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Abstract Consider the voter model on a box of side length L (in the tri-
angular lattice) with boundary votes fixed forever as type 0 or type 1 on
two different halves of the boundary. Motivated by analogous questions in
percolation, we study several geometric objects at stationarity, as L → ∞.
One is the interface between the (large – i.e., boundary connected) 0-cluster
and 1-cluster. Another is the set of large “coalescing classes” determined by
the coalescing walk process dual to the voter model.
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1 Introduction

In this section we motivate our study of the (two-dimensional) voter model
and its dual coalescing walks through their connection with a number of
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Fig. 1 A possible percolation configuration on BL with L = 22, with the explo-
ration path shown in green.

percolation models. In Section 2, we report on numerical results for the di-
mension of a natural “chordal interface” of the voter model. In Section 3 we
give rigorous (and a few numerical) results on the large coalescing classes
for coalescing walks (where vertices x and y in a box are in the same class
if their walks coalesce before hitting the boundary), which can be seen as
preliminary results for understanding the limiting behaviour of the interface.
In the appendix, more details about our numerical results are provided.

Among the most important breakthroughs in statistical physics and prob-
ability in the last two decades is the work by Schramm and coauthors [8,
14,15] and Smirnov [16–18] identifying (or conjecturing) members of the
Schramm-Loewner Evolution family of random curves as the scaling limits of
various random walks and interfaces in two-dimensional spin systems. In par-
ticular Smirnov [16,17] (see also Camia and Newman’s paper [2]) has shown
that the scaling limit of critical site-percolation on the triangular lattice T

is SLE6. To give a rough description of one version of this statement, take a
rhombic box BL (containing L × L vertices) in the triangular lattice in two
dimensions. Label the sides clockwise starting from the southwest corner as
∂1, ∂2, ∂3, ∂4. A percolation configuration on BL is an element ω = (ωx)x∈BL

of ΩL = {0, 1}BL defined as follows. Fix the vertices in ∂1 and ∂2 to have value
0 (or black or closed) and those in ∂3 and ∂4 to be 1 (or red or open). In the

interior B̊L, set each vertex to be (independently) 0 or 1, with probability 1/2
each – see Figure 1. There exists a unique simple path ZL(ω) of length ∣ZL∣
from the southwest corner following edges in the dual hexagonal lattice to
the opposite corner that keeps black/closed vertices on the left and red/open
vertices on the right. ZL is often referred to as the exploration path; we will
also call it the chordal interface. As L ↗ ∞ the law of ZL, after rescaling,
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converges weakly to a probability measure on continuous paths that is the
law of chordal SLE6 [2,16] in a rhombic domain. One can use this to prove

(see [13, Prop. 2]) that E[∣ZL∣] ≈ L7/4, where

f(L) ≈ g(L) ⇐⇒
log(f(L))
log(g(L)) → 1, as L→∞. (1)

In general for β > 0 we have that f(L) ≈ Lβ if and only if

f(L) = Lβℓ(L), where
log ℓ(L)
logL

→ 0, as L→∞. (2)

Note that ω ∈ ΩL uniquely determines the path ZL(ω). One can therefore ask
about the limiting behavior of ZL when the configurations ω are generated
by some other process (i.e., not i.i.d. critical site percolation) in the interior

B̊L. In the case of the Ising model (where the states at two sites are not
independent) at the critical temperature, Smirnov and coauthors [18,3] have
identified that the limiting probability measure is instead chordal SLE3. We
are interested in the limiting behavior of ZL when the law of the configuration
ω is the stationary distribution of the voter model (or related models) on B̊L.

1.1 The voter model

In this section we define our primary model of interest, on BL as described
above, with boundary states set as 0 on one pair of adjacent sides and 1
on the other pair, while the law of the interior states ω̊ = (ωx)x∈B̊L

is the

stationary measure for the voter model {Vt}t≥0 on B̊L, as follows.

Each v ∈ B̊L has its own independent Poisson clock (a Poisson process
Γv) of rate 1. When the clock of a vertex v rings we update the state Vt(v)
of v by choosing one of its six neighbors uniformly at random and adopting
the state of the chosen neighbor. Note that the neighbor may be one of the
vertices in the boundary ∂BL = BL ∖ B̊L whose state is fixed. Defined this

way, Vt is an irreducible Markov process with finite state space Ω̊ = {0, 1}B̊L ,
and therefore it has a unique invariant distribution. We will write V L

∞ for a
random configuration sampled from this invariant distribution.

The process admits a well-known graphical representation (due to T.E.
Harris [7]) which we now review. For each v ∈ BL, we draw a positive half
line (representing time) in the third dimension, and on it we mark the times
of Poisson clock rings of that vertex. Each mark on a time line represents a
state update event which also has an arrow from v to the uniformly chosen
neighbor whose state is adopted. The lines of the boundary vertices have
arrow marks to them, but not from them, as those states are fixed.

Fix an initial configuration V0 = {V0(x)}x∈B̊L
. To determine the state

of a vertex v ∈ B̊L at time t we start at height/time t on the time line
corresponding to v and follow it down until we reach height/time 0 or we
encounter an outgoing arrow (whichever comes first) at height t′ ∈ (0, t). If
we meet an outgoing arrow we follow it to the time line of a neighboring vertex
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v′ and proceed as before, following this time line down from height t′ until
reaching height/time 0 or an outgoing arrow. We stop this procedure when
we reach a boundary vertex or height 0 on some time line. Thus from any
v ∈ B̊L and t > 0 the path followed corresponds to a continuous time nearest
neighbor simple random walk on BL stopped upon reaching a boundary
vertex or height 0. In either case the state a at the terminal vertex is known
and we set Vt(v) = a.

Such a system of “state genealogy walks” from all the vertices at time t
following backward in time is a dual model and is distributed as a system of
coalescing simple symmetric continuous time random walks on the triangular
lattice – see for example [6]. Since BL is finite, if t is large enough all the walks
starting then will with high probability hit the boundary before reaching
height 0. Indeed, if we continue the time lines and Poisson clocks below
height 0 (and do not terminate the walks at height 0) then almost surely
from any height t there will be a random height Tt ∈ (−∞, t) at which the

walks started from all vertices v ∈ B̊L at height t will have reached boundary
vertices. What happens on the time lines below height Tt does not affect{Vs}s≥t since the states of the boundary vertices are fixed for all time. This
is equivalent to saying that the voter model itself reaches stationarity by a
random finite time (distributed as t − Tt).

Therefore to sample from V L
∞ it is enough to follow a system of coalescing

continuous time simple random walks from each vertex v of B̊L until they hit
a boundary vertex xv, and set V L

∞(v) = V L
∞(xv), i.e. V L

∞(v) = 0 if xv ∈ ∂1∪∂2,
and V L

∞(v) = 1 otherwise. One could instead sample from V L
∞ by setting

V0(v) = 2 for every v ∈ B̊L (so the state space would become {0, 1, 2}B̊L) and
simulating the voter model dynamics until there is no vertex with state 2.

Figure 2 shows a simulation of V L
∞ with L = 1026, obtained by simulating

coalescing random walks from each vertex in the interior, until each one has
reached the boundary.

1.2 Harmonic percolation and related models

The duality discussed in the previous section tells us that P(V∞(x) = 1) (we
drop the superscript L when there is no ambiguity) is the probability that
a simple random walk started at x first hits the boundary at a 1-site. In
other words, the one-dimensional distributions of our voter model on BL are
equal to those of a model we would like to call harmonic percolation. This
is a model under which the states {ωv}v∈B̊L

are independent of each other,

and as we have already suggested, P(ωv = 1) is equal to the probability that
a simple random walk started from v first hits the boundary ∂BL at a 1-site
(i.e., in ∂3 ∪ ∂4). Harmonic percolation on an infinite strip of thickness L
coincides with an independent percolation model called gradient percolation
[10–12]. In the case of gradient percolation the probability p(x) of a site x
being open changes linearly from one boundary where it is 0 to the other
boundary where it is 1. Thus the function p(x) is harmonic inside the strip
(with specified boundary conditions). The difference between the voter and
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Fig. 2 A single realization of V L

∞
with L = 1026, simulated using C++. The white

curve is the exploration path or chordal interface.

harmonic percolation models arises from the fact that the walks in the for-
mer are coalescing, whereas in the latter they are independent. To be more
explicit, coalescence in the voter model leads to non-zero correlations as in
the following simple lemma.

Lemma 11. For any n > 1, and any x1, . . . , xn in the interior of BL,

P (∩ni=1{V L
∞(xi) = 1}) > n

∏
i=1

P (V L
∞(xi) = 1) . (3)

Proof Fix L, x1 and x2, and let ∂0 and ∂1 denote the elements of ∂BL with
fixed states 0 and 1 respectively. Let S1 and S2 be two independent random
walks starting from x1 and x2 respectively. Let τx1x2 = inf{t ∶ S1(t) = S2(t)}
be the first time that S1 and S2 meet each other. Let S′1 = S1 for all times
and define

S′2(t) = {S2(t), if t ≤ τx1x2

S1(t), if t > τx1x2 ,
(4)

so that S′1 and S′2 are coalescing walks started from x1 and x2 respectively.
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Let τ iL = inf{t ∶ Si(t) ∈ ∂BL} and τ ′
i
L = inf{t ∶ S′i(t) ∈ ∂BL} denote the

respective hitting times of the boundary, and note that τ ′
1
L = τ

1
L. Then

P(V∞(x1) = 1, V∞(x2) = 1)
=P(S′1(τ ′1L) ∈ ∂1, S′2(τ ′2L) ∈ ∂1)
=P(S1(τ1L) ∈ ∂1, S2(τ2L) ∈ ∂1, τx1x2

< τ1L ∧ τ
2
L)

+ P(S1(τ1L) ∈ ∂1, S2(τ2L) ∈ ∂0, τx1x2
< τ1L ∧ τ

2
L)

+ P(S1(τ1L) ∈ ∂1, S2(τ2L) ∈ ∂1, τx1x2
≥ τ1L ∧ τ

2
L)

=P(S1(τ1L) ∈ ∂1, S2(τ2L) ∈ ∂1) + P(S1(τ1L) ∈ ∂1, S2(τ2L) ∈ ∂0, τx1x2
< τ1L ∧ τ

2
L)

=P(V∞(x1) = 1)P(V∞(x2) = 1) + P(S1(τ1L) ∈ ∂1, S2(τ2L) ∈ ∂0, τx1x2
< τ1L ∧ τ

2
L)

(5)

>P(V∞(x1) = 1)P(V∞(x2) = 1).
This proves the result for n = 2. A similar coupling argument can be made for
any number n of walkers starting from vertices x1, . . . , xn ∈ BL (choosing the
lower indexed random walker to continue when any two meet), establishing
the claim. ∎

For any ǫ > 0, if x1(L) and x2(L) are distance at least ǫL from each
other and the boundary ∂BL then there exist cǫ > 0 and Cǫ < 1 such that
P(V∞(xi) = 1) ∈ (cǫ, Cǫ) for i = 1, 2 and all L, while

P(S1(τ1L) ∈ ∂1, S2(τ2L) ∈ ∂0, τx1x2
< τ1L ∧ τ

2
L)

≤P(τx1x2
< τ1L ∧ τ

2
L) ≤ P(τ∆o < τ∆∂B2L

) = O ( 1

logL
) ,

where τ∆o and τ∆∂B2L
are times when the difference random walk S1(t)−S2(t)

started at x1 − x2 first hits the origin and the boundary of the box B2L

respectively, and the last equality follows from Proposition 6.4.3 of [9]. Then
(5) implies that the correlation ρ(V∞(x1), V∞(x2)) between the votes at x1

and x2 goes to zero as per the following.

Lemma 12. Let ǫ > 0, and x1(L) and x2(L) be distance at least ǫL from

each other and the boundary ∂BL. Then ρ(V∞(x1), V∞(x2))→ 0 as L→∞.

One can consider i.i.d. percolation, harmonic percolation, and the sta-
tionary voter model on BL as special cases of a general 2-parameter family
of models as follows. Start a continuous-time walker from each site. Each
walker initially wears a hat. Two walkers wearing hats coalesce when they
meet, and instantly become a single walker wearing a hat. Walkers not wear-
ing hats do not coalesce with any other walkers. In addition a Poisson clock is
assigned to each walker. When such a clock rings, the walker takes a random
walk step, but before doing so removes her coalescence hat with probability
q. If a walker wearing a hat steps into a site with another walker with a hat
on, the walker that just made a step becomes part of the coalescence set of
the walker that was already at the site. Upon hitting a boundary site, with
probability 1−p a walker (and her entire coalescence set) is assigned the vote
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of the boundary vertex she hit, and otherwise (i.e., with probability p) her
entire coalescence set attains an independently and uniformly chosen vote.
Varying the boundary and coalescence noise parameters p and q between
0 and 1 allows us to interpolate between the four corner models: the voter
model (p, q) = (0, 0); harmonic percolation (p, q) = (0, 1); i.i.d. percolation(p, q) = (1, 1); and the case p = 1, q = 0 corresponds to a model we would like
to call cow (coalescing walk) percolation.

2 Interface length

Recall that ∣ZL∣ denotes the length of the interface. Since this path is a
nearest neighbor simple path, there exist c,C > 0 such that cL ≤ ∣ZL∣ ≤ CL2

almost surely. We conjecture that

HL ≡ E[∣ZL∣] ≈ Ld (6)

for some d ∈ [1, 2]. In the case of critical i.i.d. percolation, (6) holds with
d = 7/4 = 1.75 which is also the Hausdorff dimension of the limiting law (i.e.,
of SLE6, see [1]).

For gradient percolation on an infinite strip, the interface curve between
the occupied cluster and empty cluster is a.s. unique and has expected length
approximately L3/7lL, where lL is the horizontal length of the piece of strip in
which we measure boundary length [10, Proposition 11]. So, for any ǫ > 0, for
all sufficiently large L, if we take a piece of strip which is L long (and L thick),

the expected length of the interface curve HL satisfies L10/7−ǫ
≤ HL ≤ L

10/7+ǫ.
For any δ > 0, with probability going to 1 with L, the curve stays in the central
band (around the central L/2 line where p = 1

2
) of width L4/7+δ [10, Theorem

6]. Thus, as L → ∞, unless we appropriately zoom in around the central
line, we expect to see the rescaled interface curve converge to a straight line
in the center. Since the harmonic function inside a rhombic area with our
boundary condition looks almost linear along the diagonal that connects the
middle corner of the 1 valued boundary to the middle corner of the 0 valued
boundary (or indeed along any parallel line), we expect that the interface
curve for harmonic percolation inside our rhombus should scale to a straight
line as well.

Writing HL = Ldℓ(L) for some function ℓ(L) which makes the equality
true we have that

d =
log(HL)
log(L) − log(ℓ(L))

log(L) = log2 (H2L

HL

) − log2 (ℓ(2L)
ℓ(L) ) . (7)

Computing the average interface curve length Z̄m(L) from m independent
realizations of V L

∞ we obtain the following estimators for d based on (7)

d̃ = d̃m,L =
log(Z̄m(L))

log(L) , (8)

d̂ = d̂m,L = log2 ( Z̄m(2L)
Z̄m(L) ) . (9)
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We say that an estimator β̂ (more precisely a family of estimators {β̂m,L ∶
m,L ∈ N}) is a consistent estimator of some quantity β if

lim
L→∞

lim
m→∞

β̂m,L = β, almost surely. (10)

It is easy to show that d̃ is a consistent estimator of d if and only if log(ℓ(L))/ log(L)→
0 as L → ∞ (i.e., if and only if HL ≈ L

d), while d̂ is a consistent estimator
for d if and only if ℓ(2L)/ℓ(L) → 1 as L → ∞. Thus both estimators are
consistent if ℓ is slowly varying at ∞.

If we are willing to assume that the random interface length ∣ZL∣ in a box
of size L satisfies ∣ZL∣ = CLdeε, where ε is independent of L and E[ε] = 0,
then it is natural to consider the ordinary least squares estimator d∗ for the
slope coefficient d of the simple linear regression model

log(∣Zi∣) = d log(Li) + a + εi, (11)

where {∣Zi∣}i≤n are interface lengths on boxes of side lengths {Li}i≤n, and
the εi are random variables (independent of Li) with mean 0. Note that ℓ(L)
is constant under this assumption. In the cases of the voter model and cow
percolation, where we might expect log corrections to appear (see for example
Theorem 31) if one assumes that ∣ZL∣ = CLd(logL)ζeε then it is natural to
consider the estimator d∗∗ for the slope coefficient d of the modified simple
linear regression model

log(∣Zi∣) = d log(Li) + ζ log(log(Li)) + a + εi. (12)

In fitting this model we introduce a significant new problem due to the fact
that log logL varies very little (so is difficult to distinguish from the constant
term a) while at the same time it is severely correlated with the main ex-
planatory term logL. This will result in poor estimates for ζ. We will let the
data decide which of d∗ and d∗∗ is appropriate, based on the explanatory
power of the variable log logL in the regression model (12).

Estimates d̂, d̃, d∗, d∗∗ of d, each based on m = 10000 independent simula-
tions appear in Table 1. Since we make no assumptions about the distribution
of the interface lengths (other than what we have already discussed), we have
not constructed confidence intervals for the true value of the parameter, but
instead have used bootstrapping methods to estimate the variability in our

point estimates for d̂ and d̃. For d∗ (resp. d∗∗) we simply note that the stan-
dard error output from fitting a simple linear regression model is at most
0.002 (resp. 0.04) in each case. Each interval in Table 1 is the result of taking
10000 bootstrap samples (with replacement) each of size 10000 from the data,
computing the relevant statistic for each bootstrap sample, and removing the
smallest and largest 2.5% of values. See Section 4.1 for further details.

For ordinary percolation and harmonic percolation the true values are
known (or expected) to be 7/4 = 1.75 and 10/7 ≈ 1.4286, so for these models

d̂ (with L = 512 and 2L = 1024) performs the best, while the linear regression
estimator d∗ also performs quite well. The estimator d∗∗ is not given because
for these two models the additional variable log(log(L)) does not have sig-
nificant explanatory power (and results in a poorer estimate for d). For both
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d̂ d̃ d∗

L 128 256 512 128 256 512 1024 (d∗∗)
voter 1.450 1.461 1.463 1.595 1.577 1.564 1.554 1.459

(1.442,1.458) (1.453,1.469) (1.455,1.470) (1.514)
cow. 1.481 1.488 1.495 1.669 1.645 1.628 1.615 1.488

(1.470,1.493) (1.476,1.499) (1.484,1.507) (1.553)
harm. 1.423 1.422 1.429 1.625 1.600 1.580 1.565 1.426

(1.419,1.427) (1.418,1.426) (1.426,1.432)

perc. 1.740 1.746 1.751 1.849 1.836 1.826 1.818 1.746
(1.729,1.751) (1.735,1.757) (1.740,1.762)

Table 1 Estimates of d with m = 10000 and with L = 128,256,512 (and 1024),
rounded to 3 decimal places. The brackets are “bootstrap 95% confidence intervals”
obtained from the quantiles of 10000 bootstrap estimates. For d̃ the intervals all
have width at most 0.002 (similarly the standard error given by the fitted linear
model in estimating d∗ is at most 0.002).

of these models (and for small values of L), d̂ and d̃ appear to systematically
underestimate and overestimate d respectively, with bias typically decreasing
with L.

While the above discussion says very little about the relative performance
of the estimators in any other setting (so in particular in the case of our de-

pendent models, voter and cow), based on the fact that the d̂ and d̃ estimates
in these settings are also increasing and decreasing in L, one can hope that
the true value lies between them (in fact the d∗∗ estimates do lie between
them). If so then the values of d for percolation and cow percolation would
be different, and then one might also expect the voter model and harmonic
percolation to have different d.

3 The sizes of coalescing classes and related questions

The interface curve cannot pass through any connected cluster of common
votes. The difference between the voter and harmonic percolation models is
that the states are determined by coalescing random walks rather than inde-
pendent random walks (started at each site). If the coalescing classes in the
voter model are negligible as L ↑ ∞, both in terms of size and the correla-
tion between votes in different classes, then perhaps some kind of rescaling
argument would allow one to compare the voter model to the harmonic per-
colation model. One expects that the rescaled interface curve for harmonic
percolation on BL converges to a straight line (Pierre Nolin has proved this
on the strip [10]), so one might expect the same to be true for the voter
model, if the coalescing classes are indeed negligible as L ↑∞.

Clustering behaviour for the 2-dimensional voter model has been well
studied in the probability literature (see e.g. [5]), but (as far as we know)
not in the current setting of a finite domain with unflinching boundary. As
a small step in the direction of understanding the correlation between votes
in different classes, let us verify that any two sites x and y are less likely
to share a common vote (than they otherwise would be) if they are not in
the same coalescing class. Fix L and start coalescing walks from every site
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Fig. 3 A single realization of the 5 largest coalescing classes (colors other than
black) for L = 1026. The white curve is the chordal interface.

in B̊L. The walks define an equivalence relation on B̊L in the sense that
x ∼ y if and only if the walks started from x and y coalesce before hitting
the boundary. Let CL(x) denote the (random) equivalence class of x. Let
A = Axy = {V∞(x) = V∞(y)} and B = Bxy = {CL(x) = CL(y)} = {x ∼ y}.
Then P(B) ∈ (0, 1) and

P(A) = P(A∣B)P(B) + P(A∣Bc)P(Bc) = P(B) + P(A∣Bc)P(Bc) > P(A∣Bc),
as claimed. On the other hand, as we have seen earlier, if x = x(L) and y =
y(L) are distance at least ǫL apart then P(Bc)→ 1 and P(A∣Bc)−P(A)→ 0
as L ↗ ∞, with P(A) being bounded away from zero as L ↗ ∞ if x and y
are also at least ǫL distance from the boundary.

We are hereafter interested in the behavior of the expected size of the
class of the centre of the rhombus BL, which we will for convenience take to
be the origin (if L is not odd we consider the centre/origin to be any one of
the closest vertices to the centre) and the expected size of the largest class
E [∣ML∣] as L→∞, where

ML = CL(x′), where x′ is chosen such that ∣CL(x′)∣ = max
x∈B̊L

∣CL(x)∣, (13)

where some tie-breaking rule is used to choose x, if necessary. In particular,
we ask what proportion of all vertices in the box are in the largest class, as
L→∞? Since ∣B̊L∣ ≈ cL2, we are interested in limL→∞E [∣ML∣/L2]. Figure 3
shows a single realization of the 5 largest classes for L = 1026.

The following is our main rigorous result, which shows that coalescing
classes have (on average) small (but only logarithmically small) volume com-
pared to the whole box. We note that the lower bound can be improved
slightly with a little more effort.
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Theorem 31. There are constants C′ and C′′ in (0,∞), such that

C′

(logL)713 ≤ E [
∣CL(o)∣∣B̊L∣ ] ≤ E [

∣ML∣∣B̊L∣ ] ≤ (
C′′

logL
)1/2 . (14)

Proof First note that to have BL centered at the origin and to have the
smaller rhombi used in the proof to be consistent with the lattice we need L
to be such that L−1 is divisible by 12, and then for rhombi of fractional side
lengths such as L/2 we should use BL−1

2
+1 instead of BL/2. For notational

convenience we will ignore these issues, but we note though that the same
arguments would in any case work with trivial but messy modifications.

For both the upper and lower bounds in (14) we will use the fact that,

for x ∈ B̊L,

E [∣CL(x)∣] = E⎡⎢⎢⎢⎢⎣ ∑y∈B̊L

1{y∈CL(x)}

⎤⎥⎥⎥⎥⎦ = ∑y∈B̊L

P(y ∈ CL(x)). (15)

To verify the lower bound, let {Sx}x∈B̊L
= {{Sx(t)}t≥0}x∈B̊L

be indepen-

dent continuous-time (with jump rate 1), nearest-neighbor random walks on

the triangular lattice, with respective starting points Sx(0) = x ∈ B̊L. For

x, y ∈ B̊L, let τxy = inf{t ∶ Sx(t) = Sy(t)}, and τxL = inf{t ∶ Sx(t) ∈ ∂BL} de-
note the meeting times and boundary hitting times respectively. Then (15)
with x = o can be written as

E [∣CL(o)∣] = ∑
x∈B̊L

P (τox < τoL ∧ τxL) . (16)

By Lemma 32 below there is a positive constant c′ such that for each x ∈
BL/2 ∖BL/4,

P (τox < τoL ∧ τxL) ≥ c′(logL)713 . (17)

Combining (16) and (17) we obtain

E [ ∣CL(o)∣∣B̊L∣ ] ≥
1

cL2
∑

x∈BL/2∖BL/4

P (τox < τoL ∧ τxL) ≥ C′(logL)713 , (18)

for another positive constant C′, which verifies the lower bound in (14).

To establish the upper bound, note that for any x, y ∈ B̊L the difference
walk S∆

x−y(t) = Sx(t)−Sy(t) is also a simple symmetric random walk started

at x − y but with jump rate 2. Let τ∆x
o = inf{t ∶ S∆

x (t) = o} and τ∆x

L = inf{t ∶
S∆
x (t) ∈ ∂BL} be the first hitting times of the origin and the boundary ∂BL
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by the difference walk S∆
x , and let τxo = inf{t ∶ Sx(t) = o} be the first time Sx

hits the origin. Then

E[∣CL(x)∣]
cL2

=
1

cL2
∑

y∈B̊L

P(τxy < τxL ∧ τyL)
≤

1

cL2
∑

y∈B̊L

P(τ∆x−y
o < τ

∆x−y

2L )
≤

1

cL2
∑

y∈B2L∖o

P(τyo < τy2L) + P(τoo < τo2L)
cL2

. (19)

Using Theorem 6.4.3 of [9] on the summation, (19) is bounded above by

C

L2
∑

y∈B2L∖o

log(L/∣y∣)
logL

+
1

cL2
. (20)

Next, we split the sum into dyadic annuli (all but finitely many of which
contain no vertices). Since BL has been defined via the number of vertices

on the boundary (so only for integer L), we let B̂R denote the rhombic R×R
box centered at the origin in R

2 and let AL,k denote the (possibly empty)

intersection of (B̂2L/2k−1 ∖ B̂2L/2k) with the triangular lattice. Then the first
term in (20) is equal to

C

L2

∞

∑
k=1

∑
y∈AL,k

log(L/∣y∣)
logL

≤
C

L2

∞

∑
k=1

∑
y∈AL,k

log(2k−1)
logL

≤
C′

L2

∞

∑
k=1

(2L
2k
)2 ⋅ k − 1

logL

≤
C′′

logL
.

Therefore

sup
x∈B̊L

E [ ∣CL(x)∣∣B̊L∣ ] ≤
C′′′

logL
. (21)

Markov’s inequality gives (ǫ∣B̊L∣)−1E [∣CL(x)∣] ≥ P(∣CL(x)∣ > ǫ∣B̊L∣) for any
ǫ = ǫ(L) > 0, so

sup
x∈B̊L

P(∣CL(x)∣ > ǫ∣B̊L∣) ≤ 1

ǫ
sup
x∈B̊L

E [ ∣CL(x)∣∣B̊L∣ ] ≤
1

ǫ
⋅
C′′′

logL
. (22)
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It follows that

E [ ∣ML∣∣B̊L∣ ] ≤
1∣B̊L∣E [∣ML∣1{∣ML∣>ǫ∣B̊L∣}

] + ǫ = 1∣B̊L∣E
⎡⎢⎢⎢⎢⎣ ∑x∈B̊L

1{x∈ML}1{∣ML∣>ǫ∣B̊L∣}

⎤⎥⎥⎥⎥⎦ + ǫ
≤

1∣B̊L∣E
⎡⎢⎢⎢⎢⎣ ∑x∈B̊L

1{∣CL(x)∣>ǫ∣B̊L∣}

⎤⎥⎥⎥⎥⎦ + ǫ =
1∣B̊L∣ ∑x∈B̊L

P(∣CL(x)∣ > ǫ∣B̊L∣) + ǫ
(23)

≤
1∣B̊L∣ ∑x∈B̊L

sup
x∈B̊L

P(∣CL(x)∣ > ǫ∣B̊L∣) + ǫ = sup
x∈B̊L

P(∣CL(x)∣ > ǫ∣B̊L∣) + ǫ
≤
1

ǫ
⋅
C′′

logL
+ ǫ.

Choose ǫ(L) = ( 1
logL
)1/2 to get the claimed upper bound. ∎

Lemma 32. Fix some small ǫ > 0. There exists c′ > 0, such that for all

x ∈ BL/2 ∖BǫL,

P (τox < τoL ∧ τxL) ≥ c′(logL)713 . (24)

Proof The triangular lattice is constructed from 3 families of parallel lines
(or “directions”), denoted by D = {⤡,⤢,↔}, with each vertex being at the
intersection of 3 such lines (one from each family), and having 6 nearest
neighbors corresponding to moving “up” or “down” in any one of these direc-
tions. We define a system of two dependent discrete-time random walks Ŝo

and Ŝx on the triangular lattice in the following way: Ŝo(0) = o and Ŝx(0) = x;

for each t ∈ N toss a fair coin to decide which of Ŝo(t) or Ŝx(t) makes an
i.i.d. uniformly chosen nearest-neighbor step on the triangular lattice (while
the other does not move). Let τ̂ox, τ̂xL, and τ̂oL be the corresponding meeting

and boundary hitting times for Ŝo(t) and Ŝx(t). Since {(Ŝo(t), Ŝx(t))}t∈Z+
has the same law as the jump process of {(So(t), Sx(t))}t∈R+ and the event
in (24) depends only on the relative sizes of the hitting times, we have

P (τox < τoL ∧ τxL) = P (τ̂ox < τ̂oL ∧ τ̂xL) . (25)

Now we focus on the discrete time random walks Ŝo(t) and Ŝx(t). For t ∈ N,
let Rt denote the set of ordered partitions r = (r⤡, r⤢, r↔)(t) of {1, 2, . . . , t}
into three (possibly empty) sets. For s ≤ t, let h(s) ∈ D denote the direction of

the step taken by (one of) the pair (Ŝo, Ŝx) at time s. For r = (r⤡, r⤢, r↔) ∈
Rt let Ar be the event that for each ● ∈ {⤡,⤢,↔} and s ∈ r●, h(s) = ●, i.e.,
that steps in direction ⤡ are taken at times in r⤡ etc. Conditioning on Ar

we can rewrite the probability above as follows

P (τ̂ox < τ̂oL ∧ τ̂xL) = ∞∑
t=0
∑
r∈Rt

P (τ̂ox = t, τ̂oL ∧ τ̂xL > t ∣ Ar)P (Ar) . (26)
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Let S∆ and SΣ denote the difference and sum walks starting at x, defined
by S∆(t) = Ŝx(t)− Ŝo(t) and SΣ(t) = Ŝx(t)+ Ŝo(t), and let τ∆o and τ∆L , and
τΣo and τΣL be the hitting times of the origin and the boundary ∂BL by the
difference and sum walks respectively. Since

Ŝx(t) = Ŝx(t) − Ŝo(t)
2

+
Ŝx(t) + Ŝo(t)

2
, (27)

we have

∣Ŝx(t)∣ ≥ L => ∣Ŝx(t) − Ŝo(t)∣ ≥ L or ∣Ŝx(t) + Ŝo(t)∣ ≥ L. (28)

A similar statement holds for Ŝo(t). Thus we have

{τ̂oL ∧ τ̂xL > t} ⊇ {τΣL > t} ∩ {τ∆L > t}. (29)

Therefore (26) can be continued as follows

∞

∑
t=0
∑
r∈Rt

P (τ̂ox = t, τ̂oL ∧ τ̂xL > t ∣ Ar)P (Ar)
≥

∞

∑
t=0
∑
r∈Rt

P (τ∆o = t, τ∆L > t, τΣL > t ∣ Ar)P (Ar) (30)

=

∞

∑
t=0
∑
r∈Rt

P (τ∆o = t, τ∆L > t∣Ar)P (τΣL > t ∣ Ar)P (Ar) ,
where the last equality follows from the fact that the sum and difference
walks are conditionally independent given Ar (e.g., if we know that the sum
walk makes a positive step in a specific direction, the difference walk is still
equally likely to make either a positive or negative step in that direction).

Let x ∈ BL/2. Truncating the infinite sum and using Lemma 33 below we
have

∞

∑
t=0
∑
r∈Rt

P (τ∆o = t, τ∆L > t∣Ar)P (τΣL > t ∣ Ar)P (Ar)
≥

n

∑
t=0
∑
r∈Rt

P (τ∆o = t, τ∆L > t∣Ar)P (τΣL > t ∣ Ar)P (Ar) (31)

≥ P (τ̌o±L/12 > n) n

∑
t=0
∑
r∈Rt

P (τ∆o = t, τ∆L > t ∣ Ar)P (Ar) ,
where τ̌u±K denotes the (discrete) time a one-dimensional simple symmetric
random walk started at u ∈ [−K,K] first hits +K or −K. Summarizing from
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(26) until this point, and continuing we have

P (τ̂ox < τ̂oL ∧ τ̂xL) ≥ P (τ̌o±L/12 > n) n

∑
t=0
∑
r∈Rt

P (τ∆o = t, τ∆L > t ∣ Ar)P (Ar)
= P (τ̌o±L/12 > n)P (τ∆o ≤ n, τ∆o < τ∆L )
≥ P (τ̌o±L/12 > n)P (τ∆o < τ∆L ≤ n)
≥ P (τ̌o±L/12 > n) [P (τ∆o < τ∆L ) − P (τ∆L > n)]
≥ P (τ̌o±L/12 > n) [P (τ∆o < τ∆L ) − P(τ̌o±L/2 > n

2
)] , (32)

where the last inequality follows from Lemma 33 below.
Let Rn = ∣{z ∈ Z ∶ So(t) = z for some t ≤ n}∣ be the size of the range of a

one-dimensional discrete-time random walk So (started at o) up to time n.
Then

P(Rn ≤ L) ≤ P(τ̌o±L > n) ≤ P(Rn ≤ 2L). (33)

According to Theorem 2 of [4], for any sequence bn = o(n) diverging to +∞

lim
n→∞

1

bn
logP(Rn ≤

√
n

bn
) = −π2σ

2
, (34)

where σ = E [So(1)2] = 1. Letting n = L2 log logL, and bn = (12)2 log logL,

(33) and (34) yield (for δ ∈ (0, 1/711)) that for large n (and L),

P (τ̌o±L/12 > n) ≥ P(Rn ≤

√
n/bn) ≥ 1

(logL) (12π)2(1+δ)2

≥
1(logL)712 . (35)

Similarly, with n/2 = L2

2
log logL and bn/2 =

1
2
log logL, (33) and (34) yield

(for δ ∈ (0, 1 − 8/π2)) that for large n (and L),

P(τ̌o±L/2 > n

2
) ≤ P(Rn/2 ≤

√(n/2)/(bn/2)) ≤ 1

(logL)π2

4
(1−δ)

≤
1(logL)2 .

(36)

According to Theorem 6.4.3 of [9] the term P (τ∆o < τ∆L ) for x ∈ BL/2∖BǫL

can be bounded uniformly from below and above by c
logL

and C
logL

for some

positive constants c and C and L large enough. Inserting this estimate, (35)
and (36) into (32) verifies that there exists a constant c′ > 0 such that for all
L, uniformly in x ∈ BL/2 ∖BǫL,

P (τ̂ox < τ̂oL ∧ τ̂xL) ≥ c′(logL)713 , (37)

as required. ∎
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Φ
Ð→

Fig. 4 A mapping between two planar embeddings of the triangular lattice.

Lemma 33. With the definitions of τ̌o±L, τΣL , τ∆L , and Ar as in the proof of

Lemma 32, for any r ∈Rt and t ≤ n we have

P (τ̌o±L/12 > n) ≤P (τΣL > t ∣ Ar) (38)

P (τ∆L > n) ≤P(τ̌o±L/2 > n

2
) . (39)

Proof To verify the first claim, first recall the definition of Rt after (25). For
each r ∈ Rt we construct a two-dimensional random walk on the triangular
lattice (started at x ∈ BL/2, with i = ∣r⤡∣, j = ∣r⤢∣ and k = ∣r↔∣ steps along the
three directions in D respectively) from a one-dimensional random walk of t
steps in the following way: let the one-dimensional walk be S1(t) = ∑t

ℓ=1Xℓ

with each Xℓ ∈ {±1}; designate the first i steps to be in direction “⤡”, the
next j steps to be in direction “⤢”, and the final k steps to be in direction
“↔”; construct the two-dimensional random walk starting at x by picking
steps from each group according to the partition r (preserving the order of
steps within each of the groups). If the one-dimensional walk started at the
origin stays confined to the interval (−L/12, L/12), then the first i steps, next
j steps and next k steps have displacements from their respective starting
points at most L/12, 2L/12, and 2L/12 respectively and the two-dimensional

walk started at x stays confined to B̊L. Therefore we have for t ≤ n that

P (τΣL > t ∣ Ar) ≥ P (τ̌o±L/12 > t) ≥ P (τ̌o±L/12 > n) . (40)

This verifies the first claim.

For the second claim, we consider two one-dimensional random walks,
S1,∆ and S2,∆, that are the following “projections” of the two-dimensional
discrete-time (difference) random walk S∆ starting at x onto the lines parallel
to the two sides of the rhombic box BL. Under the linear transformation Φ
depicted in Figure 4 “projections” are simply standard orthogonal projections
onto the two coordinate axes. Thus, the walk S1,∆ makes no step when S∆

steps in the direction ⤡, makes a step -1 when the increment of S∆ is either
← or ↖, and +1 when the increment of S∆ is either → or ↘. Similarly S2,∆

does not move when S∆ steps in the direction↔, while it makes an increment

-1 (resp., +1) when the increment of S∆ is ↙ or ↘ (resp., ↗ or ↖). Let τ i,∆±L
be the hitting time of ±L by Si,∆, and M i

n be the number of steps made by
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Si,∆ by the time S∆ makes n steps. Then we have

P (τ∆L > n) = P(τ1,∆±L/2 > n, τ2,∆±L/2 > n) (41)

= P(τ1,∆
±L/2

> n, τ
2,∆

±L/2
> n ∣M1

n ≥M
2
n) × P(M1

n ≥M
2
n)

+ P(τ1,∆
±L/2

> n, τ
2,∆

±L/2
> n ∣M1

n <M
2
n) × P(M1

n <M
2
n)

≤ P(τ1,∆
±L/2

> n ∣M1
n ≥M

2
n) × P(M1

n ≥M
2
n)

+ P(τ2,∆
±L/2

> n ∣M1
n <M

2
n) × P(M1

n <M
2
n)

≤ P(τ̌o±L/2 > n

2
) .

∎

Theorem 31 and the discussion preceding it lead us to make the following
conjecture.

Conjecture 34. The interface curve of the voter model in BL converges to

a straight line as L→∞.

As in the case of harmonic percolation, the density of 1 (red) votes above
any line ℓL (of distance ǫℓ from the corners of the rhombus) parallel to the
diagonal does not converge to 0 in the limit as L →∞. Indeed the expected
proportion E[XℓL] of 1’s above such a line is the same for the two models,
and is bounded below by a constant c. Moreover P(XℓL ≥ c/2) > c/2 since

c ≤ E[XℓL] = E[XℓL1{XℓL
≥c/2}] +E[XℓL1{XℓL

<c/2}] ≤ P(XℓL ≥ c/2) + c/2.
Theorem 31 also provides us with a test of the quality of our numerical

estimation techniques (which are of course for finite L). Having established
that E[∣CL(o)∣] ≈ Lγ and E[∣ML∣] ≈ Lβ with γ = β = 2, we estimated the
exponents from simulation data with estimators as in (8),(9), (11), and (12)
giving

γ̃ = 1.579, γ̂ = 1.861, γ∗ = 1.841, γ∗∗ = 2.020 (42)

(1.833,1.889)

β̃ = 1.657, β̂ = 1.911, β∗ = 1.897, β∗∗ = 2.048. (43)

(1.897,1.924)

Except for the ●∗∗ estimates, all of these underestimate the true value (the
●̂ and ●̃ esimates are increasing with L). The regression estimates ●∗∗ are
closest to the true value, with the ●̂ estimates performing next best. These
observations are perhaps not surprising since the true value also corresponds
to an upper bound in that ∣ML∣ ≤ CL2 almost surely (and in particular this
guarantees that the ●̃ estimators will be smaller than 2).

Figure 3 suggests that the (largest) coalescing classes are rather discon-
nected and sparse, which poses a potential problem for a rescaling argument
like that mentioned at the beginning of Section 3. This is because the co-
alescing classes will not scale to single points if their diameters are ≥ cL
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with non-vanishing probability. It is an open problem to prove that for some
c, c′ ∈ (0, 1), lim infL→∞ P(∃x, y ∈ BL ∶ ∣x − y∣ > cL, τxy < τx ∧ τy) ≥ c′. This
would imply that with positive probability there are coalescing classes with
diameter at least cL. A very large proportion of our simulated curves cut
through ML in the sense that the interface curve has sites belonging to ML

on both sides. The proportion increases from 0.9819 for the boxes of size 128,
to 0.9985 for the boxes of size 1024. Thus, the connected clusters/subsets
Cc

L(x) (containing x ∈ BL) of coalescing classes CL(x), may be better can-
didates to use in rescaling arguments as the interface curve has to go around

them. Assuming that E [∣Cc
L(x)∣] ≈ Lγ′ and E [maxx∈BL

∣Cc
L(x)∣] ≈ Lβ′ , we

obtain the particularly unreliable estimates (see Section 4.3) γ̂′ = 1.548 and

β̂′ = 1.741.
Another piece of information that could in principle support Conjecture

34 is the displacement of the curve ZL from its conjectured diagonal limit, D.
Assuming that E [maxx∈ZL

miny∈D ∣x − y∣] ≈ Lα, we obtained the point esti-
mates α̂ = 0.969 and α̃ = 0.816. The estimate α̂ (with L = 512 and 2L = 1024)
is disconcertingly close to 1 and moreover did not systematically decrease as
we varied L = 128, 256, 512. The estimate α̃ increased in L from a value of
0.750 when L = 128. Thus, estimates based on our displacement data provide
little or no evidence in support of the conjecture.
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4 Appendix

As indicated earlier, each of our point estimates is based on 10000 indepen-
dent simulations of the voter model for each value of L being considered.
Although the simulations had a finite time horizon, in all cases all coalescing
walks eventually reached the boundary. All simulations were conducted in
C++ and all statistical analyses and plots were performed in R. The data
is available on request, but at approximately 600GB, may be difficult to
transfer.

Note also that all of our simulations actually took place on boxes of side
length L′ = L + 2, so our estimators were actually

d̃ = d̃m,L =
log(Z̄m(L + 2))

log(L) , (44)

d̂ = d̂m,L = log2 ( Z̄m(2L + 2)
Z̄m(L + 2) ) . (45)

Similarly our ordinary least squares estimator d∗ is in fact an estimator for
the slope coefficient d of the simple linear regression model

log(∣Zi∣) = d log(Li) + a + εi, (46)

where {∣Zi∣}i≤n are interface lengths on boxes of side lengths {Li + 2}i≤n,
and the εi are random variables with mean 0. This does not change the
consistency properties of the estimators, and e.g. results in an estimate d̃
differing in only the fourth decimal place when we are dividing by log(L)
(instead of log(L + 2)).
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4.1 Bootstrap intervals

In an attempt to quantify the variability of our estimators we computed
10000 standard (i.e. each of size 10000, sampled with replacement) bootstrap
samples from our 10000 data points, calculated the value of our statistic in
each case, and then constructed a “bootstrap 95% confidence interval” by
removing the smallest and largest 2.5% of the values (so the interval is given
by the min and max of the remaining values). Below we give an example of
the R code used to produce the bootstrap intervals. Note that these are not
confidence intervals for the true value, but rather measures of the variability
of our estimators.

#load the standard bootstrapping package into R
library(boot)

#define the mean function for the bootstrap
meantest=function(x,indices){mean(x[indices])}

#read in the data of curve lengths and unlist (turn into a vector)
voterlengths1024=read.table(file.choose())
voterlengths1024=unlist(voterlengths1024)
voterlengths512=read.table(file.choose())
voterlengths512=unlist(voterlengths512)

#get 10000 bootstrap samples of mean curve lengths
voterboot1024=boot(voterlengths1024,meantest,R=10000)$t
voterboot512=boot(voterlengths512,meantest,R=10000)$t

#compute the hat estimators for each bootstrap sample
bootestimates1024_512=log(voterboot1024/voterboot512,2)
summary(bootestimates1024_512)
# V1
# Min. :1.448
# 1st Qu.:1.460
# Median :1.462
# Mean :1.462
# 3rd Qu.:1.465
# Max. :1.475

#sort the hat estimators
sorted1024_512=sort(bootestimates1024_512)

#delete the bottom and top 2.5% of the values to yield a bootstrap confidence interval
summary(sorted1024_512[251:9750])
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 1.455 1.460 1.462 1.462 1.465 1.470

#####now do the same thing for the dtilde estimates



21

dtilde1024=log(voterboot1024)/log(1024)

summary(dtilde1024)
# V1
# Min. :1.553
# 1st Qu.:1.553
# Median :1.554
# Mean :1.554
# 3rd Qu.:1.554
# Max. :1.555

sorted1024=sort(dtilde1024)
summary(sorted1024[251:9750])
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 1.553 1.553 1.554 1.554 1.554 1.554

4.2 The size of coalescing classes

Since the ●̂ and ●̃ estimators are defined straightforwardly and have already
been discussed somewhat at the end of Section 3, let us turn our attention
here to the regression estimators ●∗ for the class sizes. Assume that the
assumptions prior to (11) hold for ∣CL(o)∣ and ∣ML∣ with exponents γ and β
respectively, so that e.g.

log(∣ML∣i) = β log(L) + a + εi. (47)

We obtain an estimate β∗ of β by fitting the simple linear model log(∣ML∣) ∼
β log(L).

Fitting this linear model in R we obtain the following output:

Call: lm(formula = log(largest_class) ~ log(L))

Residuals:
Min 1Q Median 3Q Max

-0.93002 -0.22984 -0.02386 0.20920 1.34982

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.726828 0.028139 -61.37 <2e-16 ***
log(L) 1.897190 0.004374 433.72 <2e-16 ***

Residual standard error: 0.3201 on 12998 degrees of freedom
Multiple R-squared: 0.9354, Adjusted R-squared: 0.9354
F-statistic: 1.881e+05 on 1 and 12998 DF, p-value: < 2.2e-16
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Fig. 5 The fitted line for (47) for the largest coalescing class, with background the
raw data and the fixed L means respectively.

Figure 5 and the standard diagnostic tests suggest that the model fits quite
well (although there is some skewness in the residuals). Despite this, our
estimate β∗ = 1.897 is more than 20 standard errors from the known (from
Theorem 31) true value of β = 2, so this estimator seems to be doing a poor
job of estimating the true limiting behaviour in L. However we also know
from Theorem 31 that there are in fact log corrections to this model. There-
fore we repeated the above analyses but included log logL as an additional
explanatory variable to get an estimator β∗∗.

Call:
lm(formula = log(largest_class) ~ log(Lvals) + log(log(Lvals)))

Residuals:
Min 1Q Median 3Q Max

-0.96107 -0.23202 -0.02224 0.21154 1.34380

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.98223 0.15032 -6.534 6.45e-11 ***
log(Lvals) 2.05204 0.03359 61.094 < 2e-16 ***
log(log(Lvals)) -0.93589 0.19694 -4.752 2.02e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3202 on 52997 degrees of freedom
Multiple R-squared: 0.9546,Adjusted R-squared: 0.9546
F-statistic: 5.576e+05 on 2 and 52997 DF, p-value: < 2.2e-16

The estimate β∗∗ = 2.052 is within two standard errors of the true value, and
the estimate for ζ (the coefficient of log logL) has the right sign. However,
due to the lack of orthogonality in the explanatory variables when log logL
is included, one cannot put a great deal of faith in these coefficients.

Unsurprisingly the linear regression estimator fits less well for the coa-
lescing class of the center, and gives an estimate of γ∗ = 1.84 (see also Figure
6).

Call:
lm(formula = log(origin_class) ~ log(Lvals))
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Fig. 6 The fitted line for (47) for the coalescing class of a central vertex, with
background the raw data and the fixed L means respectively.

Residuals:
Min 1Q Median 3Q Max

-4.8501 -0.4658 0.0884 0.5619 2.1032

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.071629 0.026735 -77.49 <2e-16 ***
log(Lvals) 1.838248 0.004407 417.12 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7874 on 52998 degrees of freedom
Multiple R-squared: 0.7665, Adjusted R-squared: 0.7665
F-statistic: 1.74e+05 on 1 and 52998 DF, p-value: < 2.2e-16

Including the extra explanatory variable log logL yields an estimate of
γ∗∗ = 1.97630 with ζ having the correct sign, but again the estimators suffer
due to a lack of orthogonality among the explanatory variables.

Call:
lm(formula = log(origin_class) ~ log(Lvals) + log(log(Lvals)))

Residuals:
Min 1Q Median 3Q Max

-4.8546 -0.4657 0.0883 0.5620 2.0986

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.45452 0.36963 -3.935 8.33e-05 ***
log(Lvals) 1.97630 0.08259 23.929 < 2e-16 ***
log(log(Lvals)) -0.81064 0.48427 -1.674 0.0942 .

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7873 on 52997 degrees of freedom
Multiple R-squared: 0.7665, Adjusted R-squared: 0.7665
F-statistic: 8.7e+04 on 2 and 52997 DF, p-value: < 2.2e-16
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In what follows, when we consider a linear regression estimator, we use
●∗∗ when the added explanatory variable has statistically significant (at the
10% level) explanatory power, and ●∗ otherwise.

4.3 Connected clusters of a coalescing class

Recall from the end of Section 3 that for each configuration of a voter model
in BL, Cc

L(x) denotes the connected subset (containing x) of the coalescing
class of x. Let M c

L denote a largest such connected subset and assume

E [∣Cc
L(x)∣] ≈ Lγ′ and E [∣M c

L∣] ≈ Lβ′ .

Recalling the discussion around (9), we obtain the following ●̂ estimates,
which indicate that this estimator converges more slowly with increasing L
than the corresponding estimator for the expected curve length exponent.

L 128 256 512

β̂′L 1.693 1.718 1.741
(1.673,1.712) (1.697,1.739) (1.719,1.762)

γ̂′L 1.470 1.492 1.548
(1.416,1.526) (1.428,1.554) (1.477,1.618)

The linear regression estimates are quite far from those above. In partic-
ular γ′∗ ≈ 1.02 is very far off the γ̂ estimates above and β′∗∗ ≈ 1.89 (with the
coefficient of log logL carrying a − sign.

4.4 Maximum displacement of the curve from the diagonal

Recall the last paragraph of Section 3. Assuming that E [maxx∈ZL
miny∈D ∣x − y∣] ≈

Lα we have the following ●̂ estimates for α.

L 128 256 512
α̂L 0.964 0.973 0.969

(.9542,.9734) (.9634,.9828) (.9598,.9792)

Fitting a simple linear model to the data gives a very similar estimate of
α∗ ≈ 0.969 (approximately 18 standard errors from 1).

Residuals:
Min 1Q Median 3Q Max

-1.11443 -0.17013 0.01359 0.18474 0.59812

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.090206 0.009573 -113.9 <2e-16 ***
log(Lvec) 0.968864 0.001611 601.4 <2e-16 ***
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Residual standard error: 0.2497 on 39998 degrees of freedom
Multiple R-squared: 0.9004, Adjusted R-squared: 0.9004
F-statistic: 3.617e+05 on 1 and 39998 DF, p-value: < 2.2e-16


