Assignment 2 – Algebra 2019

- (1) Let $F \subseteq K$ be a field extension. We say that K is algebraic over F if every element of K is algebraic over F. Prove that K is algebraic over F if and only if every subring $R \subseteq K$ containing F is also a field.
- (2) Assume that $e \in \mathbb{R}$ is tanscendental over \mathbb{Q} , and let $K \subset \mathbb{R}$ be an algebraic extension of \mathbb{Q} . Prove that e is transcendental over K.
- (3) Let $K = \mathbb{Q}[i, \sqrt[4]{2}].$
 - (a) Show that K is a splitting field of $X^4 2$ over \mathbb{Q} .
 - (b) Find a \mathbb{Q} -basis of K.
 - (c) Find an automorphism of order four of K over $\mathbb{Q}[i]$.
 - (d) Determine all the automorphisms of K over \mathbb{Q} .
 - (e) The zeros of $X^4 2$ form the set $S = \{\pm \sqrt[4]{2}, \pm i\sqrt[4]{2}\}$. Describe the action of $Aut(K|\mathbb{Q})$ on S.
 - (f) Find all subgroups of $Aut(K|\mathbb{Q})$.
 - (g) Find all intermediate field extensions of $\mathbb{Q} \subset K$.
- (4) Prove $\mathbb{Q}[\sqrt{2},\sqrt{3}] = \mathbb{Q}[\sqrt{2}+\sqrt{3}].$
- (5) Transcendendal numbers
 - (a) Prove that the set of all algebraic numbers over \mathbb{Q} is countable.
 - (b) Prove that the set of real numbers $\{log(p) \mid pisprime\}$ is linearly independent over \mathbb{Q} .
 - (c) Use your result from (a) to prove the existence of transcendental numbers.
- (6) A famous theorem by Lindemann states that if $a \in \mathbb{C}$ is algebraic over \mathbb{Q} then e^a is transcendental. Use this theorem to prove that π is transcendental.
- (7) Let R be a principal ideal domain, let $a_1, \ldots a_n \in R$ be elements such that $(gcd(a_i, a_j)) = (1)$ for $i \neq j$, and let $a = a_1 \cdots a_n$. Prove that the map

$$\psi R/(a) \longrightarrow R/(a_1) \times R/(a_2) \times \cdots \times R/(a_n)$$

[r]_(a) \longmapsto ([r]_(a1), [r]_(a2), ..., [r]_(am))

is an isomorphism of rings. Here we have used the notation $[r]_{(a)} = r + (a)$ for the coset of $r \mod (a)$, and similarly for (a_i) .