SELECTED SOLUTIONS FOR TUTORIAL 5 - ALGEBRA 2019

- (1) Show that \mathbb{Z} is a PID, UFD, GCD domain, and Euclidean domain. Try to consider the properties you used in order to find a hierarchy between these classes.
 - GCD Domains \supset UFDs \supset PIDs \supset Euclidean Domains \supset Fields. \mathbb{Z} is not a field, but it is a Euclidean domain.
- (2) Let $\mathcal{R} = \{f : \mathbb{C} \to \mathbb{C} \mid f \text{ is entire}\}$ be the ring of entire functions. Fill out some the following table with Yes or No, explaining each entry.

	GCD Domain	UFD	PID	Euclidean Domain
$\mathbb{Z}[X]$	Yes	Yes	No	No
\mathbb{Z}_4	No	No	No	No
$\mathbb{Z}[\mathrm{i}]$	Yes	Yes	Yes	Yes
$\mathbb{R}[X,Y]$	Yes	Yes	No	No
\mathcal{R}	Yes	No	No	No
$\mathbb{Z}[\frac{1}{2}(1+\sqrt{-19})]$	Yes	Yes	Yes	No

Ideas behind proofs:

- $\langle 2, X \rangle$ is an ideal in $\mathbb{Z}[X]$, but it cannot be principal. Alternatively, X is irreducible in $\mathbb{Z}[X]$, so if $\mathbb{Z}[X]$ were a PID, $\mathbb{Z}[X]/\langle X \rangle$ would have to be a field; it is \mathbb{Z} , which is not a field.
- $2 \times 2 = 0$ in \mathbb{Z}_4 , so it is not even an integral domain. All of these must be integral domains.
- $\mathbb{Z}[i]$ has one of the nicest non-trivial Euclidean division algorithms and a detailed Wikipedia page on it.
- If *L* is a UFD, then so too is L[X]. Since \mathbb{R} is a field, it is a UFD, so $\mathbb{R}[X]$ is a UFD. But then $\mathbb{R}[X,Y] = \mathbb{R}[X][Y]$ (by definition) is also a UFD.
- To see that $\mathbb{R}[X,Y]$ is not a PID, consider the ideal $\langle X,Y \rangle$ and suppose it is generated by some polynomial p(X,Y). Since $X,Y \in \langle X,Y \rangle$, p(X,Y) must divide X and Y, so it must be a constant. But then $p(X,Y) \notin \langle X,Y \rangle$, which is a contradiction. Alternatively, recall (?) that F[X] is a PID if and only if F is a field; $\mathbb{R}[X]$ is not a field since X is not invertible in $\mathbb{R}[X]$.
- You are not expected to know about entire functions (functions that are smooth on \mathbb{C}). However, if you've taken complex analysis, you may be interested to know that the primes in \mathcal{R} are the linear polynomials

1

(x-c) with $c \in \mathbb{C}$ (the set of primes is isomorphic to \mathbb{C})! Given $f,g \in \mathcal{R}$, let $h(x) = \prod_{a:f(a)=g(a)=0}(x-a)$. Then $\gcd(f,g) = h$. On the other hand, the entire function $\sin(x)$ has infinitely many zeroes, so cannot be uniquely factorised as a product of finitely many primes. Thus, \mathcal{R} is not a UFD.

- The PID $\mathbb{Z}[\frac{1}{2}(1+\sqrt{-19})]$ is technically in this course, but it would be cruel of us to put it on the exam (without heavy guidance). To see that it is not a Euclidean domain, note that $\gcd(1+\sqrt{-19},4)=2$ but there is no way to obtain this from the Euclidean algorithm; indeed, there are no $q,r\in\mathbb{Z}[\frac{1}{2}(1+\sqrt{-19})]$ such that $1+\sqrt{-19}=4q+r$. The "inspiration" required to find this example is quite technical, and so too is the proof that $\mathbb{Z}[\frac{1}{2}(1+\sqrt{-19})]$ is actually a PID.
- What's interesting is that $\mathbb{Z}[\frac{1}{2}(1+\sqrt{-d})]$ is a PID but not a Euclidean domain exactly when $d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$.
- (3) Use the Euclidean algorithm to find inverses of some elements in $\mathbb{Z}_5[i]$ and $\mathbb{Z}_2[X]/\langle X^3+X+1\rangle$.
- (4) Show that 9 is reducible in $\mathbb{Z}[\sqrt{-5}]$, and hence show that 3 is not prime (what are the units in $\mathbb{Z}[\sqrt{-5}]$? This may be worth proving).

The first part of this question is either ridiculously easy or misleading. In any case, define a norm by $N(a+b\sqrt{-5})=a^2+5b^2$. Then, if x is a unit in $\mathbb{Z}[\sqrt{-5}]$, N(x)=1 (If xy=1, N(x)N(y)=N(xy)=N(1)=1, but N(x), N(y) must be positive integers), so $x=\pm 1$. Now, $3|9=(2+\sqrt{-5})(2-\sqrt{-5})$, but 3 does not divide either of these factors, so it cannot be prime (use norm arguments).

(5) Is \mathbb{Q} a free module over \mathbb{Z} ?

It is not a free module, since it does not have a basis. Suppose, for the sake of contradiction, that it did have a basis. If such a basis had one element, say $v = p/q \in \mathbb{Q}$ with $\gcd(p,q) = 1$, then $p/(2q) \in \mathbb{Q}$ but $p/(2q) \notin \operatorname{span}_{\mathbb{Z}}\{v\}$, so our apparent basis does not span \mathbb{Q} over \mathbb{Z} and we have a contradiction. Now, if we suppose there is a basis with at least 2 elements, then we would lose linear independence, since any two rational numbers are linearly dependent over \mathbb{Z} .