
SOLUTIONS FOR THE FIRST TAKE-HOME MIDTERM

MATH 347, FALL 2005

(1) The subject of Problem (1) was chosen from the field Formal Concept Analysis.
(a) Assume that S1 and S2 are both subsets of X, and that S1 ⊆ S2. We want to

show that S ′
2 ⊆ S ′

1, i.e., that

y ∈ S ′
2 ⇒ y ∈ S ′

1.

Let y be an (arbitrary) element of S ′
2. By definition of S ′

2, that means that

(I) ∀b ∈ S2 : b has y.

We need to show that our y is an element of S ′
1, i.e., that

∀x ∈ S1 : x has y.

Let x ∈ S1 be arbitrary. Since S1 ⊆ S2, we may conclude that x ∈ S2. Applying
(I) for b = x, it follows that x has y.

(b) Similar to (a) with T ’s in the roles of S’.

(c) Let S be a subset of X, and let x be an element of S. We need to prove that x
is an element of S ′′. By definition of S ′′ = (S ′)′, this is equivalent to proving the
following statement:

(II) ∀y ∈ S ′ : x has y.

To prove this, let y be an element of S ′. We need to prove that (our specific,
chosen) x has (this particular) y. Since y is in S ′, we know

∀a ∈ X : a has y.

Since our x is an element of S, it follows that y has x. Since y was chosen
arbitrarily, we have proved that our x satisfies (II).
The second part of (c) is similar.

(d) Let S be a subset of X. We need to prove S ′ ⊆ S ′′′ and S ′′′ ⊆ S. Setting T = S ′,
part (c) implies

S ′ = T ⊆ T ′′ = S ′′′.

To prove the other inclusion, we start with S ⊆ S ′′, which we know from (c).
Applying (a) with S1 = S and S2 = S ′′, we obtain

S ′′′ = S ′
2 ⊆ S ′

1 = S ′.

In a similar way one proves T ′ = T ′′′.

Date: today.
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(2) I gave a long proof with five different cases in class. Later, one student convinced me
that there was a more elegant proof. Here it is:

Let x ∈ R be arbitrary. Let ε be an arbitrary positive real number. Pick

δ = −|x|+
√

x2 + ε.

Note that this choice of delta satisfies

δ2 + 2|x|δ = ε

Pick an arbitrary y ∈ R, such that |x− y| < δ. We have

|x2 − y2| = |(x− y)(x + y)| = |x− y| · |x + y|

Now the triangle inequality gives

|x + y| = |y − x + 2x| ≤ |y − x|+ |2x| = |x− y|+ 2|x|.

It follows that

|x + y| < δ + 2|x|,
and thus

|x− y| · |x + y| < δ(δ + 2|x|) = ε.

Combining this with our second equality, we obtain

|x2 − y2| < ε.

QED

(3) The set S(X) is called the power set of X and normally people call it P(X) rather
than S(X). In order not to confuse this notation with the induction notation, I will
call the statement we want to prove Q(n).

The statement Q(n) says: If X has n elements, then P(X) has 2n elements.

Base step Q(0): If X has zero elements, then X is the empty set, and we have
seen in part (a) that P(∅) = {∅} has one element. Further 1 = 20.

Inducive step: Assume that Q(n) was already proved for n = k. Let X have
k + 1 elements. Pick one of these elements and call it a. Let Y ⊂ X. Then either
a ∈ Y or a is not an element of Y . In the second case, Y is a subset of X \ {a}, and
in the first case,

Y = Z ∪ {a},
where Z is a subset of X \ {a}. Therefore, the number of subsets of X is twice the
number of subsets of X \ {a}. By the inductive hypothesis, the number of different
subsets of P(X \ {a}) equals 2k. It follows that the number of elements of P(X) is
2 · 2k = 2k+1. We have proved Q(k + 1).

(4) (a) Pick x0 = 0. Let a ∈ Z be arbitrary. Then we have

[a] ∗ [x0] = [a] ∗ [0] = [a + 0] = [a].
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(b) Let b ∈ Z be arbitrary. Set c := −b. Then we have

[b] ∗ [c] = [b] ∗ [−b] = [b + (−b)] = [0].

(5) (a) The number is 3.
(b) Let x be a real number such that

|x| < 3.

Case 1: If |x| is positive, we multiply both sides of this inequality with |x| and
obtain

x2 < 3|x|.
Case 2: If x = 0, we have

x2 = 3|x|.
In both cases, it follows that

x2 ≤ 3|x|.
QED

(c) Assume there was a number s > 3 with this property. Chose an x which is
strictly greater than 3 and stricly less than s (For example, choose x to be the
arithmetic mean of 3 and s.) Multiplying both sides of the inequality

3 < x

with the positive number x, we get

3|x| = 3x < x2,

a contradiction to our assumption that s satisfies the condition of the problem.
QED
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