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June 4, 2019

Throughout this assignment, we follow the notations from Artin’s book.
Notation R[a, b] is defined by sending x1 and x2 of the polynomial ring R[x1, x2]
to a and b respectively. Notation R(a, b) is the smallest field which contains both
a and b. In Artin’s book, it is proved that R[a, b] = R(a, b) if a and b are both
algebraic over R.

1 Question 1
Let F ⊆ K be a field extension. We say that K is algebraic over F if every
element of K is algebraic over F . Prove that K is algebraic over F if and only
if every subring R ⊆ K containing F is also a field.

Definition 1. Let F ⊆ K be a field extension. We say that K is algebraic over
F if every element of K is algebraic over F .

Proposition 2. Let F ⊆ K be a field extension, then K is algebraic over F if
and only if every subring R ⊆ K containing F is also a field.

Proof. First, we show that if K is algebraic over F , then every subring R ⊆ K
containing F is also a field.

Condiser an element α ∈ R ⊆ F . If α ∈ F , then α−1 ∈ F ⊆ R. If α /∈ F ,
since α ∈ R ⊆ K, we have α is algebraic over F , so there exists an irreducible
polynomial p(x) of degree n ∈ N such that α is a root of p(x), thus [F (α) : F ] = n
and {1, α, . . . , αn−1} forms a basis of F (α) over F . The element α is algebraic
over F , so F (α) is a field, it follows that α−1 ∈ F (α). Since {1, α, . . . , αn−1}
forms a basis of F (α) over F , there exists a0, a1, . . . , an−1 ∈ F such that

α−1 = a0 + a1α+ · · · an−1α
n−1. (1)

We know that R is a ring and x ∈ R, thus 1, x, . . . , xn−1 are all in R, hence
α−1 ∈ R. Therefore, for any α ∈ R, we have α−1 ∈ R, hence R is a field.

Next, we show that K is algebraic over F if every subring R ⊆ K containing
F is also a field.

Consider an element α ∈ K. If α ∈ F , then α is algebraic over F since it is
the root of x − α ∈ F [x]. If α /∈ F , then F [α] is a subring of K, hence it is a
field. Since α /∈ F , it cannot be 0, hence α−1 ∈ F [α]. Therefore, there exists an
integer n ∈ N and n+ 1 coefficients a0, . . . , an ∈ F such that

α−1 = a0 + a1α+ · · · anαn. (2)
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Multiplying the two sides of Equation (2) by α gives

1 = a0α+ a1α
2 + · · ·+ anα

n+1, (3)

i.e.
anα

n+1 + · · ·+ a0α− 1 = 0. (4)

Hence α is a root of polynomial p(x) = anα
n+1+· · ·+a0α−1, thus α is algebraic

over F . Therefore, any element α ∈ K is algebraic over F , so K is algebraic
over F .

2 Question 2
Assume that e ∈ R is transcendental over Q, and let K ⊂ R be an algebraic
extension of Q. Prove that e is transcendental over K.

Lemma 3. If e ∈ R is transcendental over Q, and K ⊂ R is an algebraic
extension of Q, then e is transcendental over K.

Proof. We prove the lemma by contradiction.
Assume e is algebraic over K, then there exists an irreducible polynomial

p(x) = anx
n+· · · a1x+a0 ∈ K[x] such that e is a root of p(x), where a0, . . . , an ∈

K.
For conevience, we write Q(a0, . . . , ai) as Ei for i between 0 and n. Since K is

an algebraic field extension of Q, the coefficients a0, . . . , an ∈ K are all algebraic
over Q, so for any i between 1 and n, there exists a polynomial pi(x) ∈ Q[x] of
degree ni such that ai is a root of p(x). Since pi(x) ∈ Q[x], it follows that pi(x) ∈
Ei−1[x], so the degree of ai over Ei−1 is also finite, hence [Ei : Ei−1] <∞ for all
i between 1 and n. Considering the field extension chain Q ⊂ E0 ⊂ · · · ⊂ En,
we have

[En : Q] = [E0 : Q] · [E1 : E0] · · · [En : En−1] <∞.

Since a0, . . . , an ∈ En, we have p(x) ∈ En[x].
By assumption, e is a root of p(x), hence e is algebraic over En. The degree

of p(x) over En is n, and e is a root of p(x), hence [En(e) : En] ≤ n, therefore

[En(e) : Q] = [En : Q] · [En(e) : En] <∞.

Since Q ⊂ Q(e) ⊂ En(e), hence [Q(e) : Q] < ∞, i.e. the degree of e over Q is
also finite, thus e is algebraic over Q, which contradicts to the given condition
that e is transcendental over Q. Therefore, e is transcendental over K.

3 Question 3
Let K = Q[i, 4

√
2].

3.1 Part A
Show that K is a splitting field of X4 − 2 over Q.

Lemma 4. The field K is a splitting field of X4 − 2 over Q.
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Proof. Since i is a root of X2 + 1 ∈ Q[x], and 4
√
2 is a root of X4 − 2 ∈ Q[x],

both i and 4
√
2 are algebraic over Q, hence Q[i, 4

√
2] = Q(i, 4

√
2).

Since
X4 − 2 = (X − 4

√
2)(X +

4
√
2)(X − i

4
√
2)(X + i

4
√
2),

and − 4
√
2, 4

√
2,−i 4

√
2, i 4

√
2 ∈ Q(i, 4

√
2), the polynomial X4 − 2 can be facterized

into linear factors in Q(i, 4
√
2).

Any field L where X4 − 2 can be facterized into linear factors must contain
4
√
2 and i 4

√
2, and therefore must contain i 4

√
2/ 4

√
2 = i. By the definition of

Q(i, 4
√
2), we have Q(i, 4

√
2) ⊆ L. Therefore, Q(i, 4

√
2) = Q[i, 4

√
2] is a splitting

field of X4 − 2 over Q.

3.2 Part B
Find a Q-basis of K.

Lemma 5. The set P = {1, 4
√
2,
√
2, 4

√
8, i, i 4

√
2, i

√
2, i 4

√
8} forms a Q-basis of

K.

Proof. We know that Q( 4
√
2) ∼= Q[x]/(x4 − 2), so [Q( 4

√
2) : Q] = 4. Since i is a

root of x2+1 ∈ Q( 4
√
2)[x], the degree of i over Q( 4

√
2) is at most 2. We also know

that Q( 4
√
2) ⊂ R, and i /∈ R, thus i /∈ Q( 4

√
2), so the degree of i over Q( 4

√
2) is

not 1. Therefore, the degree of i over Q( 4
√
2) = 2, so [Q(i, 4

√
2) : Q] = 8.

Since Q( 4
√
2) ∼= Q[x]/(x4 − 2), the set B = {1, 4

√
2,
√
2, 4

√
8} is a Q-basis

of Q( 4
√
2). Also from Q(i, 4

√
2) = Q( 4

√
2)(i) ∼= Q( 4

√
2)/(x2 + 1), we know that

C = {1, i} forms a Q( 4
√
2)-basis of Q(i, 4

√
2).

In the proof of degree theorem, we have shown that the set of products of
one element from B and one element from C forms a Q-basis of K, which is
exactly P.

3.3 Part C
Find an automorphism of order four of K over Q[i].

Solution: First, we know that both 4
√
2 and i 4

√
2 are algebraic over Q[i]

since they are both roots of x4 − 2 ∈ Q[i]. Therefore, Q[i][ 4
√
2] = Q[i]( 4

√
2)

and Q[i][i 4
√
2] = Q[i](i 4

√
2). Then since 4

√
2 = −i(i 4

√
2) ∈ Q[i][i 4

√
2], hence

Q[i]( 4
√
2) ⊂ Q[i][i 4

√
2]. Similarly, since i 4

√
2 = i 4

√
2 ∈ Q[i][ 4

√
2], we also have

Q[i](i 4
√
2) ⊂ Q[i][ 4

√
2]. Therefore, Q[i][ 4

√
2] = Q[i][i 4

√
2]. By definition of poly-

nomial ring, we have K = Q[i][ 4
√
2] = Q[i][i 4

√
2].

Since there exists a homomorphism f1 : Q[i][x] → Q[i][ 4
√
2], which sends x to

4
√
2, by universal property of polynomial rings and quotient rings, there exists a

homomorphism ϕ1 : Q[i][x]/(x4 − 2) → Q[i][ 4
√
2], which sends the coset of x to

4
√
2. Also, ( 4

√
2)4 − 2 = 0, so (x4 − 2) ⊆ ker(f). Since polynomial rings are PID,

and (x4 − 2) is irreducible, (x4 − 2) is therefore maximal. We know that ker(f)
is also an ideal, and clearly ker(f) ̸= Q[i][x], so ker(f) = (x4 − 2). By first
isomorphism theorem, ϕ1 is therefore an isomorphism, which sends the coset of
x to 4

√
2. Similarly, there exists a isomorphism ϕ2 : Q[i][x]/(x4−2) → Q[i][i 4

√
2],

which sends the coset of x to i 4
√
2.

Since ϕ1 and ϕ2 are both isomorphism, ψ = ϕ−1
1 ϕ2 : Q[i][ 4

√
2] → Q[i][i 4

√
2]

is also an isomorphism. We have shown that K = Q[i][ 4
√
2] = Q[i][i 4

√
2], so ψ is

an automorphism of K. Since the construction of K comes from a polynomial
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ring Q[i][x], the elements of Q[i] in K are from the monomials of degree 0 and
4k, where k ∈ N, which are not influenced by ψ, so ψ fixes Q[i].

Then we check the order of ψ. Applying ψ once sends 4
√
2 to i 4

√
2. Applying

ψ twice sends 4
√
2 to − 4

√
2. Applying ψ thrice sends 4

√
2 to −i 4

√
2. Applying ψ

four times sends 4
√
2 to 4

√
2 back. Therefore, ψ is an automorphism of order four

of K over Q[i].

3.4 Part D
Determine all the automorphisms of K over Q.

Solution: From main theorem of Galois theory, we know that |G(K|Q)| = 8.
We also know that G(K|Q) ⊂ S4, so it is a Sylow 2-subgroup of S4. By Sylow’s
theorem, all Sylow 2-subgroups are isomorphic. We also know that dihedral
group D4 is a Sylow 2-subgroup of order 8, therefore G(K|Q) ∼= D4.

All the roots of X2 − 4 are of the form αj = ij 4
√
2, where 1 ≤ j ≤ 4, this

gives an automorphism of order 4:

σ : i 7−→ i
4
√
2 7−→ i

4
√
2.

We also have an automorphism of order 2:

τ : i 7−→ −i
4
√
2 7−→ 4

√
2.

So far, we have got the generators of G(K|Q), which are σ and τ , then we have
G(K|Q) = {1, σ, σ2, σ3, τ, τσ, τσ2, τσ3}, where 1 is the identity automorphism.

Moreover, we can also clarify how these elements permute the roots, written
with the exponent j: 1 = (1), σ = (1234), σ2 = (13)(24), σ3 = (1432), τ = (13),
τσ = (12)(34), τσ2 = (24), τσ3 = (14)(23).

3.5 Part E
The zeros of X4 − 2 form the set S = {± 4

√
2,±i 4

√
2}. Describe the action of

Aut(K|Q) on S.
Solution: In part d, we have shown that G(K|Q) = Aut(K|Q) ∼= D4. We

also know that the four elements of S forms a square on the complex plane.
Therefore, the action of Aut(K|Q) is actually applying rotations or reflections
on the square whose vertices are the elements of S.

3.6 Part F
Find all subgroups of Aut(K|Q).

Solutions: We have shown that Aut(K|Q) ∼= D4. By Lagrange’s theorem,
all the subgroups of D4 are of order 1, 2, 4, or 8. First, we have the trivial
subgroups 1 and Aut(K|Q). There are five subgroups of D4 of order 2, so the
subgroups of order 2 of Aut(K|Q) are H(2)

1 = {1, τ}, H(2)
2 = {1, τσ}, H(2)

3 =

{1, τσ2}, H(2)
4 = {1, τσ3}� H(2)

5 = {1, σ2}. There are three subgroups of D4

of order 4, so the subgroups of order 4 of Aut(K|Q) are H(4)
1 = {1, σ, σ2, σ3},

H
(4)
2 = {1, σ2, τ, τσ2} and H

(4)
3 = {1, σ2, τσ, τσ3}.
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3.7 Part G
Find all intermediate field extensions of Q ⊂ K.

Solutions: From Galois theory, we know that any intermediate field extension
corresponds to a subgroup of Aut(K|Q). Also, we know that all the degrees of
the intermediate field extensions should divides the degree of Q ⊂ K, therefore
the intermediate field extensions can only be of degree 2 or 4.

We know that the trivial subgroup {1} corressponds to K itself, since the
order of it is 1. The other trivial subgroup Aut(K|Q) corresponds to Q, since
the order of it is exactly |Aut(K|Q)|. These two are not intermediate field
extensions.

Then we consider all the subgroups of order four. By main theorem of Galois
theory, they corresponds to intermediate field extensions of degree two over Q.
Since i,

√
2, i

√
2 are roots of x2 + 1, x2 − 2, x2 + 2 respectively. The three

field extensions Q[i], Q[
√
2], Q[i

√
2] are all field extensions of degree two. By

definiton of σ, we can see that H(4)
1 fixes Q[i]. By applying the elements of H(4)

2

and H
(4)
3 to

√
2 and i

√
2, we can get that H(4)

2 corresponds to Q[
√
2] and H

(4)
3

corresponds to Q[i
√
2]. By the main theorem of Galois theory, there is no other

intermediate field extensions of degree two.
Then we consider the field extension of degree four over Q. From the defi-

nition of τ we know that H(2)
1 fixes Q[ 4

√
2]. From the description of the action

of Aut(K|Q) on S in part e, we can also find the field extensions corresponding
to H(2)

2 , H(2)
4 and H(2)

3 are Q[(i− 1) 4
√
2], Q[i 4

√
2] and Q[(i+1) 4

√
2] respectively.

Since H(2)
5 is a subgroup of all the subgroups of Aut(K|Q) of order four, the

field extension corresponding to it has to be an intermediate extension of all the
three field extensions of degree two. We can check that σ2 fixes (1 + i)

√
2, so

H
(2)
5 corresponds to Q[(1 + i)

√
2] = Q[i,

√
2].

So far, we have got all the intermediate field extensions of Q ⊂ K. The field
extensions of degree two are Q[i], Q[

√
2] and Q[i

√
2]. The field extensions of

degree four are Q[ 4
√
2], Q[(i− 1) 4

√
2], Q[i 4

√
2], Q[(i+ 1) 4

√
2] and Q[(1 + i)

√
2].

4 Question 4
Prove Q[

√
2,
√
3] = Q[

√
2 +

√
3].

Lemma 6. Q[
√
2,
√
3] = Q[

√
2 +

√
3].

Proof. Since
√
2 is a root of X2 − 2 = 0,

√
3 is a root of X2 − 3 = 0, and√

2 +
√
3 is a root of X4 − 10X2 + 1 = 0, they are all algebraic over Q, hence

Q[
√
2,
√
3] = Q(

√
2,
√
3) and Q[

√
2 +

√
3] = Q(

√
2 +

√
3).

Since
√
2 +

√
3 ∈ Q[

√
2,
√
3], and any α ∈ Q[

√
2 +

√
3] can be represented

as α = a0 + a1(
√
2 +

√
3) + · · · an(

√
2 +

√
3)n, where a0, . . . , an ∈ Q, hence α is

also in Q[
√
2,
√
3], so Q[

√
2 +

√
3] ⊆ Q[

√
2,
√
3].

Since Q(
√
2+

√
3) is a field, we have

√
3−

√
2 = (

√
2+

√
3)−1 ∈ Q(

√
2+

√
3).

Since 1
2 (
√
3−

√
2) + 1

2 (
√
2 +

√
3) =

√
3, we have

√
3 ∈ Q(

√
2 +

√
3). Similarly,√

2 = 1
2 (
√
2+

√
3)− 1

2 (
√
3−

√
2) ∈ Q(

√
2+

√
3). By the definition of Q(

√
2,
√
3),

it follows that Q(
√
2,
√
3) ⊆ Q(

√
2 +

√
3).

Therefore Q[
√
2,
√
3] = Q[

√
2 +

√
3].
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5 Transcendental numbers
5.1 Part A
Prove that the set of all algebraic numbers over Q is countable.
Proposition 7. Let A be the set of all algebraic numbers over Q, then A is
countable.
Proof. If α ∈ A, then there exists a monic irreducible polynomial p(x) = xn +
· · ·+ a1x+ a0 ∈ Q[x] such that α is a root of p(x).

Since for all 0 ≤ i < n, we have ai ∈ Q, i.e. there exists mi, ni ∈ Z such that
ai = mi/ni. Multiplying p(x) by

∏n−1
i=0 ni gives a new polynomial

p′(x) = p(x)

n−1∏
i=0

ni = xn
n−1∏
i=0

ni + · · ·+m0

n−1∏
i=1

ni ∈ Z[x].

Let a′i be the coefficient of xi in p′(x), i.e. write p′(x) as p′(x) = a′nx
n + · · · a′0,

then a′i ∈ Z. Since α is a root of p(x), it is also a root of p′(x).
Sort the roots of p′(x) by absolute value from small to big, and treat multiple

roots of p′(x) as a single root, we get a list of at most n numbers, and α is the
k-th root in this list, where 1 ≤ k ≤ n. Then we can define a function f : A→ N
as

f(α) = 2k · 3a
′
0 · · · pa

′
n

n+2,

where pi is the i-th prime number.
If f(α) = f(α′), then they must be the roots of the same polynomial with

the same index k, i.e. α = α′, hence f is injective. By the definition of countable
set, A is therefore countable.

5.2 Part B
Prove that the set of real numbers {log(p)|p is prime.} is linearly independent
over Q.
Lemma 8. The set of real numbers P = {log(p)|p is prime.} is linearly inde-
pendent over Q.
Proof. We prove this lemma by contradiction.

If P is linearly dependent over Q, then there exist different prime numbers
p1, . . . , pn and a1, . . . , an ∈ Q such that

a1 log(p1) + · · ·+ an log(pn) = 0, (5)

for some ai ̸= 0. For 1 ≤ i ≤ n, since ai ∈ Q, there exists mi, ni ∈ Z such that
ai = mi/ni, multiplying Equation (5) by

∏n
i=1 ni gives

log(p1)m1

n∏
i=2

ni + · · · log(pn)mn

n−1∏
i=1

ni = 0. (6)

Write the coefficient of log(pi) as a′i, clearly a′i ∈ Z. Then from Equation (6),
we have

p
a′
1

1 · · · pa
′
n

n = 1, (7)
for some a′i ̸= 0. Since each of pi’s is prime, we must have ai = 0 for all i.
Therefore, P is linearly independent over Q.
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5.3 Part C
Use your result from (a) to prove the existence of transcendental numbers.

Proposition 9. Transcendental number exists.

Proof. If transcendental number does not exist, then all real numbers are alge-
braic over Q, i.e. A = R. By Lemma 7, R is countable, which contradicts to
Contor’s Theorem, saying that R is not countable. Therefore, there must exist
some transcendental numbers.

6 Question 6
A famous theorem by Lindemann states that if a ∈ C is algebraic over Q then
ea is transcendental. Use this theorem to prove that π is transcendental.

Theorem 10 (Lindermann). If a ∈ C{0} is algebraic over Q, then aa is tran-
scendental.

Proposition 11. π is transcendental over Q.

Proof. First, we show that iπ is transcendental by contradiction.
If iπ is algebraic, then by Lindemann, eiπ is transcendental over Q, which

contradicts to the fact that eiπ = −1 ∈ Q, which means that eiπ is algebraic
over Q. Therefore, iπ is transcendental over Q.

Then we prove that π is transcendental over Q by contradiction.
If π is algebraic over Q, then it is algebraic over Q(i), i.e. [Q(i, π) : Q] <∞.

Since iπ ∈ Q(i, π), we have

[Q(iπ) : Q] ≤ [Q(i, π, iπ) : Q] = [Q(i, π) : Q] · [Q(i, π, i pi) : Q(i, π)] <∞,

thus iπ is algebraic over Q, which contradicts to the statement proven before.
Therefore, π is transcendental over Q.

7 Question 7
Let R be a principle ideal domain, let a1, . . . , an ∈ R be the elements such that
(gcd(ai, aj)) = (1) for i ̸= j, and let a = a1 · · · an. Prove that the map

ψ : R/(a) −→ R/(a1)×R/(a2)×R/(an)

[r](a) 7−→ ([r](a1), [r](a2), . . . , [r](am))

is an isomorphism of rings. Here we have used the notation [r](a) = r + (a) for
the coset of rmod(a), and similarly for (ai).

Let V = R/(a1)×R/(a2)×· · ·×R/(an). We write ([r1](a1), . . . , [rn](an)) ∈ V
as ([ri](ai)) for convenience. Define an addition on V as ([ri](ai)) + ([si]ai

) :=
([ri + si](ai))., where ri, si ∈ R. Since the addition of cosets [ri](ai) are well-
defined, this addition is also well-defined.

First, we check that (V,+) forms an abelian group.
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For any ri, si ∈ R, where i is between 1 and n, since the addition of R is
commutative, we have

([ri](ai)) + ([si](ai)) = ([ri + si](ai))

= ([si + ri]ai)

= ([ri](ai)) + ([si](ai)).

Thus this addition on V is commutative.
For any ri, si, ti ∈ R, where i is between 1 and n, by associativity of addition

of cosets, we have

(([ri](ai)) + ([si](ai))) + ([ti](ai)) = ([ri + si](ai)) + ([ti](ai))

= ([(ri + si) + ti](ai))

= ([ri + (si + ti)(ai)])

= ([ri](ai)) + ([si + ti](ai))

= ([ri](ai)) + ([si](ai)) + ([ti](ai)).

Therefore, this addition on V is associative.
Let 0 be the additive identity of R. The additive identity in V is ([0](ai)),

because for any ri ∈ R, we have

([ri](ai)) + ([0](ai)) = ([ri + 0](ai)) = ([ri](ai))

.
For any ri ∈ R, the additive inverse of ([ri](ai)) is ([−ri](ai)), since

([ri](ai)) + ([−ri](ai)) = ([ri + (−ri)](ai)) = ([0](ai))

.
So far, we have shown that (V,+) is an abelian group.
Then, we define an multiplication on V as ([ri](ai)) · ([si](ai)) := ([risi](ai)),

where risi uses the multiplication in R. This multiplication is also well-defined,
because the multiplication of cosets is well-defined. We will show that (V, ·)
forms a monoid.

For any ri, si, ti in R, by associativity of multiplication on R, we have

(([ri](ai)) · ([si](ai))) · ([ti](ai)) = ([risi](ai)) · ([ti](ai))

= ([(risi)ti](ai))

= ([ri(siti)](ai))

= ([ri](ai)) · ([siti](ai))

= ([ri](ai)) · (([si](ai)) · ([ti](ai))).

Hence, this multiplication on V is associative.
Let 1 be the multiplicative identity of R, then the multiplicative identity of

V is ([1](ai)), because for any ri ∈ R, we have ([1](ai)) · ([ri](ai)) = ([1 · ri](ai)) =
([ri](ai)).

Therefore, (V, ·) forms a monoid.
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For any ri, si, ti ∈ R, from the distributivity of R, we have

([ri](ai)) · (([si](ai)) + ([ti](ai))) = ([ri](ai)) · ([si + ti](ai))

= ([ri(si + ti)](ai))

= ([risi + riti](ai))

= ([ri](ai)) · ([si](ai)) + ([ri](ai)) · ([ti](ai)).

Hence, multiplication have left distributivity with respect to addition. Simliarly,
the right distributivity also holds.

Combining abelian group (V,+), monoid (V, ·) and distributivity, we can
conclude that (V,+, ·) forms a ring.

For any r, s ∈ R, from the definition of addition and multiplication of cosets,
and the definition of ψ, we have ψ([r](a)+[s](a)) = ψ([r+ s](a)) = ([r+ s](ai)) =
ψ(r) +ψ(s) and ψ([r](a)[s](a)) = ψ([rs](a)) = ([rs](ai)) = ψ(r) ·ψ(s). Therefore,
ψ is a ring homomorphism.

Now we show that ψ is injective. If ψ([r](ai)) = ψ([r′](ai)) where r, r′ ∈ R,
then ([r](ai)) = ([r′])(ai), thus [r](ai) = [r′](ai) for all i, hence [r− r′](ai) = [0](ai)

for all i, so r − r′ ∈ (ai).
Then we show that if r − r′ ∈ (ai) for all i, then r − r′ ∈ (a). In fact,

it is enough to prove that for any i and j, if r − r′ ∈ (ai) and r − r′ ∈ (aj)
and (gcd(ai, aj)) = (1), then r − r′ ∈ (aiaj). From lectures, we know that Be-
zout’s Identity holds in PID. Since (gcd(ai, aj)) = (1), there exists two element
mi,mj ∈ R such that miai +mjaj = 1, so r− r′ = (r− r′)miai + (r− r′)mjaj .
From r − r′ ∈ (ai) and r − r′ ∈ (aj), we know that there exists two ele-
ments qi, qj ∈ R such that r − r′ = qiai and r − r′ = qjaj , then r − r′ =
qjajmiai + qiaimjaj = (qjmi + qimj)aiaj , so r − r′ ∈ (aiaj). Therefore,
r − r′ ∈ (a), which means that [r − r′](a) = [0](a), so ψ is injective.

Then we show that ψ is surjective. Let ãi = a/ai. Consider an arbitrary
element ([ri](ai)) ∈ V .

We claim that (gcd(ai, ãi)) = (1). In fact, it is enough to show that if
(gcd(ai, aj)) = (1) and (gcd(ai, ak)) = (1), then (gcd(ai, ajak)) = (1). By
Bezout’s Identity, there exist elements xi, xj , yi, yk ∈ R such that xiai+xjyj = 1
and yiai + ykak = 1. Multiplying these two equations gives (xiyiai + xiykak +
xjajyi)ai + xjyjajak = 1, so (gcd(ai, ajak)) = 1. Therefore, (gcd(ai, ãi)) = (1).

Since (gcd(ai, ãi)) = (1), by Bezout’s Identity, there exists two elements
xi, yi ∈ R such that xiai + yiãi = 1, so rixiai + riyiãi = ri, i.e. riyiãi ∈
[ri](ai). From the definition of ãi, we also know that ãi ∈ (aj) for all j ̸= i,
hence [riyiãi](aj) = [0](aj). Let r =

∑n
i=1 riyiãi, then we have [r](ai) = [ri](ai),

therefore ([r](ai)) = ([ri](ai)). So far, we have shown that for any ([ri])(ai), there
exists an r ∈ R such that ([r](ai)) = ([ri](ai)), thus ψ([r](a)) = ([ri](ai)), so ψ is
surjective.

Therefore, ψ is bijective, so it is a ring isomorphism.
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