Tutorial 7 – Algebra 2019

- (1) Let R be an integral domain, and let a and b be elements of R.
 - (a) Show that a = bc implies $(a) \subseteq (b)$ with equality if and only if c is a unit.
 - (b) Show that (a) = (b) if and only if there exists a unit $u \in \mathbb{R}^{\times}$ with a = ub.
 - (c) Let $u \in \mathbb{R}^{\times}$ be a unit. Show that $(u) = \mathbb{R}$.
- (2) Prove that a \mathbb{Z} -module consists of the same data as an abelian group.
- (3) Consider the abelian group A with generators a, b and c and relations 3a = b c, 6a = 2c and 3b = 4c.
 - (a) Write A as the quotient of a free \mathbb{Z} -module by a submodule.
 - (b) Convince yourself that A is isomorphic to the cyclic group on twelve elements.
 - (c) Use the language of generators and relations to give a map f from A to $\mathbb{Z}/12\mathbb{Z}$ and an inverse of f.
 - (d) Now translate this into the language of universal properties.
- (4) Consider the field \mathbb{F}_8 . To be concrete, use the construction and notation from class, so \mathbb{F}_8 is generated over \mathbb{F}_2 by an element b satisfying the relation $b^3 = b+1$. Consider the element $b^2 \in \mathbb{F}_8$.
 - (a) Without any calculations, determine the degree of b^2 over \mathbb{F}_2 .
 - (b) Prove your statement from (a).
 - (c) Find the irreducible polynomial of b^2 over \mathbb{F}_2 .
 - (d) Write down an automorphism of \mathbb{F}_8 .