FIRST IN-CLASS MIDTERM, FALL 2006 MATH 347

(1) (? points) Let f: X → Y be a map. By definition,
(a) f is injective, if and only if

For
$$x_1, x_2 \in X$$
,
 $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

(b) f is surjective, if and only if

For every $y \in Y$, there exists (at least) one $x \in X$ such that f(x) = y.

(c) f is bijective, if and only if

f is injective and f is surjective.

(2) What is the negation of the following statement: There is a country where everybody can speak French.

In each country, there exists at least one person who cannot speak French.

- (3) Which of the following are equivalent to $A \Rightarrow B$?
 - (a) $B \Rightarrow A$ NO
 - (b) $(notB) \Rightarrow (notA)$ YES
 - (c) $A \lor (notB)$ NO
 - (d) $B \lor (notA)$ YES

What is the negation of $A \Rightarrow B$?

$$(notA) \wedge B$$

Date: November 4, 2006.

(4) Let Z be a set, let P and Q be properties that elements of Z could have, and let

$$X = \{x \in Z \mid P(x)\}$$

and

$$Y = \{ y \in Z \mid Q(y) \}.$$

(a) Express the statement $X \subseteq Y$ in terms of the properties P and Q.

$$(\forall x \in Z) \left(p(x) \Rightarrow Q(x) \right)$$

(b) What is the set $\{z \in Z \mid P(z) \land Q(z)\}$ in terms of X and Y?

 $X\cap Y$

(c) What is $Z \setminus X$ (the complement of X in Z) in terms of P and Q?

$$\{z \in Z \mid notP(z)\}$$

(d) Express the statement $(Z \setminus Y) \subseteq X$ in terms of the properties P and Q.

$$(\forall z \in Z) (notQ(z) \Rightarrow P(z))$$

(e) For each of the above questions, pick an example for Z, P and Q and draw the corresponding diagram.

I wanted to see Venn-diagrams of specific examples. Here are some examples:

- (i) $Z = \{1, 2, 3, 4\}, P(x)$ is "x is even", Q(x) is x > 1.
- (ii) Z as above, P(x) as above $Q(x) : \iff x \ge 3$. (then $X \cap Y = \{4\}$).
- (iii) Z and P(x) as above, then the complement of X in Z is the set of odd numbers in Z, i.e., $\{1, 3\}$.
- (iv) Z as above, P(x) as above, $Q(x) : \iff x \leq 3$. (if x is an element of Z which is not less or equal to 3, then x is 4, and 4 is even.

(5) Only one of the following three lines describes a set:

(a) $X := \{n \in \mathbb{N} \mid 2n\}$ NO (b) $X := \{m \in \mathbb{Q} \mid (\exists n \in \mathbb{N} : 2n = m)\}$ YES (c) $X := \forall n \in \mathbb{N} \mid 2n = m\}$ NO

(6) Which one is the set?

(b) (7) What set is it?

The set of all even natural numbers

- (8) Using the X from above, complete the following sentences:
 - a is an element of X if and only if ...
 - ... there exists an $n \in \mathbb{N}$ such that 2n = a.
 - m is an element of X if and only if ...
 - ... there exists an $n \in \mathbb{N}$ such that 2n = m.
 - n is an element of X if and only if ...

... there exists a $k \in \mathbb{N}$ such that 2k = n.

(9) For
$$r \in \mathbb{R}$$
, let

$$I(r) := \{ a \in \mathbb{Q} \mid a \le r \}.$$

(a) Let $s \in \mathbb{R}$. What is I(s)? What is I(3)?

$$I(s) := \{ a \in \mathbb{Q} \mid a \le s \}.$$
$$I(3) := \{ a \in \mathbb{Q} \mid a \le 3 \}.$$

(b) Under which circumstances is r an element of I(r)? Give a (very short) formal reason for your answer. if and only

if r is a rational number. Reason: in order for r to be an element of I(r), r needs to be a rational number and r needs to satisfy $r \leq r$. For every rational number r, we have $r \leq r$, so that part of the statement is a tautology. (c) Let $r, s \in \mathbb{R}$. What are the sets $I(r) \cap I(s)$ and $I(r) \cup I(s)$?

$$I(r) \cap I(s) = I(\min(s, t))$$

$$I(r) \cup I(s) = I(\max(s, t)).$$

(10) Consider the following two statements:

For every real number $\varepsilon > 0$ there exists a real number $\delta > 0$ such that for all real numbers x and y with $|x - y| < \delta$, one has $|f(x) - f(y)| < \varepsilon$.

For every real number x and every real number $\varepsilon > 0$ there exists a real number $\delta > 0$ such that for all real numbers y with $|x - y| < \delta$, one has $|f(x) - f(y)| < \varepsilon$.

(a) One of the two statements is stronger than the other (by that I mean that it implies the other one). Which one is it? Explain.

The first statement is stronger than the second one. The reason is the order of the quantifiers: in the first statement, there is one δ which has to work for all x, in the second one, δ is allowed to depend on x.

- (b) How would you structure the proofs of the two statements above? Write down as many of the sentences of their proofs as you can without having to think about a specific function f. (If you need to make a clever choice for something somewhere, just say "now we pick this something = ???" and continue your proof start.)
 - (i) Let $\varepsilon > 0$ be arbitrary but fixed. Pick $\delta = ???$. Let $x, y \in \mathbb{R}$ be arbitrary, and assume $|x - y| < \delta$. We have to show $|f(x) - f(y)| < \varepsilon$.
 - (ii) Let $\varepsilon > 0$ and $x \in \mathbb{R}$ be arbitrary but fixed. Pick $\delta = ???$. Let $y \in \mathbb{R}$ be arbitrary, and assume $|x - y| < \delta$. We have to show $|f(x) - f(y)| < \varepsilon$.