
Reduced Expressions and Exchange Theorem

Jonah Nelson

2019

Reference: C.Kassel and V.Turaev: Braid Groups section 4.4

Definition:

Given Sn, and i, j with 1 ≤ i < j ≤ n , let τi,j be the transposition which
excahnges i and j and fixes every other element in {1, ...n}. Denote the set of
tranpositions in Sn by T .

Given w ∈ Sn, and inversion of w is a pair (i, j) with 1 ≤ i < j ≤ n and
w(i) > w(j). Denote by I(w) the set {τi,j ∈ T |(i, j) is an inversion of w}. Note
that I(w) determines w uniquely.

Lemma:

Let τi,j ∈ T and u ∈ Sn. Then

uτi,ju
−1 =

{
τu(i),u(j) u(i) < u(j)

τu(j),u(i) u(i) > u(j)

Proof:

First note that uτi,ju
−1(u(j)) = uτi,j(j) = u(i) and uτi,ju

−1(u(i)) = uτi,j(i) =
u(j). So uτi,ju

−1 swaps u(i) and u(j). Further, if 1 ≤ l ≤ n has l 6= u(i) and
l 6= u(j) then l = u(l′), l′ 6= i and l′ 6= j. So uτi,ju

−1(l) = uτi,ju
−1(u(l′)) =

uτi,j(l
′) = u(l′) = l. So l is fixed. Thus

uτi,ju
−1 =

{
τu(i),u(j) u(i) < u(j)

τu(j),u(i) u(j) < u(i)

as claimed. �

Lemma:

Let u, v ∈ Sn. Then
I(uv) = v−1I(u)v4I(v)
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Proof:

Let τi,j ∈ T , u, v ∈ Sn. There are two cases. First suppose that τi,j ∈ I(v).
We want to show that τi,j 6∈ v−1I(u)v exactly when τi,j ∈ I(uv). We have that
τi,j ∈ I(uv) iff uv(j) < uv(i). Which is true in this case iff (v(j), v(i)) is not an
inversion of u since v(j) < v(i). Equivalently vτi,jv

−1 = τv(j),v(i) 6∈ I(u) and
equivalently again τi,j 6∈ v−1I(u)v.

Now assume τi,j 6∈ I(v). We want to show that τi,j ∈ v−1I(u)v exactly when
τi,j ∈ I(uv). Then τi,j ∈ I(uv) iff uv(i) > uv(j) which is true in this case
iff (v(i), v(j)) is an inversion of u, since v(i) < v(j). This is equivalent to
vτi,jv

−1 ∈ I(u) which is true exactly when τi,j ∈ v−1I(u)v.

We have now established that τi,j ∈ I(uv) iff τi,j is in exactly one of I(v)
or v−1I(u)v. It is then clear that I(uv) = v−1I(u)v4I(v). �

Lemma:

Let w ∈ Sn, and let si1 ...sir be a reduced expression for w. Define the set
of transpositions {t1, ..., tr} ⊆ T where tk = sir ...sik+1

siksik+1
...sir . Then:

(i) ∀k,wtk = si1 ...ŝik ...sir where the hat indicates that sk has been removed.
(ii) tl 6= tk for k 6= l
(iii) I(w) = {t1, ..., tr}

Proof:

(i) Let w ∈ Sn and let si1 ...sir be a reduced expression for w. Given tk,
1 ≤ k ≤ r, we have

wtk = (si1 ...sir )(sir ...sik+1
siksik+1

...sir )

= (si1 ...sik−1
)(sik ...sir )(sir ...sik)(sik+1

...sir )

= si1 ...ŝik ...sir

(ii) It is clear then that all ti are distinct, since if tl = tk, l 6= k we can assume
l < k. Then

w = wt2l = wtltk = si1 ...ŝil ...ŝik ...sir

Contradicting that si1 ...sir is a reduced expression for w.

(iii) We will do induction on the string si1 ...sir . It is clear in the base case
that I(sir ) = {sir} = {tr}. Now assume that for some 1 < k < r we have
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I(sik ...sir ) = {tk, ..., tr}. Then

I(sik−1
sik ...sir ) = (sik ...sir )−1I(sik−1

)(sik ...sir )4I(sik ...sir )

= (sik ...sir )−1{sik}(sik ...sir}4{tk, ..., tr}
= {tk−1}4{tk, ..., tr} = {tk−1} ∪ {tk, ..., tr}
= {tk−1, ..., tr}

It follows by induction that I(w) = I(si1 ...sir ) = {t1, ..., tr} �

Corollary:

For w ∈ Sn, then we have λ(w) = |I(w)|. Also given a reduced expression
si1 ...sir for w, and τ ∈ I(w), then wτ = si1 ...ŝik ...sir for some 1 ≤ k ≤ r.

Proof:

This is clear since given w ∈ Sn of length r, we have a reduced expression
si1 ...sir and I(w) = {t1, ..., tr} where ti is defined as in the above lemma. Fur-
ther |I(w)| = |{t1, ..., tr}| = r. If τ ∈ I(w), then τ = tk for some k, and by the
calculation above wτ = si1 ...ŝik ...sir . �

Lemma:

For τ ∈ T , λ(wτ) 6= λ(w) and τ ∈ I(w) if and only if λ(wτ) < λ(w).

Proof:

In the above lemma we saw that for τ ∈ I(w), wτ = si1 ...ŝik ...sir for some
1 ≤ k ≤ r where si1 ...sir is a reduced expression for w. It follows that λ(w) >
λ(wτ). Conversely if τ 6∈ I(w), then τ 6∈ τI(w)τ . So, τ ∈ τI(w)τ4{τ} = I(wτ).
It follows then that λ(w) = λ(wτ2) < λ(wτ). �

Lemma:

for w ∈ Sn, λ(wsi) = λ(w)− 1 if and only if w(i) > w(i+ 1).

Proof:

From two previous lemmas, we have that λ(wsi) = λ(w)±1 and λ(wsi) < λ(w)
exactly when (i, i+ 1) is an inversion of w. The claim follows.
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Theorem: (Exchange Theorem)

Let si1 ...sir be a reduced expression for w ∈ Sn. Then, given a simple trans-
position sj , If λ(wsj) < λ(w) then there exists a 1 ≤ k ≤ r such that wsj =
si1 ...ŝik ...sir . Similarly if λ(sjw) < λ(w), there is a 1 ≤ k ≤ r such that
sjw = si1 ...ŝik ...sir .

Proof:

Let w ∈ Sn have a reduced expression si1 ...sir . If λ(wsj) < λ(sj), then sj ∈ I(w)
so sj) = si1 ...ŝik ...sir , by the above corollary, so we have the first part. For the
second part, we have that if λ(sjw) < λ(w), then λ(w−1sj) = λ(sjw) < λ(w) =
λ(w−1), so sj ∈ I(w−1). Taking the reduced expression for w−1, sir ...si1 we
have that w−1sj = sir ...ŝik ...si1 and further that sjw = si1 ...ŝik ...sir �

Corollary:

Let w ∈ Sn. λ(wsj) < λ(w) iff there is a reduced expression for w begin-
ning with sj .

Proof:

If λ(wsj) < λ(w), we have wsj = si1 ...ŝik ...sir wheres si1 ...sir is reduced ex-
pression for w. Then however w = si1 ...ŝik ...sirsj which is a reduced expression
for w. The converse is obvious.

Lemma:

If w ∈ Sn and simple transpositions si, sj ∈ Sn, if λ(siwsj) = λ(w) and
λ(siw) = λ(wsj) then siw = wsj .

Proof:

We can’t have λ(w) = λ(wsj) so we have two cases. If λ(siw) = λ(wsj) >
λ(siwsj) = λ(w).

I(siw) = {w−1siw}4I(w)

λ(wsj) > λ(w), so sj 6∈ I(w). However, λ(siwsj) < λ(siw), so sj ∈ I(siw). It
follows that sj = w−1siw and the claim is clear.

Alternatively, assume that λ(siw) < λ(w). We have

I(w) = I(s2iw)

= w−1si{si}siw4I(siw)

= {w−1siw}4I(siw)

sj 6∈ I(siw) but sj ∈ I(w). It follows that sj = w−1siw and we are done. �
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