
SOLUTION FOR PROBLEM SET 4, PROBLEM (2)

Here is one possibility how to prove it:

Let ε > 0 be an arbitrary but fixed real number. Pick a natural
number N > 1

ε
. Such an N exists by the unboundedness property of

the natural numbers. Let n and m be arbitrary natural numbers, both
greater or equal to N . Without loss of generality, we assume m ≥ n.
We have
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where the last equality follows from m ≥ n. Further, we have
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Where the second inequality follows from n ≥ N and the fact that n
and N are positive, and the third inequality follows from N > 1

ε
and

the fact that both sides of this inequality are positive. QED
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