347 FINAL, IN CLASS PART DECEMBER 12, 2005

- (1) Let $f: X \to Y$ and $g: Y \to Z$ be (well-defined) maps. Complete the following sentences:
 - (a) (4 points) By definition, f is surjective if and only if
 - (b) (4 points) f is not surjective if and only if
 - (c) (11 points) Prove: If g is not surjective, then neither is $g \circ f$.

Date: October 7, 2006.

(2) Let X be a set, and let P and Q be properties that elements of X could have. We write P(x) for "x has the property P", and Q(x) for "x has the property Q". Consider the sets

$$Y := \{ y \in X \mid P(y) \}$$

and

$$Z := \{ x \in X \mid Q(x) \}.$$

Complete the following sentences with statements about the properties P and Q:

- (a) (3 points) Y = Z if and only if
- (b) (3 points) $x \in X \setminus Y$ if and only if
- (c) (3 points)

$$Y \setminus Z = \{ x \in X \mid \}$$

- (d) (3 points) $Y = X \setminus Z$ if and only if
- (e) (3 points) $Y \cup Z = Y$ if and only if

- (3) (2 points for every correct answer and -1 point for every false answer) For each of the following statements, indicate whether it is equivalent to the negation of $A \Rightarrow B$.
 - (a) **Yes** No A is true and B is not true
 - (b) Yes No (not A) or B
 - (c) Yes No if A holds then not B holds.
 - (d) Yes No A is necessary for B.
 - (e) **Yes** No If B holds then A does not hold.

(4) **Permutations:** Consider the permutation f with two-line form

- (a) (3 points) Write f in cycle form.
- (b) (2 points) What is the order of f?
- (c) (3 points) Compute f^{-1} in cycle or in two-line form.

(d) (5 points) Compute $f^{-1} \circ f^{-1}$ in cycle or in two-line form.

(5) Modular arithmetic:

(a) (4 points) Compute $7^{29000002}$ modulo 59.

(b) (8 points) What is the multiplicative inverse of [12] in $\mathbb{Z}/139\mathbb{Z}$?

(6) (11 points) How would you structure a proof of the following statement about a function $f: \mathbb{R} \to \mathbb{R}$?

For every $\varepsilon > 0$, there exists a $\delta > 0$ such that for every $x, y \in \mathbb{R}$ the following holds:

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Remark: At some point in this proof you would have to make a clever guess for something. Just write "???" in the place of what the guess would have to be.

(7) (6 points for a correct answer, -2 points for a false answer) Compare the statement of the previous question to the one from Midterm 3:

For every $x_0 \in \mathbb{R}$ and every $\varepsilon > 0$, there exists a $\delta > 0$ such that for every $x \in \mathbb{R}$ the following holds:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Which of the two do you think is the stronger statement? Explain why.

(8) (11 points) Use induction, starting with n = 0, to prove: For every $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} n = \frac{n(n+1)}{2}.$$