THIRD 347 MIDTERM NOVEMBER 30, 2005

- (1) Let $f: X \to Y$ and $g: Y \to Z$ be (well-defined) maps. Complete the following sentences:
 - (a) (4 points) By definition, f is injective if and only if
 - (b) (4 points) f is not injective if and only if
 - (c) (2 points) How would you prove a statement of the form "if A then B" directly?
 - (d) (12 points) Prove: If f is not injective, then neither is $g \circ f$.

Date: October 7, 2006.

(2) Let X be a set, and let P and Q be properties that elements of X could have. We write P(x) for "x has the property P", and Q(x) for "x has the property Q". Consider the sets

$$Y := \{ y \in X \mid P(y) \}$$

and

$$Z := \{ x \in X \mid Q(x) \}.$$

Complete the following sentences with statements about the properties P and Q:

- (a) (4 points) $Y \subseteq Z$ if and only if
- (b) (4 points) $Y \cap Z = \emptyset$ if and only if

$$Y \cup Z = \{x \in X \mid \}$$

- (c) (4 points) $Y \cup Z = X$ if and only if
- (3) (2 points for every correct answer and -1 point for every false answer) For each of the following statements, indicate whether it is equivalent to $A \Rightarrow B$.
 - (a) **Yes No** "not B" holds only if "not A" holds.
 - (b) Yes No not (A and not B)
 - (c) Yes No A is sufficient for B.
 - (d) **Yes** No A is necessary for B.

- (e) **Yes** No If B holds then A holds.
- (4) **Permutations:** Consider the permutation f with two-line form

- (a) (4 points) Write f in cycle form.
- (b) (3 points) What is the order of f?
- (c) (4 points) Compute f^{-1} in cycle or in two-line form.
- (d) (6 points) Compute $f^{-1} \circ f^{-1}$ in cycle or in two-line form.

- (5) Modular arithmetic:
 (a) (3 points) Compute 7¹⁰⁰⁰⁰⁰⁰ modulo 5.

(b) (8 points) What is the multiplicative inverse of [4] in $\mathbb{Z}/29\mathbb{Z}$?

(6) (12 points) How would you structure a proof of the following statement about a function $f: \mathbb{R} \to \mathbb{R}$?

For every $x_0 \in \mathbb{R}$ and every $\varepsilon > 0$, there exists a $\delta > 0$ such that for every $x \in \mathbb{R}$ the following holds:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Remark: At some point in this proof you would have to make a clever guess for something. Just write "???" in the place of what the guess would have to be. (7) (12 points) Use induction, starting with n=0, to prove: For every $q\in\mathbb{Q}$ with |q|<1 and every $n\in\mathbb{N}\cup\{0\}$,

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$