
Solutions for Tutorial 6 – Algebra 2019

Let F ⊂ K be fields, and let a be an element of K.

(1) Recall what it means for a to be algebraic over F .

The element a is called algebraic if the F -algebra homomorphism

φ : F [x] −→ K

x 7−→ a

has a non-trivial kernel.

(2) In class, you saw a fast forward version of the proof that the field extension generated
by F and a is isomorphic to the quotient of a polynomial algebra. In this tutorial,
you will fill in the details.

(a) Recall the definition of the relevant map φ from a polynomial algebra to K.

The polynomial algebra is F [x]. Recall that this polynomial algebra is the free
F -algebra on one element: indeed, it is the monomial algebra of free monoid on
one element,

(N,+) ∼= ({xn | n ∈ N}, ·),
where xm · xn = xm+n. So, there is a unique map of F -algebras φ from F [x] to
K sending x to a. Explicitly, if

p(x) = fnx
n + fn−1x

n−1 + · · ·+ f1x+ f0,

then

φ(p) = p(a) = fna
n + fn−1a

n−1 + · · ·+ f1a+ f0.

In other words, φ takes a polynomial and evaluates it at a.

(b) Show that im(φ) is an integral domain.

One checks that im(φ) ⊆ K is a subring. This holds for any ring homomorphism.
Since K is a field, K is an integral domain. Subrings of integral domains are
again integral domains, so im(φ) is an integral domain.

(c) Using the first isomorphism theorem, argue that ker(φ) is a prime ideal.

The first isomorphism theorem gives an isomorphism

F [x]/ker(φ) ∼= im(φ).

So, the quotient on the left is an integral domain. This was our definition of
prime ideal.

(d) Show that F [x] is a PID. F (x) is a Euclidean domain, since the degree function a
the Euclidean function. The following argument goes through for any Euclidean
domain. Let a ⊂ F [x] be a non-zero ideal. Then a contains elements of positive
degree. Let a ∈ a have minimal degree, i.e.,

deg(a) = min{deg(b) | b ∈ a \ {0}}.
We claim that (a) = a. To show the inclusion ⊆, note that a ∈ a and that a is
an ideal. Any element of (a) is of the form p · a with p ∈ F [x] and hence also

1



contained in a. To prove the inclusion ⊇, let b ∈ a be given. Then there exists
polynomials q and r such that

b(x) = a(x) · q(x) + r(x),

and deg(r) < deg(a). Since b and a are elements of a, so is r = b − q · a. By
the minimality of deg(a), it follows that the remainder r is equal to zero. So, we
have b = q · a ∈ (a).

(e) Prove that ker(phi) is maximal. We saw in class that in a principal ideal domain,
prime ideals are maximal.

(f) Prove that ker(phi) = (p(x)) where p(x) is an irreducible polynomial.

Since F [x] is a PID, and ker(φ) is an ideal, since φ is a ring homomorphism
(prove this), it follows that ker(φ) = (p(x)) for some polynomial p(x). We
already saw that ker(φ) is a prime ideal, so p(x) is a prime element. In class, we
saw that in a principal ideal domain, prime elements are irreducible. (In fact,
the weaker condition of UFD would have been enough for the last step).

(g) Prove that im(φ) is a field.

We use the first isomorphism theorem again: since ker(φ) is a maximal ideal,
F [x]/ker(φ) ∼= im(φ) is a field.

(h) Prove im(φ) = F (a).

Recall that F (a) was defined to be the smallest subfield field of K containing
F and a. To show the inclusion ⊆, let p(a) = fna

n + fn−1a
n−1 + · · · + f1a + f0

be an element in the image of phi. Since the coefficients fi are elements of F ,
this expression has to be contained in any field containing F and a. To show
the inclusion ⊇, write

F (a) =
⋂

F⊆E⊆K

a∈E

E

as the inclusion of all intermediate field extensions containing a and note that
E = im(φ) is such an intermediate extension. Hence F (a) ⊆ im(φ).

(i) Describe F (a) as a quotient of the polynomial algebra F [x]. Putting everything

together, we obtain

F (a) = im(φ) ∼= F [x]/(p(x),

where p(x) is the irreducible polynomial of a.

(3) Work through some examples. A good place to get a feel for what is going on is the
extension F2 ⊂ F16.
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