SOLUTIONS FOR THE FIRST TAKE-HOME MIDTERM

MATH 347, FALL 2005

(1) The subject of Problem (1) was chosen from the field Formal Concept Analysis.
(a) Assume that S; and Sy are both subsets of X, and that S; C S;. We want to
show that S, C 57, i.e., that

ye Sy, =>yes.

Let y be an (arbitrary) element of S}. By definition of S}, that means that

(1) Vbe Sy: bhasy.
We need to show that our y is an element of 57, i.e., that

Vere S : xhasy.
Let x € S; be arbitrary. Since S; C S, we may conclude that x € S5. Applying
(I) for b = =z, it follows that x has y.
(b) Similar to (a) with 7”s in the roles of S’.

(c) Let S be a subset of X, and let « be an element of S. We need to prove that x
is an element of S”. By definition of S” = (S")’, this is equivalent to proving the
following statement:

(I1) Vye S" : zhasy.

To prove this, let y be an element of S’. We need to prove that (our specific,
chosen) x has (this particular) y. Since y is in S/, we know

Vae X :ahasy.

Since our x is an element of S, it follows that y has x. Since y was chosen
arbitrarily, we have proved that our x satisfies (II).
The second part of (¢) is similar.

(d) Let S be a subset of X. We need to prove S C " and " C S. Setting 7' = 5,
part (c) implies
S/ — T C T// — S///.

To prove the other inclusion, we start with S C S”, which we know from (c).
Applying (a) with S; = .S and Sy = §”, we obtain

=8y C S =9

In a similar way one proves 7" =T"".
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(2) I gave a long proof with five different cases in class. Later, one student convinced me

(4)

that there was a more elegant proof. Here it is:
Let z € R be arbitrary. Let € be an arbitrary positive real number. Pick

§=—|z|+ Va2 +e.
Note that this choice of delta satisfies
P +2zl0 =¢

Pick an arbitrary y € R, such that |x — y| < . We have

-yl =l -yt y)l =l -yl oty

Now the triangle inequality gives

|z

[T+ yl =y —x+2z| < |y — 2|+ 22| = [z — y| + 2|
It follows that
|z +y| <+ 2|z,
and thus
|z —y|- |z +y| < +2|z|) =e.
Combining this with our second equality, we obtain
lz* — | < e.

QED

The set S(X) is called the power set of X and normally people call it P(X) rather
than S(X). In order not to confuse this notation with the induction notation, I will
call the statement we want to prove Q(n).

The statement Q(n) says: If X has n elements, then P(X) has 2" elements.

Base step Q(0): If X has zero elements, then X is the empty set, and we have
seen in part (a) that P() = {0} has one element. Further 1 = 2°.

Inducive step: Assume that Q(n) was already proved for n = k. Let X have
k 4+ 1 elements. Pick one of these elements and call it a. Let Y C X. Then either
a €Y or ais not an element of Y. In the second case, Y is a subset of X \ {a}, and
in the first case,

Y = ZU{a},

where Z is a subset of X \ {a}. Therefore, the number of subsets of X is twice the
number of subsets of X \ {a}. By the inductive hypothesis, the number of different
subsets of P(X \ {a}) equals 2*. Tt follows that the number of elements of P(X) is
2. 28 = 21 We have proved Q(k + 1).

(a) Pick xg = 0. Let a € Z be arbitrary. Then we have

[a]  [zo] = [a] % [0] = [a + O] = [a].
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(b) Let b € Z be arbitrary. Set ¢ := —b. Then we have
[b] * [e] = [b]  [=0] = [b+ (=b)] = [0].

(5) (a) The number is 3.
(b) Let x be a real number such that

|z < 3.

Case 1: If |z| is positive, we multiply both sides of this inequality with |z| and
obtain

2? < 3|zl
Case 2: If x = 0, we have

r? = 3|z].
In both cases, it follows that

r? < 3|z).

QED

(c) Assume there was a number s > 3 with this property. Chose an z which is

strictly greater than 3 and stricly less than s (For example, choose = to be the
arithmetic mean of 3 and s.) Multiplying both sides of the inequality

3<x
with the positive number x, we get
3lz| = 3z < 2%,

a contradiction to our assumption that s satisfies the condition of the problem.
QED



