
Question 1

Let k be a field.
The definition of a k-algebra according to the assignment is a k-vector space V along with a multiplication

m : V × V → V satisfying

• Compatibility with scalars: ∀α ∈ k and x, y ∈ V , α ·m(x, y) = m(α · x, y) = m(x, α · y)

• Right distributivity: ∀x, y, z ∈ V , m(x+ y, z) = m(x, z) +m(y, z)

• Left distributivity: ∀x, y, z ∈ V , m(x, y + z) = m(x, y) +m(x, z)

• Existence of an identity element 1V such that ∀x ∈ V , m(x, 1V ) = m(1V , x) = x

• Associativity: ∀x, y, z ∈ V , m(xy, z) = m(x, yz).

The above tells us that (V,+,×) is a ring, where x× y := m(x, y). (the relevant axioms are satisfied since (V,+)
is an abelian group, and × has the properties listed above. Note that the requirement that 0× v = 0 = v× 0 for
all v ∈ V follows from setting α = 0 in the first dot point.) The ring A in our definition from class corresponds
to this ring (V,+,×).

Our definition of a k-algebra from class had a ring homomorphism ϕ : k → A. In this new definition, this
corresponds to the map φ : k → V sending

α 7→ α · 1V
where α ∈ k, and “·” is the scalar multiplication of the vector space V . We can check that this is a ring
homomorphism. For any α, β ∈ k:

φ(α+ β) = (α+ β) · 1V = α · 1v + β · 1V = φ(α) + φ(β)

φ(αβ) = (αβ) · 1V = (αβ) ·m(1V , 1V ) = m(α · 1V , β · 1V ) = m(φ(α), φ(β))

φ(1k) = 1k · 1V = 1V

where we have used properties of V being a vector space, as well as some properties of the multiplication m.
Finally, we also have φ(k) ⊆ Z(V ) since for all α ∈ k, and v ∈ V ,

m(φ(α), v) = m(α · 1V , v) = α ·m(1V , v) = α · v = α ·m(v, 1V ) = m(v, α · 1V ) = m(v, φ(α)).

This translation is easily reversed. Given a ring A and a ring homomorphism φ : k → A such that φ(k) ⊆ Z(A),
we construct the vector space V using the abelian group (A,+) along with the map · : k×A→ A defining scalar
multiplication as follows:

α · v := φ(α)v

(where α ∈ k and v ∈ A). Most of the required properties of this scalar multiplication can be seen to be true
as an immediate consequence of A being a ring and φ being a ring homomorphism. The only property worth
elaborating on is the one that sort of looks like “associativity” of scalar multiplication: for all α, β ∈ k and v ∈ A:

(αβ) · v = φ(αβ)v = φ(α)φ(β)v = α · (φ(β)v) = α · (β · v)

where we have used the associativity of A’s multiplication in addition to φ being a ring homomorphism. Finally,
the multiplication m : A → A is just taken to be the already existing multiplication in the ring A, which we
will denote using ×. Again, most of the required properties of this multiplication are satisfied as an immediate
consequence of A being a ring. We will only show the “compatibility with scalars” condition (see dot points at
the very start of assignment): for all α ∈ k and x, y ∈ A

α · (x× y) = φ(α)× x× y = (α · x)× y

and
α · (x× y) = φ(α)× x× y = x× φ(α)× y = x× (α · y)

where we have used associativity of ×, as well as the fact that φ(x) ∈ Z(A) (so that φ(α)× x = x× φ(α)).
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Question 2

(a)

To construct F16, we’ll start by letting the elements of F4 be 0, 1, a, a + 1, where a2 = a + 1. We want to find
irreducible polynomials of degree 2, since we’d like to construct a field with 16 = 42 elements. Now, note that
it suffices to just consider monic polynomials, since multiplying the any polynomial p(x) ∈ F4[x] by a nonzero
element of F4 doesn’t change the principal ideal of p(x). To find these monic irreducible polynomials of degree
2, we just eliminate the polynomials that can be factorised into two linear factors, i.e. we eliminate each of

• x2 = x · x

• x2 + x = x · (x+ 1)

• x2 + ax = x · (x+ a)

• x2 + (a+ 1)x = x · (x+ a+ 1)

• x2 + 1 = (x+ 1) · (x+ 1)

• x2 + (a+ 1)x+ a = (x+ 1) · (x+ a)

• x2 + ax+ a+ 1 = (x+ 1) · (x+ a+ 1)

• x2 + a+ 1 = (x+ a) · (x+ a)

• x2 + x+ 1 = (x+ a) · (x+ a+ 1)

• x2 + a = (x+ a+ 1) · (x+ a+ 1)

So, the only monic irreducible polynomials (over F4) with degree 2 are:

p1(x) = x2 + x+ a, p2(x) = x2 + x+ a+ 1, p3(x) = x2 + ax+ 1

p4(x) = x2 + ax+ a, p5(x) = x2 + (a+ 1)x+ 1, p6(x) = x2 + (a+ 1)x+ a+ 1.

Thus, we can construct F16 by taking F4[x]/(p(x)), where p(x) can be any of the six monic irreducible polynomials
listed above. (Note that F4[x]/(p(x)) is indeed a field since p(x) irreducible =⇒ (p(x)) is prime (since F4[x] is
a PID) =⇒ (p(x)) is maximal =⇒ F4[x]/(p(x)) is a field.)

Now we construct isomorphisms between these. Let c and b be the cosets of x in the source and target fields
and let F4[x]/(ps(x)) and F4[x]/(pt(x)) be the source and target fields respectively. To define our isomorphism
f : F4[x]/(ps(x)) → F4[x]/(pt(x)) we just need to specify the image of c and make sure that ps(f(c)) = 0.
(Everything else will just work out, e.g. since it’s a ring homomorphism between fields, it’s automatically
injective, hence bijective since target and source have same number of elements.)

In the below table, we specify the image of c in terms of b (recall c and b are the cosets of x in the source and
target fields respectively).

target field is F4[x]/(pt(x))
s\t 1 2 3 4 5 6
1 b b+ a (a+ 1)b+ 1 (a+ 1)b+ a ab+ a ab

source field is 2 b+ a b (a+ 1)b+ a+ 1 (a+ 1)b ab ab+ a
F4[x]/(ps(x)) 3 ab+ a ab+ 1 b b+ 1 (a+ 1)b+ 1 (a+ 1)b+ a

4 ab+ a+ 1 ab b+ 1 b (a+ 1)b (a+ 1)b+ a+ 1
5 (a+ 1)b+ 1 (a+ 1)b ab+ a ab b b+ 1
6 (a+ 1)b (a+ 1)b+ 1 ab+ a+ 1 ab+ 1 b+ 1 b

Actually, I’m pretty sure each square in the table can take two different values: in rows 1, 2 we can add 1 to
each square. In rows 3, 4 we can add a to each square. In rows 5, 6 we can add a+ 1 to each square. (In short,
in a row corresponding to irreducible polynomial ps(x) = x2 +Xx+ Y , we may add X to each square).

Here’s a bit of discussion on how we got to the above expressions. e.g. to define an isomorphism f : F4[x]/(p3(x))→
F4[x]/(p1(x)), we have p1(b) = b2 + b+ a = 0 and would like to define f(c) to be some element of F4[x]/(p1(x))
such that p3(f(c)) = 0, i.e. f(c)2 +af(c) + 1 = 0. Now, we can let f(c) = mb+n (all quadratic and higher terms
get “modded” out). So, we’d like

(mb+ n)2 + a(mb+ n) + 1 = 0

=⇒ m2b2 + n2 + amb+ an+ 1 = 0

=⇒ m2(b+ a) + n2 + amb+ an+ 1 = 0
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Equating coefficients of b1 and b0, we want

m2 + am = 0 and m2a+ n2 + an+ 1 = 0.

A simple bash (there are only 3× 4 = 12 possibilities for (m,n), since m 6= 0 otherwise we’d just get an element
of F4) shows that the only possible values for (m,n) are (a, a) and (a, 0).

Notice also that we didn’t really need to fill out the whole table, since just filling in the first column is
enough to work out at least some isomorphism between each pair of constructed fields. e.g. if we had a map
F4[x]/(p3(x))→ F4[x]/(p1(x))given by c 7→ ab+ a, then we see (a+ 1)c+ 1 7→ b, which we can use to define an
inverse function F4[x]/(p1(x)) → F4[x]/(p3(x)). It’s then easy to see how we can compose our functions to get
the whole table using just the first column.

(b)

Again, we look for monic irreducible polynomials, but over F3 and with degree 3, since we’d like to construct a
field with 27 = 33 elements. We’ll do this by eliminating all non-irreducible polynomials of degree 3, which are
exactly the ones that have a linear factor (of x, x+ 1, or x+ 2) and so are zero when x is taken to be 0, 1 or 2.
Using this process, we find that there are eight monic polynomials of degree 3 which are irreducible over F3:

p1(x) = x3 + 2x+ 1, p2(x) = x3 + 2x+ 2, p3(x) = x3 + x2 + 2, p4(x) = x3 + x2 + x+ 2,

p5(x) = x3 + x2 + 2x+ 1, p6(x) = x3 + 2x2 + 1, p7(x) = x3 + 2x2 + x+ 1, p8(x) = x3 + 2x2 + 2x+ 2

Just like in part (a), we can construct F27 by taking F3[x]/(p(x)), where p(x) can be any of the eight monic
irreducible polynomials listed above.

Now we construct isomorphisms between these. This time, we’ll let Fi := F3[x]/(pi(x)) so that we can avoid
having to repeatedly write out that long expression. Now, let Fs and Ft be the source and target fields, and let
c and b be the cosets of x in Fs and Ft, respectively.

Here’s a table that shows what c could be mapped to, in terms of b:

target field
F1 F2 F3 F4 F5 F6 F7 F8

F1 b 2b 2b2 + 2b 2b2 + b 2b2 2b2 + b 2b2 + 2b 2b2

source F2 2b b b2 + b b2 + 2b b2 b2 + 2b b2 + b b2

field F3 b2 + 2
F4

F5

F6

F7

F8

Actually, each square in the table can take three different values, e.g. in the F1 and F2 row, we may add 0, 1, or
2 to the entry in each square. In general, we can see that there will be three different isomorphisms from Fs to
Ft since we can first fix a way of sending Fs → F1 (take the inverse of some map specified by the above table),
and after that there are three ways of “completing the map” by choosing an isomorphism F1 → Fj .

Ok, the table is incomplete but I’ll just demonstrate how you could complete it. Say we wanted to construct
some isomorphisms F3 → F2. Split this map into two bits, f : F3 → F1 and then g : F1 → F2. First fix one
possible f . Take the current map (in above table) sending F1 → F3, we’ll try to find its inverse. We have

c 7→ 2b2 + 2b

=⇒ c2 7→ (2b2 + 2b)2 = b4 + 2b3 + b2.

Now, using b3 +b2 +2 = 0 we get b4 +b3 +2b = 0. Adding these two equations up get us b4 +2b3 +b2 +2b+2 = 0,
so that we have

c2 7→ b+ 1

=⇒ c2 + 2 7→ b.

So, we’ll take the fixed map f : F3 → F1 to be the one specified by x 7→ x2 + 2, where x represents the coset
of x in each field. We then have three options for g : F1 → F2, where we can send x 7→ 2x, 2x + 1 or 2x + 2.
Composing:
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1. x 7→ x2 + 2 7→ (2x)2 + 2 = x2 + 2, or

2. x 7→ x2 + 2 7→ (2x+ 1)2 + 2 = x2 + x, or

3. x 7→ x2 + 2 7→ (2x+ 2)2 + 2 = x2 + 2x

are the three ways we can define an isomorphism F3 → F2.

Question 3

(a)

Let φ : G→M be a monoid homomorphism, where G is a group. Then for all g ∈ G,

1 = φ(1) = φ(g−1g) = φ(g−1)φ(g)

and
1 = φ(1) = φ(gg−1) = φ(g)φ(g−1).

(noting that g−1 does exist since G is a group). Hence φ(g) has an inverse, φ(g−1), so φ(g) ∈M× for all g ∈ G.
Hence φ(G) ⊆M×, so we can identify φ : G→M with the group homomorphism ϕ : G→M× defined by

ϕ(g) = φ(g)

for all g ∈ G. This process is clearly reversible.

(b)

In class, the monoid algebra RM was defined to be the free R-module (RM, i), equipped with a particular
multiplication. Let A be an R-algebra and φ : M → (A, ·) be a monoid map. There is a canonical structure of an
R-module on A, and any monoid map can also be thought of as a set map, so we may use the universal property
of the free R-module to conclude that there exists a unique R-module homomorphism f : RM → A satisfying
f ◦ i = φ. What we need to do is show that f is actually an R-algebra homomorphism. Now, since f is an
R-module homomorphism, we have

f(x+ y) = f(x) + f(y), and

f(r · x) = r · f(x)

for any x, y ∈ RM and r ∈ R. Note that the second condition implies f(r · 1RM ) = r · f(1RM ) = r · 1A, so that
the canonical ring homomorphisms φ1 : R → RM and φ2 : R → A, given by φ1(r) = r · 1RM and φ2(r) = r · 1A
∀ r ∈ R, satisfy f ◦ φ1 = φ2. So, all that’s left to do to show that f is an R-algebra homomorphism is to prove
that f(xy) = f(x)f(y) for all x, y ∈ RM . Indeed, from class we know that every element in the free R-module
RM can be expressed uniquely as a linear combination of elements of {i(m) | m ∈ M}. So, if we let x, y be
arbitrary elements of RM , then we can write

x =
∑
m∈M

am · i(m), y =
∑
n∈M

bn · i(n)
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where each ai, bi ∈ R, for i ∈M . Then we have

f(xy) = f

(∑
m∈M

am · i(m)
∑
n∈M

bn · i(n)

)

= f

 ∑
(m,n)∈M×M

am · bn · (i(m)i(n))


=

∑
(m,n)∈M×M

am · bn · f ((i(m)i(n))) (since f is an R-module homomorphism)

=
∑

(m,n)∈M×M

am · bn · f (i(mn)) (since i is a monoid homomorphism)

=
∑

(m,n)∈M×M

am · bn · φ(mn)

=
∑

(m,n)∈M×M

am · bn · [φ(m)φ(n)] (since φ is a monoid homomorphism)

=
∑

(m,n)∈M×M

am · bn · [f(i(m))f(i(n))]

=
∑
m∈M

am · f (i(m))
∑
n∈M

bn · f (i(n))

= f

(∑
m∈M

am · i(m)

)
f

(∑
n∈M

bn · i(n)

)
= f(x)f(y)

which is what we wanted to show. (Note that I’ve assumed i is a monoid homomorphism from M to (RM,×)
because I’m pretty sure that’s supposed to be true.)

(c)

Let k be a field and G be a group. The universal property of the group algebra kG along with the map i defined
in class is: for any k-algebra A and any group homomophism φ from G to A× (i.e. the group of invertible
elements in (A, ·)), there exists exactly one k-algebra homomorphism f : kG→ A satisfying f ◦ i = φ.

To prove this universal property, note that by part (a) any group homomorphism φ from G to A× can be
identified with a monoid homomorphism ϕ from G to A. So, if we define the monoid homomorphism ϕ : G→ A
by g 7→ φ(g) then proving that there exists exactly one k-algebra homomorphism f : kG→ A satisfying f ◦ i = φ
is equivalent to proving that there exists exactly one k-algebra homomorphism satisfying f ◦ i = ϕ.

But by part (b), there is a unique k-algebra homomphism f : kG→ A satisfying f ◦ i = ϕ (we take (kG, i) to
be our monoid ring and A and ϕ : G→ A to be an R-algebra and monoid map respectively), so we are done.

Question 4

(a)

Given a representation of G on a k-vector space V

G× V → V

(g, v) 7→%(g)(v)

where %(g)(v) is k-linear for each g, we can form the k-algebra kG with the ring homomorphism k → kG given
by α 7→ α · 1. Now, take the map G→ Endk(V ) defined by

G→ Endk(V )

g 7→ %(g).
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Since G was acting on V , this is really just a group homomorphism G→ Endk(V )× (bijective endomorphisms).
Also, we can think of Endk(V ) as a k-algebra since it has a multiplication. So, by the universal property from
problem 3(c), I think we can say that there is then a unique canonical k-algebra homomorphism kG→ Endk(V ).
I’m pretty sure this k-algebra homomorphism ends up being something like

kG→ Endk(V )∑
αgg 7→

∑
αg%(g)

where
∑
αg%(g) denotes the endomorphism sending v 7→

∑
αg%(g)(v).

We can also go the other way. Given a k-algebra homomorphism f : kG → Endk(V ), we can define a
representation of G on V by taking %(g) to be f(1 · g). Now, notice that the map G→ kG given by g → 1 · g is
a monoid homomorphism, so composing it with the k-algebra homomorphism f gives a monoid homomorphism
G → Endk(V ). But by problem 3(a), this can be identified with a group homomorphism G → Endk(V )×, so
that taking g 7→ 1 · g 7→ f(1 · g) =: %(g) does describe a group action on V .

(b)

Given a representation of G on V as in the problem statement, we can think of a kG-module structure on V
with our abelian group being (V,+), and our scalar multiplication defined by:

kG× V → V(∑
αgg, v

)
7→
∑

αg%(g)(v).

We can reverse this: given a scalar multiplcation kG× V → V , we can make g act by letting %(g)(v) := (1 · g) · v
for each v ∈ V .

We should show all the structure stuff is preserved. Basically, %(g) being an endomorphism translates to our
scalar multiplication being linear, i.e. if we write g, h to mean either the elements 1 · g, 1 · h ∈ kG or the actual
elements of G, and take α ∈ k, then we have

%(g)(u+ v) = %(g)(u) + %(g)(v) for all u, v ∈ V ⇐⇒ g · (u+ v) = g · u+ g · v for all u, v ∈ V .
%(g)(αv) = α%(g)(v) for all v ∈ V ⇐⇒ g · (αv) = αg · v for all v ∈ V

Actually, the second condition is not an axiom of modules. It comes from V being both a k-module and a
kG-module thus having a scalar multiplication for both, and it’s nice to have g · (α · v) = αg · v so that the
two scalar multiplications behave well with each other. Anyway, we can see there is then a canonical k-algebra
homomorphism kG → Endk(V ) by letting % (

∑
αgg) (v) := (

∑
αgg) · v, because the properties of a k-algebra

homomorphism translate to the properties of the scalar multiplication on our module. That is, where a, b ∈ kG:

%(a+ b) = %(a) + %(b) ⇐⇒ (a+ b) · v = a · v + b · b for all v ∈ V
%(ab) = %(a)%(b) ⇐⇒ (ab) · (v) = a · (b · v) for all v ∈ V

%(1kG)(v) = v for all v ∈ V ⇐⇒ 1kg · v = v for all v ∈ V

(and “nice properties of scalar multiplications” tells us %(α · 1G) = α%(1kG) translates to (α · 1G) · v = α · v for
all v ∈ V , so we do have a k-algebra homomorphism, not just a ring homomorphism). Finally, using part (a), we
get a representation of G on V from this k-algebra homomorphism kG→ Endk(V ).

(c)

Let Dn denote the dihedral group of size 2n, i.e. the symmetries of a regular n-gon. Let r ∈ Dn be the element
corresponding to an anticlockwise rotation of 2π

n , and let s ∈ Dn be the element corresponding to a horizontal
reflection (i.e. reflection about the x-axis). Then the defining representations of Dn could be described using the
algebra homomorphism RDn → End(R2) specified by

r 7→
[
cos
(
2π
n

)
− sin

(
2π
n

)
sin
(
2π
n

)
cos
(
2π
n

) ]
s 7→

[
1 0
0 −1

]
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where the matrix

[
a b
c d

]
with a, b, c, d ∈ R is supposed to denote the endomorphism sending elements (x, y) ∈ R2

to (ax + by, cx + dy) ∈ R2. Note: the reason this specifies an R-algebra homomorphism is that specifying the
image of r and s is enough to define a group homomorphism f : Dn → (R2)× since r and s are generators, and
one can check that we do end up with a valid homomorphism with our choice of f(r) and f(s) (expand to see
f(r)n = f(s)2 = f(s)f(r)f(s)f(r) = I2). Then, we use the universal property of the group algebra to get the
unique R-algebra homomorphism we want.

Question 5

(a)

We have, for all θ ∈ R,
cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1.

So, for all θ ∈ R,

cos(4θ) = cos2(2θ)− 1

= 2(2 cos2 θ − 1)2 − 1

= 8 cos4 θ − 8 cos2 θ + 2− 1.

By setting θ = 15◦ (and α = cos(15◦)), we get

8α4 − 8α2 + 1 =
1

2

=⇒ 16α4 − 16α2 + 1 = 0

=⇒ α4 − α2 +
1

16
= 0

We’ll now show that the polynomial p(x) = x4 − x2 + 1
16 is irreducible over Q.

Suppose p(x) is not irreducible over Q. Then it must have at least one factor which is a quadratic or a linear
polynomial. Let’s first look at the case where we can factor p(x) into two (WLOG monic) quadratics:

x4 − x2 +
1

16
= (x2 + ax+ b)(x2 + cx+ d) = x4 + (a+ c)x3 + (b+ ac+ d)x2 + (ad+ bc)x+ bd

where a, b, c, d ∈ Q. Comparing coefficients of x3, we find a+ c = 0, so c = −a. Then, comparing coefficients of
x, we have ad− ba = 0, so a = 0 or b = d. If a = 0:

x4 − x2 +
1

16
= x4 + (b+ d)x2 + bd

so b + d = −1 and bd = 1
16 . But then b(1 − b) = 1

16 , so that 16b2 − 16b + 1 = 0, but the two solutions to this
equation are irrational since the discriminant is 256− 64 = 192 is not a perfect square.

Therefore a 6= 0, so we must have b = d. Then since bd = 1
16 , we must have b = d = ± 1

4 . Our equation is now
the following

x4 − x2 +
1

16
= x4 + (2b− a2)x2 +

1

16
.

Comparing coefficients of x2, we get −1 = 2b − a2, where b = ± 1
4 . So, a2 = 2b + 1 = ± 1

2 + 1 = 1
2 or 3

2 , but
neither is a square of a rational number so we have a contradiction.

The other case is that p(x) has a linear factor with rational coefficients. However, this would imply that p(x)
has a rational root, but

x4 − x2 +
1

16
= 0

=⇒ 16x4 − 16x2 + 1 = 0

=⇒ x2 =
16±

√
192

32

so the square of any root of p(x) is not rational, so p(x) does not have any rational roots.
Putting this together, we see that p(x) is the irreducible polynomial we are looking for.
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(b)

Letting β = α2, the equation α4 − α2 + 1
16 = 0 becomes

β2 − β +
1

16
= 0.

Clearly the polynomial x2 − x + 1
16 is irreducible (as otherwise x4 − x2 + 1

16 would not be irreducible, which
would contradict our findings in part (a)), so it must be the irreducible polynomial for β = α2 over Q. Hence,
the irreducible polynomial for α2 over Q has degree two.

(c)

Recall some useful facts from class:

• The constructible numbers form a subfield of R. So, the sum or product of any two constructible num-
bers is also constructible, and the multiplicative inverse of any (non-zero) constructible number is also
constructible.

• 45◦ is constructible, i.e. cos(45◦) = 1√
2

is constructible

• 60◦ is constructible, i.e. cos(60◦) = 1
2 is constructible. Actually, remember that when we constructed 60◦

in class, part of it involved constructing a 30-60-90 triangle with hypotenuse length 2, so that one of the
sides must have had length

√
3/2. So

√
3/2 is also constructible.

Now, where α = cos(15◦), recall from part (a):

α4 − α2 +
1

16
= 0 =⇒ 16α4 − 16α+ 1 = 0

=⇒ α2 =
16±

√
192

32
=

2±
√

3

4
=

1 + 3± 2
√

3

8
=

(1±
√

3)2

8

=⇒ α = ±1±
√

3

2
√

2

We’ll show that all four of the possible values for α are constructible, so that α must be constructible. Indeed,

from our dot points at the start of part (c), we have that 1, 1√
2
,
√
3
2 constructible. Also, 2 = 1+1 is constructible,

so
√

3 =
√
3
2 × 2 and 1

2 = 2−1 are constructible.

Since we can make each of ± 1±
√
3

2
√
2

by taking sums, differences and products of 1, 1
2 ,
√

3 and 1√
2
, we conclude

that α (which must be one of these four values) is constructible.

(d)

The irreducible polynomial of cos(45◦) = 1√
2

over Q is x2− 1
2 which has degree 2, so dimQ Q[cos(45◦)] = 2. Also,

from part (a), the degree of the irreducible polynomial of α = cos(15◦) over Q has degree 4 > 2, so dimQ Q[α] = 4.
Therefore α 6∈ Q[cos(45◦)], so the degree of irreducible polynomial of α over Q[cos(45◦)] must be at least 2. We’ll
find a quadratic q(x) with coefficients in Q[cos(45◦)] such that q(α) = 0.

To find q(x), remember that the irreducible polynomial of α over Q had four roots, ± 1±
√
3

2
√
2

, as calculated in

part (c). So, we want to choose two and multiply the corresponding linear factors together and hopefully end up
with all coefficients in Q[cos(45◦)]. One of these roots should be α, which we calculate to be

α = cos(15◦)4 = cos(60◦ − 45◦) = cos(60◦) cos(45◦) + sin(60◦) sin(45◦) =
1 +
√

3

2
√

2
.

Then we can take

q(x) =

(
x− 1 +

√
3

2
√

2

)(
x− 1−

√
3

2
√

2

)
=

(
x− 1

2
√

2
−
√

3

2
√

2

)(
x− 1

2
√

2
+

√
3

2
√

2

)

=

(
x− 1

2
√

2

)2

−

( √
3

2
√

2

)2

= x2 − 1√
2
x+

1

8
− 3

8
= x2 − cos(45◦)x− 1

4
.
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Since α 6∈ Q[cos(45◦)], and q(x) = x2− cos(45◦)x− 1
4 is a degree 2 polynomial with all coefficients in Q[cos(45◦)]

such that q(α) = 0, it must be the irreducible polynomial of α over Q[cos(45◦)].

(e)

We begin with some lemmas:

Lemma 1. Given a line l and a point A (not necessarily on l), we can construct a line though A perpendicular
to l.

Proof. Here are the steps required to construct the perpendicular:

1. Draw a circle centred at A, intersecting l at distinct points B and C.

2. Draw circles centred at B and C with radius BC.

3. Draw a line through the intersection points of the circles drawn in step 2. This line is the perpendicular
we want.

(Note that these steps work even if A is not on l).

Also, from part (d),

cos(15◦) =
1 +
√

3

2
√

2
= (1 +

√
3)× cos(45◦)

2
.

Now for the actual steps:

1. We have an already constructed 45◦ angle. Label the vertex of this angle A. Draw a circle centred at
A with radius 1 (if we can’t do this, draw a circle with radius k and multiply all subsequent lengths in
our proof by k) and let it intersect one leg of the 45◦ angle at B. Draw a perpendicular from B to the
other leg of the angle, and say it intersects the leg at C. Then, since AB = 1 and ∠ACB = 90◦, we have
AC = cos(45◦).

2. Draw the circles centred at A and C with radius AC. These two circles intersect at two points. Draw
the line connecting these two points, and let it intersect AC at D. Then, D is the midpoint of AC so

AD = cos(45◦)
2 .
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3. Now we construct a point X on line AB such that BX =
√

3 (so AX = 1+
√

3). Draw the circle centred at
A with radius AB = 1. Let the perpendicular to AB through A intersect this circle at E. Then, AE = 1.
Draw in line EB.

4. Next, draw a circle centred at E with radius EA = 1. Let the perpendicular to BE through E intersect this
circle at F , so that EF = 1. Then, we have BF 2 = BE2 + FE2 = AB2 + AE2 + FE2 = 3, so BF =

√
3.

Then, draw a circle centred at B with radius BF =
√

3 and let this circle intersect line AB at X, so that
A, B, X lie on the line in that order.

5. Now, we have points A,B,X,D (see diagram below) such that AB = 1, AX = 1 +
√

3 and AD =
cos(45◦)

2 . Construct the perpendicular to BD through B and let it intersect line AD at G. Construct the
perpendicular to BG through X and let it intersect AD at Y . Then, we have BD parallel to XY (since
both are perpendicular to BG), so triangles ABD and AXY are similar. Then, AB/AX = AD/AY , so

AY = AD·AX
AB = (1 +

√
3)× cos(45◦)

2 = cos(15◦).

6. Finally, draw the perpendicular to AY through Y , and let it intersect the circle with radius 1 centred at A
at Z. Then, since AZ = 1, AY = cos(15◦) and ∠AY Z = 90◦, ∠ZAY = 15◦, which is the angle we wanted.

(f)

From part (c), we knew that cos(15◦) is one of ± 1±
√
3

2
√
2

. Actually, from (d) we know that cos(15◦) = 1+
√
3

2
√
2

. So,

all we need to do is show how to construct a 45◦ angle from scratch, and from there we can do the same as in
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part (e). But this is simple: label the two given points A and B. Draw the perpendicular to AB passing through
B, and let it intersect the circle centred at B with radius BA at a point C. Then, BA = BC and ∠ABC = 90◦,
so 4ABC is right isosceles, so ∠CAB = 45◦.

(g)

In each case, where F ⊂ F [β] is the field extension, we just want to write F [β] ∼= F [x]/(p(x)), where p(x) ∈ F [X]
is the irreducible polynomial of β over F . Using part (a), (b) and (c):

1. Q[cos(45◦)] = Q
[

1√
2

]
∼= Q[x]/(x2 − 1

2 )

2. Q[cos(15◦)] ∼= Q[x]/
(
x4 − x2 + 1

16

)
3. Q[cos2(15◦)] ∼= Q[x]/

(
x2 − x+ 1

16

)
4. Q[cos(15◦)] ∼= Q[cos(45◦)][x]/

(
x2 − cos(45◦)x− 1

4

)
5. For this one, we first notice the irreducible polynomial of cos2(15◦) over Q has degree 2 (see part (b)), while

the irreducible polynomial of cos(15◦) over Q has degree 4 (see part (a)), hence cos(15◦) 6∈ Q[cos2(15◦)]. So,
the irreducible polynomial of cos(15◦) over Q[cos2(15◦)] must have degree at least 2, and from this we can see
that the required irreducible polynomial is x2−cos2(15◦). So, Q[cos(15◦)] ∼= Q[cos2(15◦)][x]/

(
x2 − cos2(15◦)

)
.

11


