SECOND TAKE-HOME MIDTERM, FALL 2006 DUE FRIDAY 11/17

- (1) [Hint: I recommend that you start by working out the example in part (g).]
 - (a) (4 points): Write down the definitions of *injective* and *well-defined*.

Definition: An equivalence relation \sim is called trivial, if

$$x_1 \sim x_2 \iff x_1 = x_2.$$

Let $f: X \to Y$ be a map. We define the following relation on X:

$$x_1 \sim_f x_2 \iff f(x_1) = f(x_2).$$

- (b) (3 points) Show that \sim_f is an equivalence relation.
- (c) (14 points) Prove formally that f is injective if and only if \sim_f is trivial.

Consider the map

$$p: X \to X/ \sim_f x \mapsto [x].$$

(d) (2 points) Check that p is surjective.

Recall that the image of f is defined as the set

 $im(f) := \{ y \in Y \mid (\exists x \in X) (f(x) = y) \}.$

Let $i: im(f) \to Y$ denote the inclusion map of im(f) in Y.

(e) (8 points) Prove that the map

$$g: X/ \sim_f \to \operatorname{im}(f)$$
$$[x] \mapsto f(x)$$

is well-defined.

Date: November 10, 2006.

(f) (12 points) Prove that g is bijective. (2 points) Show that the following diagram commutes:

(In other words, convince yourself that for every $x \in X$, we have

$$i(g(p(x))) = f(x).)$$

- (g) (12 points) Example: Let $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$, let $Y = \{a, b, c, d, e\}$, and let f be defined by f(1) = a, f(2) = e, f(3) = a, f(4) = b, f(5) = e, f(6) = e, f(7) = a, and <math>f(8) = c.
 - (i) What is \sim_f ?
 - (ii) What is im(f)?
 - (iii) What is X/\sim_f ?
 - (iv) What is p?
 - (v) What is i?
 - (vi) What is q?

(2) (a) (4 points) Negate the following statement:

For every $x_0 \in \mathbb{R}$ and for every real number $\varepsilon > 0$, there exists a real number $\delta > 0$ such that for every $x \in \mathbb{R}$, we have

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$$

(b) (14 points) Let $f: \mathbb{R} \to \mathbb{R}$ be the function

$$f(x) := \begin{cases} 0, & \text{if } x \le 0\\ 1, & \text{else} \end{cases}$$

Prove that for this f the negation of the statement in part (a) is true. Be careful to write up your proof formally and in the correct order.

(c) (13 points) Let f be as in part (b). Let $x_0 = 2$. Prove that for every real number $\varepsilon > 0$ there exists a real number $\delta > 0$ such that for every $x \in \mathbb{R}$, we have

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$$

Be careful to write up your proof formally and in the correct order.

(3) (14 points) Let (a_n) be the sequence with general term

$$a_n = \frac{2n+3}{n+1}.$$

Prove that there exists a real number a such that for every positive real number ε , there exists a natural number N such that for every $n \ge N$, we have

$$|a_n - a| < \epsilon.$$

Be careful to write up your proof formally and in the correct order.