Solutions for Tutorial 7 – Algebra 2019

- (1) Let R be an integral domain, and let a and b be elements of R.
 - (a) Show that a = bc implies $(a) \subseteq (b)$ with equality if and only if c is a unit.

Assume we have a = bc, and let ra be an element of (a), where $r \in R$ is arbitrary. Then we have $ra = rcb \in (b)$. This proves the inclusion. If c is a unit, then apply the same argument to $b = ac^{-1}$ to obtain the other inclusion. If we have equality, then we have $b \in (b) = (a)$, so there exists an element $d \in R$ with b = da. Further

$$1 \cdot a = a = cb = cda,$$

 \mathbf{SO}

$$(1 - cd)a = 0.$$

Since R is an integral domain, we have either a = 0, in which case the statement you were supposed to prove is false, I was careless here, or we have cd = 1, and hence c is a unit.

(b) Show that (a) = (b) if and only if there exists a unit $u \in \mathbb{R}^{\times}$ with a = ub.

Let us first look at the case $(a) = \{b\}$, since that was iffy in the last part. This is the case if and only if we have a = b = 0, and we can take u = 1. So, assume now that (a) = (b) where a and b are non-zero elements of R. The "if" statement is then answered in the previous question. To see the "only if" part, note that $a \in (a) = (b)$ implies the existence of $c \in R$ with a = cb and use the previous question to deduce that c is a unit.

- (c) Let $u \in R^{\times}$ be a unit. Show that (u) = R. For any $r \in R$, we have $r = ru^{-1}u \in (u)$.
- (2) Prove that a \mathbb{Z} -module consists of the same data as an abelian group.

By definition, a \mathbb{Z} -module is an abelian group M together with a bilinear map

(multiplication by scalars) satisfying 1m = m and $z_1(z_2m) = (z_1z_2)m$. Given a Z-module, we may therefore forget the multiplication by scalars and just remember that M is an abelian group.

On the other hand, assume an abelian group A is given. We need to show that there is one and only one way to equip A with the structure of a \mathbb{Z} -module in such a manner that the underlying abelian group is the original one. Indeed, as in any module we must have 1a = a and 0a = 0. Distributivity then forces $za = \underbrace{a + \cdots + a}_{z \text{ times}}$

for $z \in \mathbb{Z}$ positive and further za = (-z)(-a) for negative z.

One checks that this scalar multiplication makes A into a \mathbb{Z} -module. Moreover, all the constructions above are "functorial" meaning that they also translate between \mathbb{Z} -module homomorphisms and homomorphisms of abelian groups.

An alternative proof uses a reformulation of the definition of module: let M be an abelian group, let R be a ring, and write End(M) for the endomorphism ring of M. (Recall that an endomorphism of M is just a group homomorphism from M to M.) Then a scalar multiplication of R on M (i.e., an R-module structure on M whose underlying abelian group is the given one) is given by the same data as a ring homomorphism from R to End(M). Try to prove this – it should remind you of the analogous statement for group actions and bijections.

The statement about \mathbb{Z} -modules amounts then to the fact we saw in class that every ring, so in particular End(A), receives exactly one ring homomorphism from \mathbb{Z} .

(3) Consider the abelian group A with generators a, b and c and relations 3a = b - c, 6a = 2c and 3b = 4c.

(a) Write A as the quotient of a free \mathbb{Z} -module by a submodule.

$$A = \mathbb{Z}\{a, b, c\}/\langle 3a - b + c, 6a - 2c, 3b - 4c\rangle.$$

(b) Convince yourself that A is isomorphic to the cyclic group on twelve elements.

The generator b is superfluous, b = 3a + c. So,

$$A = \langle a, c \mid 6a - 2c = 0, 9a - c = 0 \rangle.$$

Similarly, we can eliminate the generator c = 9a and arrive at

$$A = \langle a \mid -12a = 0 \rangle \cong \mathbb{Z}/12\mathbb{Z}.$$

(c) Use the language of generators and relations to give a map f from A to $\mathbb{Z}/12\mathbb{Z}$ and an inverse of f.

We claim that

$$\begin{array}{rccc} f:A & \longrightarrow & \mathbb{Z}/12\mathbb{Z} \\ a & \longmapsto 11 \\ b & \longmapsto 0 \\ c & \longmapsto 3 \end{array}$$

is a well defined group homomorphism. Indeed, the relations hold in the image:

$$\begin{aligned} 3f(a) &= 9 &= 0 - 3 = f(b) - f(c) \\ 6f(a) &= 6 &= 2f(c) \\ 3f(b) &= 0 &= 4 \cdot 3 = 4f(c). \end{aligned}$$

We claim that f is an isomorphism with inverse

$$g: \mathbb{Z}/12\mathbb{Z} \longrightarrow A$$
$$1 \longmapsto -a.$$

First, g is well defined, because -a has order 12 in A. Next, f(-a) = -f(a) = 1, so we have $f \circ g = id$. We already know that both groups have 12 elements,

so we are done, but let us pretend we don't know this. Then need to use the relations in A to prove the equations

$$g(f(a)) = g(11) = -g(1) = -(-a) = a$$

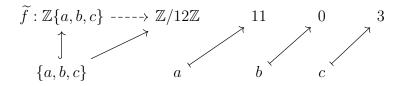
$$g(f(b)) = g(0) = 0 = b$$

$$g(f(c)) = g(3) = -3a = c$$

and obtain gf = id.

(d) Now translate this into the language of universal properties.

To define the map $f: A \longrightarrow \mathbb{Z}/12\mathbb{Z}$, we first use the universal property of free \mathbb{Z} -module to define a map



and then check that

$$f(3a - b + c) = 0$$

$$\widetilde{f}(6a - 2c) = 0$$

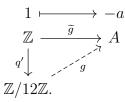
$$\widetilde{f}(3b - 4c) = 0.$$

Hence \widetilde{f} vanishes on the submodule generated by these three elements

$$\langle 3a-b+c, 6a-2c, 3b-4c \rangle$$

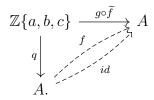
and the universal property of quotient modules gives our map f as follows

Similarly, we obtain the map g,



To show that $g \circ f$ is the identity of A, we check, argue that $g \circ \tilde{f} = q$ (this boils down to using the relations in A) and conclude, using the uniqueness of the universal

property for q that $g \circ f = id_A$,



The argument for fg = id is similar.

- (4) Consider the field \mathbb{F}_8 . To be concrete, use the construction and notation from class, so \mathbb{F}_8 is generated over \mathbb{F}_2 by an element b satisfying the relation $b^3 = b+1$. Consider the element $b^2 \in \mathbb{F}_8$.
 - (a) Without any calculations, determine the degree of b^2 over \mathbb{F}_2 .
 - (b) Prove your statement from (a).

We have

$$3 = deg_{\mathbb{F}_2}(b^2) \cdot deg_{\mathbb{F}_2(b^2)} \mathbb{F}_8,$$

so the degree must be either 1 or 3. Since b^2 is not an element of \mathbb{F}_2 , its degree must be 3.

(c) Find the irreducible polynomial of b^2 over \mathbb{F}_2 .

We are looking for a polynomial of degree three vanishing on b^2 . We have

$$(b^2)^3 = (b^3)^2 = (b+1)^2 = b^2 + 1,$$

so, the irreducible polynomial of b^2 equals $p(x) = x^3 + x + 1$.

(d) Write down an automorphism of \mathbb{F}_8 .

Since b and b^2 have identical irreducible polynomial, we have the field homomorphism

$$\begin{array}{cccc} \mathbb{F}_8 & \longrightarrow & \mathbb{F}_8 \\ b & \longmapsto & b^2 \end{array}$$

which is automatically an isomorphism for cardinality reasons.