347 PROBLEM SET 3, FALL 2006

Look up the definitions of the following objects in the book or the internet:

map (also called "function"), source (also called "domain"), target, image, graph, (composition of two maps) well-defined, injective (also called "one-to-one"), surjective (also called "onto"), bijective (also called "one-to-one correspondence").

- (1) **(4 points):** Write down the definitions of *injective* and *surjective*.
- (2) (More negations):

Complete the following sentences

- (a) (9 points): A relation $f \subset X \times Y$ is not a (well-defined) map if and only if ...
- (b) (4 points): A map f is not surjective if and only if ...
- (c) (8 points): A map f is not injective if and only if ...
- (d) (3 points): A map f is not bijective if and only if ...
- (3) (10 points): Consider the map

$$f \colon \mathbb{N} \to \mathbb{N}$$
$$x \mapsto 2x.$$

(Here we used the notation " $x \mapsto 2x$ " for "f(x) = 2x".)

- (a) What is the image of f?
- (b) Is f surjective?
- (c) Is f injective?
- (4) (20 points): Let X and Y be the sets

$$X = \{a, b, c, d\}$$

$$Y = \{a, b, e\}$$

Draw the graph of each of the following, decide whether it is a well-defined map and if so, whether it is injective, surjective or

bijective: (It it possible that several or none of these hold.)

 $f: X \rightarrow Y$ $a \mapsto b$ $b \mapsto$ $c \mapsto a$ $d \mapsto b$ $g: X \rightarrow Y$ $b \mapsto$ $c \mapsto a$ $d \mapsto b$ $h: Y \rightarrow X$ $a \mapsto$ $b \mapsto$ $e \mapsto$ $i: Y \rightarrow X$ $a \mapsto$ $b \mapsto$ $a \mapsto$ $j: Y \rightarrow X$ $a \mapsto b$ $b \mapsto c$ $e \mapsto d$

- (5) (12 points): Try to formulate for a general relation what the property "is a (well-defined) map" means for its graph and for a map f what the properties, "injective", "surjective" or "bijective" mean for the graph.
- (6) (30 points): Let $f: X \to Y$ and $g: Y \to Z$ be injective maps. Prove that this implies that $g \circ f$ is also injective. (You will do the analoguous proof for surjective maps in class on Monday.)