have (unique) invariant distribution π.
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(a) Let m ∈ N, and suppose there exists s ∈ S with πs > 1/m.
Then kmax < m.

(b) Let m ∈ N, and suppose there exists s ∈ S such that pi,s > 1/m
for all i ∈ S, then kmax < m.

Proof. (a) Assume πs > 1/m, and let i1, i2, . . . , im be distinct elements
of S. For each k ∈ {1, 2, . . . ,m}, there is asymptotic density πs of
times n at which X ik

n = s. Since πs > 1/m, there exist (a.s.) distinct
i, j ∈ {i1, i2, . . . , im} such that there is a strictly positive density of
times n at which X i

n = Xj
n = s. Therefore, k(µ) < m for all µ ∈ LP .

(b) Assume the given condition holds. Then

(3.6) πs =
∑
i∈S

πipi,s >
1

m
.

The conclusion holds by part (a). ■

Remark 3.6. The condition of part (b) may be changed slightly, as
follows. Suppose pi,s > 1/m for all i ∈ S with i ̸= s. Then (3.6)
becomes

πs ≥
∑
i̸=s

πipi,s >
1

m
(1− πs).

Therefore, πs > 1/(m+ 1), whence kmax < m+ 1 by part (a). ◀

Remark 3.7 (Random transition matrix). By Theorem 3.5, if there
exists s ∈ S with πs >

1
2
, then k(µ) = 1 for all µ ∈ LP . In particular,

there is strictly positive Q-probability (see Remark 2.4) that a random
transition matrix P satisfies K(P ) = {1}. ◀

Question 3.8. Is it true that K(P ) = {1} for Q-a.e. P?

Whereas k(µ) is a.s. constant, the coalescence classes of ∼ need not
themselves be a.s. constant. Here is an example of this, preceded by
some notation.

Definition 3.9. Let f ∈ FS where S = {1, 2, . . . , n}. We write f =
(j1j2 . . . jn) if f(r) = jr for r = 1, 2, . . . , n. ◀

Example 3.10. Take S = {1, 2, 3, 4} and any consistent pair (P, µ) with

supp(µ) = {f1,1, f1,2, f2,1, f2,2}
where

f1,1 = (1212), f1,2 = (1221), f2,1 = (3434), f2,2 = (3443).

Then k(µ) = 2 but the coalescence classes of
�

F may be either {1, 3},
{2, 4} or {1, 4}, {2, 3}, each having a strictly positive probability. The
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Figure 3.1. Diagrammatic representations of the four
functions fi,j of Example 3.10.

value of F1 determines which of these two possibilities occurs.1 The
four functions fi,j are illustrated in Figure 3.1. ◀

Question 3.11. For given P ∈ PS, is the set of cardinalities (possibly
with repetition) of coalescing classes a deterministic set?

A probability measure µ on FS may be written in the form

(3.7) µ =
∑
f∈FS

αfδf ,

where α is a probability mass function on FS with support supp(µ),
and δf is the Dirac delta-mass on the point f ∈ FS. Thus, αf > 0 if
and only if f ∈ supp(µ). We denote by M(FS) the set of all probability
measures µ of the form (3.7).

In advance of stating an extension of [8, Lemma 3], we remind the
reader of the definition of a cyclic class.

Definition 3.12. Consider an irreducible Markov chain on the state
space S with transition matrix P and period d. There exists a unique
partition of S into d classes S0, S1, . . . , Sd−1 such that∑

j∈Sr+1

pi,j = 1, i ∈ Sr, r = 0, 1, . . . , d− 1,

where by convention S0 = Sd. The sets Sr are called the cyclic classes
of the chain. ◀

See [4, Sect. 2.3.2] for further details of cyclic classes.

Theorem 3.13.

(a) We have that 1 ∈ K(P ) if and only if P ∈ PS is aperiodic. In
this case, k(µind) = 1.

1In the case of backward coalescence, for r ∈ {1, 2}2, the ‘first’ function to

be applied is fr a.s. infinitely often, whence
�

F t(1) =
�

F t(3) infinitely often and
�

F t(1) ̸=
�

F t(3) infinitely often.
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(b) If P ∈ PS has period d, then the coalescence classes of µind are
a.s. the cyclic classes of P and therefore k(µind) = d. Hence,
d ∈ K(P ), and moreover d ≤ k for all k ∈ K(P ).

Consider the particular case when all entries of P are strictly positive.
Since P is aperiodic, we have by Theorem 3.13(a) that 1 ∈ K(P ).
However, K(P ) may be larger than a singleton; see the forthcoming
Theorem 6.1.

Proof of Theorem 3.13. (a) This is found at the proof of [8, Lemma 3],
but is included here for clarity. The independence coupling of Example
2.2 gives rise to n = |S| chains with transition matrix P , starting from
1, 2, . . . , n, respectively, that evolve independently until they meet. If
P is aperiodic (and, by assumption, irreducible) then all n chains meet
a.s. in finite time. The last holds by Theorem 2.5, since any paths that
meet will remain together thenceforth under this coupling.

Conversely, if P is periodic and pi,j > 0 then i ̸= j, and i and j can
never coalesce, implying 1 /∈ K(P ).

(b) Suppose P has period d ≥ 2, and let S0, S1, . . . , Sd−1 be the cyclic
classes of P (see Definition 3.12). For r ̸= s, states i ∈ Sr and j ∈ Ss

do not coalesce for any µ ∈ LP . Now, P d has a block diagonal form
with (transition) matrices E0, E1, . . . , Ed−1 along its diagonal. Each
Er is irreducible and aperiodic. By the argument above, subject to the
independence coupling µind, any two states in any given Sr coalesce a.s.

For clarity, we give some more details of the last step. Fix r and let
i, j ∈ Sr. Let Z

k = (Zk
t : t = 0, 1, . . . ) be a copy of Xk, and suppose the

chains (Zk : k ∈ Sr) evolve independently (unlike the sequence (Xk)
whose members coalesce when they meet). Now, Zk,d := (Zk

md : m =
0, 1, . . . ) has irreducible, aperiodic transition matrix Er. By Theorem
2.5 there exists a.s. some time T < ∞ at which Zi

Td = Zj
Td. Therefore,

there is some earliest time U ≤ Td at which Zi
U = Zj

U . From the pair
Zi, Zj we construct X i, Xj by

(X i
t , X

j
t ) =

{
(Zi

t , Z
j
t ) for t ≤ U,

(Zi
t , Z

i
t) for t > U.

Since the pair (X i, Xj) has the same law as under µ, this proves that
i and j coalesce a.s. under µ. This holds for all pairs of distinct states
in Sr, and two states stick together after they coaleasce. The second
claim of the theorem is proved.

The minimality of d holds since no two states in distinct cyclic classes
may coalesce. ■
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4. Lumpability and block measures

The notion of lumpability was introduced in 1963 by Kemeny and
Snell, [11]. A Markov chain X with finite state space S is called
lumpable if there exists a partition S of S such that the projection
of X onto S is itself a Markov chain.

Here is a more precise definition. A partition S = {S1, S2, . . . , Sℓ} of
S is called trivial if |S| ∈ {1, |S|}, (i.e., if either S = {S} or S = {{s} :
s ∈ S}). Elements of the partition S are called blocks. The chain X is
called S-lumpable if the sequence (Wt : t = 0, 1, . . . ), defined by

(4.1) Wt = j if Xt ∈ Sj,

forms a Markov chain. The process X is called lumpable if it is S-
lumpable for some non-trivial partition S.

There is a limited literature on lumpable chains, for which the reader
may consult, for example, [6, 7, 12] and [9, Exer. 6.1.13]. Kemeny and
Snell [11] proved a necessary and sufficient condition for X to be S-
lumpable, namely the following.

Theorem 4.1 ([11]). Let P = (pi,j : i, j ∈ S). Let S be a partition of
S, and let

(4.2) λ(i)
r,s =

∑
j∈Ss

pi,j, i ∈ Sr.

A Markov chain X with transition matrix P is S-lumpable if and only
if,

(4.3) for every r, s, we have that λr,s := λ(i)
r,s is constant for i ∈ Sr.

A stochastic matrix P ∈ PS is called S-lumpable if (4.3) holds (where

the λ
(i)
r,s are given in (4.2)). For such a pair P and S, let Λ be the ℓ× ℓ

matrix (λr,s : 1 ≤ r, s ≤ ℓ). This Λ is the transition matrix of the
‘block process’ W of (4.1).

The evolution of an S-lumpable chain X may be given in two stages.
Suppose Xt = i ∈ Sr; then Xt+1 is given as follows.

(a) Select a random block B with mass function P(B = Ss) = λr,s.
(b) Conditional on B = Ss, choose Xt+1 with mass function

P(Xt+1 = j | B = Ss) = pi,j/λr,s.

We address a certain sub-category of lumpable chains here, namely
those for which Λ is doubly stochastic. By Theorem 2.6, such Λ may
be expressed as a convex combination of permutation matrices.

Recall the set M(FS) of probability measures of the form (3.7).



COALESCENCE IN MARKOV CHAINS 13

Definition 4.2 ([8]). Let µ ∈ M(FS). For a partition S = {Sr : r ∈ I}
of S with index set I = {1, 2, . . . , ℓ}, we call µ an S-block measure if

(a) for f ∈ supp(µ), there exists a unique permutation π = πf of I
such that, for r ∈ I, fSr ⊆ Sπ(r), and

(b) k(µ) = ℓ.

An S-block measure µ is said to be trivial if S is trivial. A measure µ
is called a block measure if it is an S-block measure for some partition
S. ◀

Since any two states in distinct blocks cannot coalesce under a block
measure, the condition k(µ) = ℓ implies that

(4.4) for r ∈ I and i, j ∈ Sr, the pair i, j coalesce a.s.,

so that the coalescence classes of the coalescence relation ∼ are a.s. the
blocks S1, S2, . . . , Sℓ.

By combining the definitions of lumpability and block measures we
arrive at a necessary condition for µ to be an S-block measure. The
proof may be found in [8].

Theorem 4.3 ([8, Thm 6]). Let S be a non-empty, finite set, let P ∈
PS, and let S = {Sr : r ∈ I} be a partition of S with index set I =
{1, 2, . . . , ℓ}. For i ∈ Sr, let

(4.5) λ(i)
r,s =

∑
j∈Ss

pi,j.

(a) If µ ∈ LP is an S-block measure, then, for r, s ∈ I,

(4.6) λr,s := λ(i)
r,s is constant for i ∈ Sr.

(b) The ‘block-transition matrix’ Λ = (λr,s : 1 ≤ r, s ≤ ℓ) is ir-
reducible. Moreover, Λ is doubly stochastic, which may be ex-
pressed as

(4.7)
∑
i∈S

∑
j∈Ss

1

|Sr(i)|
pi,j = 1, r, s ∈ I,

where r(i) is the index r ∈ I such that i ∈ Sr.

Whether or not µ ∈ M(FS) is a block measure turns out to de-
pend on whether or not its coalescing classes are deterministic, that
is, a.s. constant. (Recall the definition of coalescing class after Lemma
3.1.) We state this as a theorem.

Theorem 4.4. A probability measure µ ∈ M(FS) is a block measure if
and only if its coalescing classes C = {C1, C2, . . . , Cℓ} are a.s. constant.
If the last holds, µ is a C-block measure.
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Proof. If µ ∈ M(FS) is an S-block measure then (recall (4.4) and the
preceding discussion) the coalescing classes are a.s. the elements of S.

Conversely, let the coalescing classes be C1, . . . , Cℓ, and assume they
are a.s. constant. We claim that Definition 4.2 is satisfied with S = C.
Clearly k(µ) = ℓ, so (b) of Definition 4.2 holds. Let f ∈ supp(µ), and
let i1, i2 ∈ Cj. Since i1 and i2 a.s. coalesce, f(i1) and f(i2) a.s. coalesce,
so f(i1) ∈ Cs ⇐⇒ f(i2) ∈ Cs. Suppose instead that i1 ∈ Cj1 and
i2 ∈ Cj2 where j1 ̸= j2. This implies that i1 and i2 cannot coalesce,
and hence f(i1) ∈ Cs implies f(i2) /∈ Cs.

We have shown that f permutes classes, which verifies Definition
4.2(a) with S = C, and hence completes the proof. ■

Example 4.5. Here is an illustration of Theorem 4.4. Consider the
transition matrix

P =


1
2

0 1
2

0
0 1

2
0 1

2
0 1

2
1
2

0
1
2

0 0 1
2

 ,

and note that it is irreducible and aperiodic.

(a) Let µf put mass 1
2
on each of the two permutations

f1 = (1234), f2 = (3421).

(Recall Definition 3.9.) It is easily checked that µf ∈ LP is a
(trivial) block measure with blocks {1}, {2}, {3}, {4}, so that
k(µf ) = 4.

(b) Let µg put mass 1
2
on each of the two functions

g1 = (3434), g2 = (1221).

Then µg ∈ LP . Under µg either: 1 and 3 coalesce, and 2 and
4 coalesce and there is no other coalescence (this happens if
g1 is applied first) or: 2 and 3 coalesce, and 1 and 4 coalesce
and there is no other coalescence (this happens if g2 is applied
first). Therefore, k(µg) = 2, but the coalescence sets of µg are
not a.s. constant. By Theorem 4.4, µg is not a block measure.
This case contains the essence of Example 3.10. ◀

5. Existence of block measures

This section is concerned with the existence of block measures. The
main question of interest is, for what state space S, partition S, and
matrix P ∈ PS does there exist an S-block measure µ ∈ LP ? Let
C = C(µ) denote the set of coalescing classes of µ. In general C(µ)
is random, and the support of C(µ) depends only on supp(µ). By
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Theorem 4.4, finding an S-block measure µ ∈ LP is equivalent to
finding µ ∈ LP for which C = S a.s.

By Theorem 3.13, for every P ∈ PS there exists a partition S of S
(comprising the cyclic classes of P ) such that the independence cou-
pling µind is an S-block measure. Recall the probability measure Q in
Remark 2.4.

Lemma 5.1. For Q-a.e. P ∈ PS, every block measure is trivial.

Proof. We need only consider cases with |S| ≥ 3. If there exists a non-
trivial block measure, then there exists T ⊆ S such that 2 ≤ |T | ≤
|S| − 1 and, by (4.5)–(4.6),∑

j∈T

pi,j is constant for i ∈ T.

Let Zi :=
∑

j∈T pi,j. Then Z1, Z2, . . . are independent with a common

absolutely continuous distribution. Therefore, Q(Zi = Zk) = 0 for all
distinct pairs i, k, whence the set of such P has Q-measure 0. ■

By Lemma 5.1, for every S, for Q-a.s. P ∈ PS, and for every non-
trivial S, there exists no S-block measure. In contrast, the following
holds.

Theorem 5.2. For S = {1, 2, . . . , n} and any partition S of S there
exists µ ∈ M(FS) such that µ is an S-block measure.

Proof. Fix S and S = {Sr : r ∈ I}. Consider the set F̂ of functions f
such that

(i) for all r, f(i) = f(j) for every i, j ∈ Sr, and
(ii) there exists a permutation π = πf of I such that, for r ∈ I,

fSr ⊆ Sπ(r).

For example, if S = {{1, 2}, {3, 4, 5}} then F̂ consists of the 12 func-
tions denoted

(11333), (11444), (11555), (22333), (22444), (22555),

(33111), (44111), (55111), (33222), (44222), (55222),

in the notation of Definition 3.9.
Let µ be a probability measure with supp(µ) = F̂ . Then pi,j :=∑
f :f(i)=j µ({f}) > 0 for every pair i, j, whence P = (pi,j) is irreducible.

The claim follows by assumptions (i) and (ii), and Definition 4.2. ■

Henceforth, for certain P , S, we will present a natural measure
µ ∈ LP , and then determine conditions under which it is an S-block
measure.
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Let the pair P ∈ PS and S = {Sr : r ∈ I} (a partition of the state
space S with I = {1, 2, . . . , ℓ}) satisfy (4.6) and be such that

(5.1) Λ is doubly stochastic.

By Theorem 4.3 these two conditions are necessary for the existence of
an S-block measure µ ∈ LP .

Since P is assumed irreducible, the stochastic matrix Λ is irreducible
also. By (5.1) and Theorem 2.6, we may find a measure ρ ∈ LΛ sup-
ported on a subset of the set of permutations of I, and we let Π be a
random permutation with law ρ. (Note that ρ is not generally unique.)
Let i ∈ Sr and j ∈ Ss. In order for our forthcoming µ to be consistent
with P (recall Definition 2.1) we need that∑

f :i7→j

µ({f}) = pi,j.(5.2)

In order for i to be mapped to j, it is necessary that Π(r) = s; the last
occurs with probability λr,s. Conditional on Π, we shall then map the
states independently in such a way as to obtain (5.2).

More precisely, conditional on Π, let Z = (Zi : i ∈ S) be independent
random variables such that

(5.3) P(Zi = j | Π) =

{
pi,j/λr,s if Sr ∋ i, Ss ∋ j, Π(r) = s,

0 otherwise,

and let µ be the law of Z. Thus, µ ∈ M(FS) is given by

(5.4) µ({f}) = E

[∏
i∈S

P(Zi = f(i) | Π)

]
,

where the expectation is over the random permutation Π. We call µ
the (P,S, ρ)-product measure.

Next we check that µ ∈ LP . Let i ∈ Sr and j ∈ Ss. By (5.3)–(5.4),∑
f :i7→j

µ({f}) = P(Zi = j) = λr,s ·
pi,j
λr,s

= pi,j,

as required. By the definition of µ, no two states in different sets of the
partition S may coalesce. Thus, to determine whether the (P,S, ρ)-
product measure µ ∈ LP is an S-block measure it remains to check
whether k(µ) = ℓ = |S|, which is to say that, for all r, all states in Sr

coalesce (recall (4.4)).
Recall that C denotes the (possibly random) set of coalescing classes,

and that i ∼ j if there exists C ∈ C such that i, j ∈ C.
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Theorem 5.3. Let P ∈ PS, and let S = {Sr : r ∈ I} be a partition of
S with index set I = {1, 2, . . . , ℓ}. Assume (4.6) and (5.1) hold. The
(P,S, ρ)-product measure µ satisfies k(µ) = ℓ if and only if 2

(5.5) P(i ∼ j) > 0, i, j ∈ S1.

Proof. Suppose the conditions of the theorem hold, and also (5.5). Let
r ∈ I. We will show that

(5.6) P(i ∼ j) = 1, i, j ∈ Sr.

The claim k(µ) = ℓ follows since there are finitely many pairs i, j ∈ Sr

and indices r.
Recall from (3.2) that Ti,j = inf{t ≥ 0 : X i

t = Xj
t }, so that i ∼ j if

and only if Ti,j < ∞.
We first prove (5.6) with r = 1. Since |S1| < ∞, by (5.5) there exists

ϵ > 0, and M < ∞ such that

(5.7) P(Ti,j ≤ M) > ϵ, i, j ∈ S1.

Let i, j ∈ S1. Either Ti,j ≤ M or not. Assume that Ti,j > M . We

continue the two chains from time M with initial states X i
M and Xj

M

until the next epoch (M +K, say) at which these two processes lie in
S1; note that P(K < ∞) = 1 since Λ is irreducible. Having arrived
back in S1, we apply the argument above to deduce that coalescence
occurs by time 2M +K with (conditional) probability at least ϵ.

It follows that

P(Ti,j > 2M +K) = P(Ti,j > 2M +K | Ti,j > M)P(Ti,j > M)

≤ (1− ϵ)2.

By iteration of this argument, P(Ti,j < ∞) = 1, and (5.6) follows with
r = 1.

For r ̸= 1 and i, j ∈ Sr, since Λ is irreducible, a.s. Sr is eventually
mapped to S1. At this point, i and j have both been mapped to
elements of S1, so (if they have not already done so) they will almost
surely coalesce by (5.6) with r = 1. This verifies (5.6) for general r as
required.
Conversely, if there exist i, j ∈ S1 such that P(i ∼ j) = 0 then it is

necessarily the case that k(µ) ≥ ℓ+ 1. ■

2One may work with any given value of r in (5.5), and we have chosen r = 1
for concreteness. Condition (5.5) is similar to the sufficient condition of [17, Thm
6] for the quenched ergodicity of a Markov chain with random transition matrices.
Theorem 5.3 corrects an error in [8, Thm 6].
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Example 5.4. Here is an illustration of Theorem 5.3. As there (with
ℓ = 2 for simplicity) we let P ∈ PS, S = {S1, S2}, and we assume that
(4.6) and (5.1) hold.

For r = 1, 2 we write Sr = {xr,j : 1 ≤ j ≤ mr}. Ordering the
elements of S as (x1,1. . . . , x1,m1 , x2,1, . . . , x2,m2), we may express the
(m1 +m2)× (m1 +m2) matrix P in the form

P =

(
A B
C D

)
,

where A is an m1 ×m1 matrix and D is an m2 ×m2 matrix.
The 2 × 2 matrix Λ is doubly stochastic and irreducible, and may

(by Theorem 2.6) be expressed in the form

(5.8) Λ =

(
λ1,1 λ1,2

λ2,1 λ2,2

)
= αI + (1− α)I

where α = λ1,1 = λ2,2 and

I =

(
1 0
0 1

)
, I =

(
0 1
1 0

)
.

In other words, the measure ρ (which is unique since Λ is a 2 × 2
matrix) puts mass α on the identity permutation, and mass 1 − α on
the ‘interchange’ permutation. We let (Πi : i ∈ N) be independent
permutations with common law ρ, and let µ be the (P,S, ρ)-product
measure.

We have shown that

Λ =

(
α 1− α

1− α α

)
.

Thus, the row sums of A and D (respectively, B and C) are all α
(respectively, 1 − α) by (4.5) and (4.6)). Therefore, P is a mixture of
two stochastic matrices P1 and P2,

P = αP1 + (1− α)P2,

where

P1 =
1

α

(
A 0
0 D

)
, P2 =

1

1− α

(
0 B
C 0

)
.

Suppose α > 0 (we have α < 1 by irreducibility), and that A′ := A/α
is irreducible and aperiodic. We claim that k(µ) = 2. This may be
shown as follows.

Let W = (Wn : n ≥ 0) be a Markov chain on S1 with transition
matrix A′, and let i, j ∈ S1. By Theorem 2.5, if W i and W j are two
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independent versions of W , starting respectively at i and j, then there
exists M < ∞ such that

P(W i
m = W j

m for some m ≤ M) ≥ 1
2
.

It follows that

P(Ti,j < ∞) ≥ P(Ti,j < ∞, Πm = I for m = 1, 2, . . . ,M)

≥ αMP(W i
m = W j

m for some m ≤ M) ≥ 1
2
αm.

Equation (5.5) follows, and hence k(µ) = 2 by Theorem 5.3. ◀

Finally, in preparation for the next section we state a result from [8]
which concerns the transition matrix

Pn =


n−1 n−1 · · · n−1

n−1 n−1 · · · n−1

...
...

. . .
...

n−1 n−1 · · · n−1


on the state space S = {1, 2, . . . , n} with equal entries.

Theorem 5.5 ([8, Thm 7]). For n ≥ 2 there exists a block measure
µ ∈ L(Pn) with k(µ) = ℓ if and only if ℓ | n. In particular, K(Pn) ⊇
{ℓ : ℓ | n}. For n ≥ 3, we have n− 1 /∈ K(Pn).

6. Existence of non-block measures

Many of our measures µ ∈ LP so far have been block measures,
though we encountered a certain µ in Example 3.10 which (by Theorem
4.4) is not a block measure. By Theorem 5.5, n− 1 /∈ K(Pn), whence
K(Pn) = {ℓ : ℓ | n} when n ≤ 4. We do not know whether K(Pn) =
{ℓ : ℓ | n} when n > 4. In this section we shall construct a family of
non-block measures for Pn.

Theorem 6.1. Let n ≥ 4 and suppose ℓ ̸= 1 and ℓ | n. There exists a
non-block measure µ ∈ LPn with k(µ) = ℓ.

Before embarking on the proof of Theorem 6.1, we present an illus-
trative example.

Example 6.2. Let n = 6, ℓ = 2, and b = n/ℓ = 3. Let S1 = {1, 2},
S2 = {3, 4}, and S3 = {5, 6}. Let F̂ ⊂ FS consist of the six functions

f1,1 = (121212), f1,2 = (212121),

f2,1 = (343443), f2,2 = (434334),

f3,1 = (566565), f3,2 = (655656).

We make the following observations.
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(i) For each u, v ∈ {1, 2, . . . , 6}, f(u) = v for exactly one f ∈ F̂ .

Thus, taking µ to be uniform on F̂ , we obtain that µ ∈ LP6 .

(ii) Let f ∈ F̂ . For each i there exists j such that f maps Si onto
Sj. Thus no pair of states in any Si will ever coalesce.

(iii) The functions f1,j yield the immediately coalescing classes {1, 3, 5},
{2, 4, 6}. The functions f2,j yield the immediately coalescing
classes {1, 3, 6}, {2, 4, 5}. The functions f3,j yield the immedi-
ately coalescing classes {1, 4, 6}, {2, 3, 5}. All coalescence takes
place on the first step, and depending on which function is cho-
sen first (i.e., which function F1 is) we obtain different coalescing
classes. ◀

Proof of Theorem 6.1. Let n, ℓ be as in the statement of the theorem.
We will imitate Example 6.2, and the reader may wish to refer back to
that example. Let b = n/ℓ and

Sr =
{
(r − 1)ℓ+ 1, (r − 1)ℓ+ 2, . . . , rℓ

}
, r = 1, 2, . . . , b,

noting that |Sr| = ℓ for each r. When considering Sr as a vector rather
than as a set, we order its elements in increasing order.

We will construct a set F̂ comprising n (= bℓ) functions fi,j with
i ∈ {1, 2, . . . , b}, j ∈ {1, 2, . . . , ℓ}; µ will be the uniform measure on

F̂ . Before giving a formal definition of F̂ , we summarise its main
properties as follows:

(i) for every u, v ∈ {1, 2, . . . , n} there is exactly one f ∈ F̂ such
that f(u) = v,

(ii) for each f ∈ F̂ , there is a block Sf such that every block Sr is
mapped by f onto Sf (viewed as sets),

(iii) the elements of each Sr (viewed as a vector) are mapped to a
certain permutation πrSf of Sf .

We turn now to a formal definition, beginning with some nota-
tion. Following Definition 3.9, each fi,j can be expressed in the form
(x1x2 · · · xn), which is to say that fi,j(u) = xu. It is convenient to break
such a vector into consecutive subsequences of length ℓ, and we do this
by adding vertical bars; thus, for example, we write (x1x2 · · · xn) as(

x1 · · · xℓ

∣∣xℓ+1 · · · x2ℓ

∣∣ · · · ∣∣x(b−1)ℓ+1 · · · xbℓ

)
,

and we term the b subsequences therein ‘image blocks’. For each fi,j,
the image elements x1, . . . , xℓ are distinct; furthermore, when viewed
as sets, we have that {x(i−1)ℓ+1, . . . , xiℓ} = {x1, . . . , xℓ} for each i, so
that each subsequent image block of each fi,j is a permutation of the
first image block of fi,j.
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We explain next the action of the fi,j. Let ρ denote the rotation
permutation i1i2 · · · iℓ 7→ i2i3 · · · iℓi1. We will express each fi,j in terms
of a pair (hi,j,π

i) where

(a) hi,1 = Si and hi,j = ρj−1Si (with Si considered as a vector),
(b) for each i = 1, 2, . . . , b, there exists a vector πi = (πi

2, π
i
3, . . . , π

i
b)

of b− 1 permutations (not necessarily distinct) of ℓ symbols,
(c) we set

(6.1) fi,j =
(
hi,j

∣∣πi
2hi,j

∣∣ · · · ∣∣πi
bhi,j

)
.

We discuss next how the πi are defined, beginning with the simplest
case i = 1.

Let each π1
j be the identity permutation, so that, by (6.1),

f1,1 =
(
h1,1

∣∣π1
2h1,1

∣∣ · · · ∣∣π1
bh1,1

)
=
(
12 · · · ℓ

∣∣12 · · · ℓ∣∣ · · · ∣∣12 · · · ℓ).
More generally, we let

(6.2) f1,j =
(
h1,j

∣∣π1
2h1,j

∣∣ · · · ∣∣π1
bh1,j

)
,

where

h1,j = π1
mh1,j =

(
j(j + 1) · · · (ℓ− 1)ℓ12 · · · (j − 1)

)
, m ≥ 2.

We discuss next the case of fi,j with i ≥ 2. Then hi,1 = Si and
hi,j = ρ(j−1)Si, and it remains to choose a suitable vector πi of per-
mutations. For i = 2, 3, . . . , b, let πi = (πi

2, . . . , π
i
b) be an ordered set

of permutations satisfying (πi
2, . . . , π

i
b) ̸= (πi′

2 , . . . , π
i′

b ) for each i′ < i
(in other words, all the ordered sets of permutations will be distinct as
ordered sets). We can always find distinct π1,π2, . . . ,πb since there
are (ℓ!)b−1 distinct such vectors and (ℓ!)b−1 ≥ 2b−1 ≥ b (here we have
used the fact that b ≥ 2). The function fi,j is given by (6.1).

By construction, F̂ has properties (i)–(iii) above. Let µ be the uni-

form probability measure on F̂ . By (i),

µ({f : f(u) = v}) = 1

n
, u, v ∈ S,

whence µ ∈ L(Pn).
We turn to the issue of coalescence. By (ii)–(iii) above, coalescence

occurs at the first stage and not subsequently. Since there are at least
two distinct πi, the coalescing classes are random (indeed the number
of possibilities for the set of coalescing classes is the number of distinct
πi, i = 1, 2, . . . , b). Since mappings between blocks are surjections,
there are exactly ℓ coalescing classes C1, C2, . . . , Cℓ, and each such Cr

is a transversal of S. Hence k(µ) = ℓ. ■
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Remark 6.3. In the above proof, we have required that the πi be dis-
tinct. It suffices for the proof that at least two of them are distinct.
Suppose, on the contrary, that πj = π1 for all j. Then the set of coa-
lescing classes is deterministic, and Theorem 4.4 applies. In particular
since π1 is the identity permutation we may see that

Cj = {j, ℓ+ j, . . . , (b− 1)ℓ+ j}, j = 1, 2, . . . , ℓ.

We deduce that k(µ) = ℓ, and that µ is a block measure with blocks
C1, C2, . . . , Cℓ. ◀

7. Functions that generate transition matrices

In this final section we pose an inverse question. As usual, the state
space is S = {1, 2, . . . , n}. Recall the set PS of transition matrices on
S and the set FS of functions from S to S. Given a subset G ⊆ FS, let

P(G) = {P ∈ PS : ∃µ ∈ LP with supp(µ) ⊆ G}.
In other words, P(G) is the set of (irreducible) stochastic matrices that
can be obtained by just using functions in G.

Question 7.1. For given G ⊆ FS, what can be said about the set P(G)?

Example 7.2. For distinct x, y ∈ S let

fx,y(v) =

{
y if v = x,

v otherwise.

This is ‘almost’ the identity function (except that x 7→ y). Let G =
{fx,y : x, y ∈ S, x ̸= y}, so that G contains n(n − 1) functions. Let
α = (αx,y : x ̸= y) be a vector of non-negative reals satisfying∑

x,y:x̸=y

αx,y = 1.

Let µα be the probability measure on G that selects fx,y with proba-
bility αx,y. The corresponding P = Pα = (pi,j) satisfies

pi,j = µ
(
{f : f(i) = j}

)
= µ({fi,j}) = αi,j, i ̸= j,

while
pi,i = µ

(
{f : f(i) = i}

)
= 1−

∑
j: j ̸=i

αi,j.

Therefore, P(G) is the set of stochastic matrices whose off-diagonal
elements sum to 1. ◀

Some very special cases admit precise answers to Question 7.1. Let
DS ⊂ PS denote the set of doubly stochastic matrices, and let Fperm

S ⊂
FS denote the set of permutations of S.
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Proposition 7.3.

(a) P(G) = DS if and only if G = Fperm
S .

(b) P(G) = PS if and only if G = FS.

Proof. (a) This is a consequence of Theorem 2.6.
(b) Suppose first that G = FS. For P ∈ PS one can construct its

independence coupling (recall Example 2.2). Therefore P(G) = PS.
Suppose conversely that G is such that P(G) = PS. We claim that

for every f ∈ FS there exists P ∈ PS (hence P ∈ P(G)) such that
f ∈ supp(µ) for every µ ∈ LP . This implies that f ∈ G and therefore
G = FS as required.

It remains to verify the above claim. Let f = (j1j2 . . . jn) ∈ FS (recall
Definition 3.9). There exists Pf = (pi,j) ∈ PS such that pi,ji > 1− 1/n
for every i ∈ S; the remaining terms pi,j, j ̸= ji, are assumed strictly
positive, thus implying that Pf is irreducible. For µ ∈ LPf

, we have

µ
(
{g ∈ FS : g(i) = ji}

)
> 1− 1

n
, i = 1, 2, . . . , n,

whence

µ(f) = µ

(⋂
i∈S

{g : g(i) = ji}

)
> 0.

Therefore, f ∈ supp(µ). ■

We recall the random transition matrix of Remark 2.4, with law Q.

Question 7.4. For given G ⊂ FS, what can be said about Q(P(G))?

This section closes with some partial answers to this question.
Firstly, in the proof of Proposition 7.3(b) it is shown that, if f /∈ G,

then any matrix with pi,f(i) > 1− n−1 for all i ∈ S does not belong to
P(G). It follows that Q(P(G)) < 1 whenever G ̸= FS.

Secondly, in Example 7.2, we have Q(P(G)) = 0 since GS is the set
of stochastic matrices with off-diagonal elements summing to 1.

Thirdly, in the case |S| = 2 there are just 4 functions, namely

(11), (12), (21), (22).

It is elementary that if G is missing two of them then Q(G) = 0. The
following lemma shows that (when n = 2) removing a single function
one retains positive measure.

Proposition 7.5. If |S| = 2 and f ∈ FS, then Q(P(FS \ {f})) = 1
2
.
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Proof. Given a probability mass function α on FS, the resulting matrix
P is given by

(7.1) P =

(
α(11) + α(12) α(21) + α(22)

α(11) + α(21) α(12) + α(22)

)
.

Henceforth, fix f = (uv) and write u′ ̸= u and v′ ̸= v. Let Puv

denote the set of P ∈ PS for which p2,v < p1,u′ . Since p2,v and p1,u′ are
independent with the same probability density function (under Q), we
have that Q(Puv) =

1
2
. We claim that

(7.2) P(FS \ {f}) = Puv,

and the proposition will follow immediately. It remains to prove (7.2).
Let P ∈ P(FS\{f}). There exists a mass functionα on FS satisfying

α(uv) = 0 such that (7.1) holds; note that α(ab) > 0 for (ab) ̸= (uv),
Q-a.s., and we will assume this. By (7.1),

p2,v = α(u′v) < α(u′v) + α(u′v′) = p1,u′ .

Since P is stochastic, we have also that p2,v′ > p1,u, and hence P ∈ Puv

as required.
Conversely, let P ∈ Puv, so that p2,v < p1,u′ . Set

α(uv) = 0, α(uv′) = p1,u, α(u′v) = p2,v, α(u′v′) = 1− (p1,u + p2,v),

and note that

1− α(u′v′) = p1,u + p2,v < p1,u + p1,u′ = 1.

The stochastic matrix Q = (qi,j) corresponding to α (according to
(7.1)) satisfies

q1,u = α(uv) + α(uv′) = α(uv′) = p1,u,

q2,v = α(uv) + α(u′v) = α(u′v) = p2,v,

whence Q = P . Therefore, Puv ⊆ P(FS \ {f}) and the proof of (7.2)
is complete. ■

Finally, for any ϵ > 0, when |S| is large there exist sets G ⊆ FS with
size satisfying |G| > (1 − ϵ)|FS| for which P(G) has Q-measure zero.
Here are two examples.

Proposition 7.6. We have Q(P(G)) = 0 in the following two cases.

(a) Let i, j ∈ S and G = Gi,j = {f ∈ FS : f(i) ̸= j}.
(b) Let i1, i2, j1, j2 ∈ S satisfy i1 ̸= i2, and let G be the set of all

f ∈ FS such that

f(i1) = j1 if and only if f(i2) = j2.
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Let n = |S|. The cardinality of G in part (a) is |FS|(1 − n−1), and
in part (b) is |FS|(1− 2n−1 + o(n−1)).

Proof. (a) For any µ supported on Gi,j we have µ({f : f(i) = j}) = 0,
whence every P = (pi,j) ∈ P(G) has pi,j = 0. The probability of such
P satisfies Q(P(G)) = 0.

(b) For any µ supported on such G we have

µ({f : f(i1) = j1}) = µ({f : f(i2) = j2}),
so every P = (pi,j) ∈ P(G) has pi1,j1 = pi2,j2 . The claim follows. ■

Example 7.7. Let n = 3, so that |FS| = 27. Let G be the following set
of 15 functions:

G = {(111), (311), (121), (321), (231),
(112), (312), (122), (322), (232),

(113), (313), (123), (323), (233)}.
Note that 1 7→ 2 if and only if 2 7→ 3 (the relevant functions are in bold
above) so, by Proposition 7.6(b), P(G) has zero Q-measure. ◀
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