
Solutions for Tutorial 7 – Algebra 2019

(1) Let R be an integral domain, and let a and b be elements of R.
(a) Show that a = bc implies (a) ⊆ (b) with equality if and only if c is a unit.

Assume we have a = bc, and let ra be an element of (a), where r ∈ R is arbitrary.
Then we have ra = rcb ∈ (b). This proves the inclusion. If c is a unit, then
apply the same argument to b = ac−1 to obtain the other inclusion. If we have
equality, then we have b ∈ (b) = (a), so there exists an element d ∈ R with
b = da. Further

1 · a = a = cb = cda,

so
(1− cd)a = 0.

Since R is an integral domain, we have either a = 0, in which case the statement
you were supposed to prove is false, I was careless here, or we have cd = 1, and
hence c is a unit.

(b) Show that (a) = (b) if and only if there exists a unit u ∈ R× with a = ub.

Let us first look at the case (a) = (b) = {0}, since that was iffy in the last part.
This is the case if and only if we have a = b = 0, and we can take u = 1. So,
assume now that (a) = (b) where a and b are non-zero elements of R. The “if”
statement is then answered in the previous question. To see the “only if” part,
note that a ∈ (a) = (b) implies the existence of c ∈ R with a = cb and use the
previous question to deduce that c is a unit.

(c) Let u ∈ R× be a unit. Show that (u) = R.

For any r ∈ R, we have r = ru−1u ∈ (u).

(2) Prove that a Z-module consists of the same data as an abelian group.

By defnintion, a Z-module is an abelian group M together with a bilinear map

Z×M −→ M

(z,m) 7−→ zm

(multiplication by scalars) satisfying 1m = m and z1(z2m) = (z1z2)m. Given a Z-
module, we may therefore forget the multiplication by scalars and just remember
that M is an abelian group.

On the other hand, assume an abelian group A is given. We need to show that
there is one and only one way to equip A with the structure of a Z-module in such
a manner that the underlying abelian group is the original one. Indeed, as in any
module we must have 1a = a and 0a = 0. Distributivity then forces za = a + · · ·+ a︸ ︷︷ ︸

z times

for z ∈ Z positive and further za = (−z)(−a) for negative z.
One checks that this scalar multiplication makes A into a Z-module. Moreover, all

the constructions above are “functorial” meaning that they also translate between
Z-module homomorphisms and homomorphisms of abelian groups.

An alternative proof uses a reformulation of the definition of module: let M be
an abelian group, let R be a ring, and write End(M) for the endomorphism ring
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of M . (Recall that an endomorphism of M is just a group homomorphism from M
to M .) Then a scalar multiplication of R on M (i.e., an R-module structure on M
whose underlying abelian group is the given one) is given by the same data as a ring
homomorphism from R to End(M). Try to prove this – it should remind you of the
analogous statement for group actions and bijections.

The statement about Z-modules amounts then to the fact we saw in class that
every ring, so in particular End(A), receives exactly one ring homomorphism from
Z.

(3) Consider the abelian group A with generators a, b and c and relations 3a = b − c,
6a = 2c and 3b = 4c.
(a) Write A as the quotient of a free Z-module by a submodule.

A = Z{a, b, c}/〈3a− b + c, 6a− 2c, 3b− 4c〉.

(b) Convince yourself that A is isomorphic to the cyclic group on twelve elements.

The generator b is superfluous, b = 3a + c. So,

A = 〈a, c | 6a− 2c = 0, 9a− c = 0〉.

Similarly, we can eliminate the generator c = 9a and arrive at

A = 〈a | −12a = 0〉 ∼= Z/12Z.

(c) Use the language of generators and relations to give a map f from A to Z/12Z
and an inverse of f .

We claim that

f : A −→ Z/12Z
a 7−→ 11

b 7−→ 0

c 7−→ 3

is a well defined group homomorphism. Indeed, the relations hold in the image:

3f(a) = 9 = 0− 3 = f(b)− f(c)

6f(a) = 6 = 2f(c)

3f(b) = 0 = 4 · 3 = 4f(c).

We claim that f is an isomorphism with inverse

g : Z/12Z −→ A

1 7−→ −a.

First, g is well defined, because −a has order 12 in A. Next, f(−a) = −f(a) = 1,
so we have f ◦ g = id. We already know that both groups have 12 elements,
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so we are done, but let us pretend we don’t know this. Then need to use the
relations in A to prove the equations

g(f(a)) = g(11) = −g(1) = −(−a) = a

g(f(b)) = g(0) = 0 = b

g(f(c)) = g(3) = −3a = c

and obtain gf = id.

(d) Now translate this into the language of universal properties.

To define the map f : A −→ Z/12Z, we first use the universal property of free
Z-module to define a map

f̃ : Z{a, b, c} Z/12Z 11 0 3

{a, b, c} a b c

and then check that

f̃(3a− b + c) = 0

f̃(6a− 2c) = 0

f̃(3b− 4c) = 0.

Hence f̃ vanishes on the submodule generated by these three elements

〈3a− b + c, 6a− 2c, 3b− 4c〉

and the universal property of quotient modules gives our map f as follows

Z{a, b, c} Z/12Z

A.

f̃

q
f

Similarly, we obtain the map g,

1 −a
Z A

Z/12Z.

g̃

q′ g

To show that g ◦ f is the identity of A, we check, argue that g ◦ f̃ = q (this boils
down to using the relations in A) and conclude, using the uniqueness of the universal
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property for q that g ◦ f = idA,

Z{a, b, c} A

A.

g◦f̃

q

f

id

The argument for fg = id is similar.

(4) Consider the field F8. To be concrete, use the construction and notation from class,
so F8 is generated over F2 by an element b satisfying the relation b3 = b+1. Consider
the element b2 ∈ F8.
(a) Without any calculations, determine the degree of b2 over F2.
(b) Prove your statement from (a).

We have

3 = degF2(b
2) · degF2(b2)F8,

so the degree must be either 1 or 3. Since b2 is not an element of F2, its degree
must be 3.

(c) Find the irreducible polynomial of b2 over F2.

We are looking for a polynomial of degree three vanishing on b2. We have

(b2)3 = (b3)2 = (b + 1)2 = b2 + 1,

so, the irreducible polynomial of b2 equals p(x) = x3 + x + 1.

(d) Write down an automorphism of F8.

Since b and b2 have identical irreducible polynomial, we have the field homomor-
phism

F8 −→ F8

b 7−→ b2,

which is automatically an isomorphism for cardinality reasons.
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