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Abstract

In this thesis, we develop the homotopy theory of 2-groups, using the
Garzon-Miranda model structure on the category of strict 2-groups. We
explore the extent to which homotopy theoretic methods recover the 2-
category theory of 2-groups. In particular, we apply this theory to study
the construction of free 2-groups and kernels, with a view to developing
2-dimensional analogues of classical constructions.
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1 Introduction

A 2-group is a monoidal groupoid in which every object is weakly invertible.
We call a 2-group strict if its monoidal structure is strict and every object is
strictly invertible. There is a well-known result that any 2-group is equivalent
to a strict 2-group; this strictification theorem greatly simplifies calculations
involving 2-groups. Moreover, the category of strict 2-groups admits a model
structure, which allows us to study their homotopy theory. This thesis will
discuss the extent to which the homotopy theory of strict 2-groups recovers the
2-category theory of 2-groups.

Our philosophy is thus to work with 2-groups in as strict a way as possible.
However, 2-groups naturally form a 2-category, so we must consider 2-categorical
and bicategorical constructions on 2-groups. We briefly recall the definitions of
2-categories and internal categories in Section 2.

Historically, 2-groups have arisen in a range of contexts, in forms which are
not obviously equivalent. Of these formulations, crossed modules are simplest to
do computations with. They were introduced by Whitehead in [39] to capture
the algebraic properties of relative homotopy groups, and have since become a
central part of the machinery of algebraic homotopy advanced by Baues and
Brown. We define crossed modules in Section 3 and discuss some examples.

In Section 4 we introduce monoidal categories and sketch a proof of a stric-
tification theorem, which is the basis of the strictification theorem for 2-groups.
In Section 5 we review a number of different formulations of 2-groups and sketch
proofs of their equivalence. We also develop aspects of the category theory of
2-groups, culminating in a statement of the strictification theorem.

In Section 6 we define model categories and develop some aspects of their
theory. In Section 7 we recall the Garzon-Miranda model structure on the cat-
egory of strict 2-groups and prove the following result, which gives a precise
connection between the homotopy theory of 2-groups and their 2-category the-
ory. Given a cofibrant strict 2-group A and any 2-group G we have the following
equivalence of groupoids:

Homstr2grp (.A, Q_) ~ Homagrp <A7 g)

Here G is the strict 2-group equivalent to G, defined via the strictification theo-
rem. The objects of Homs¢ragrp (A, Q_) are strict monoidal functors, while the
objects of Homagrp (A, G) are monoidal functors. The arrows in both groupoids
are monoidal natural isomorphisms.

In Section 8, we describe some elements of the 2-dimensional algebra of 2-
groups. In particular, we recall Vitale’s definition of the kernel for a morphism
of 2-groups. This is defined via a 2-categorical universal property. Following a
remark in [21], we note that Vitale’s construction of kernels satisfies the stronger
universal property of a strict homotopy limit. For strict 2-groups, we show that
Vitale’s construction coincides with that of the homotopy kernel coming from
the model structure.

In Section 9, we use the model structure on strict 2-groups to construct
the free 2-group F (G) on a groupoid G. The strict 2-group F (G) is free in



the sense that, given any groupoid G and any 2-group G, we have a 2-natural
isomorphism of groupoids as below:

HomStrZGrp (-F (G) ) g) = HomGrpd (Ga U (g))

Here U (G) is the underlying groupoid of G. This construction agrees with
the free crossed module on a groupoid constructed in [5], although we give
the construction in terms of truncated simplicial groups rather than crossed
modules. The proof also makes more explicit use of the model structures on
groupoids and strict 2-groups than the proof in [5].

Sections 7, 8 and 9 illustrate the facility of working with 2-groups via their
homotopy theory. The topics we have chosen to develop are 2-dimensional
analogues of elementary concepts in group theoy. We conclude the thesis with a
brief overview of possible future work in this direction, and a discussion of the
difficulties encountered in the 2-dimensional setting.

1.1 Notation and Assumed Background

We assume the reader is familiar with elementary category theory, as presented
in [29].

We will use the same notation for 2-categories as their underlying category.
For example, we denote the category of groupoids (that is, categories in which
every morphism is invertible) and functors between them by Grpd. We also
denote the 2-category of groupoids, functors between groupoids and natural
transformations between functors by Grpd. It will be clear from the context
whether we are referring to the 2-dimensional structure or the 1-dimensional.

2 2-Dimensional Structures

In this section we introduce 2-categories and internal categories. Both concepts
may be seen as forms of categorification, in the sense used in [2]. In later
sections, we will be interested in studying stuctures on 2-groups that are stable
under equivalence rather than isomorphism. For this reason, the appropriate
notions of limits, colimits and adjunctions for 2-groups are 2-categorical.

The 2-category of strict 2-groups, Str2Grp, defined in Definition 5.16, is
equivalent to the 2-category CatGrp of internal categories in Grp. Thus,
we define internal categories in this section. We will also use the language
introduced in this section to discuss groupoids in Section 9, thinking of groupoids
as internal to Set.

2.1 2-Categories

Definition 2.1. A 2-category is a category enriched over Cat, in the same
way that small categories are enriched over Set and preadditive categories (pre-
cursors to abelian categories) are enriched over Ab. Explicitly, a 2-category C
consists of a set (or a class) of objects, and for each pair of objects x and y, a



category Home (x,y). We will often denote this by C (z,y). For any objects z,
y and z we have the following functors, defining identities and composition:
i:1 — C(x,x)
OZC(y,Z)XC(Z‘,y) — C(l‘,Z)
Here 1 is the terminal category with one object and a single identity morphism.

We require that the following diagrams commute, expressing associativity and
unit constraints:

(€ (z,w) x C(y, 2)) x C(x,y) C(zw) x (C(y,2) x C(z,y))

oxC(x,y) C(z,w)xo

€ x C(x,y) ——5—>C (z,w) =——5—C(z,w) x C(z,2)

o

ixC(z,y)
1 xC(x,y) . C(y,y) xC(z,y)
D2 °
C(z,y)
C (2,y)  C (2, z) —— 2! C(w,y) x 1

C (z,y)

We call the objects of C (z,y) morphisms from z to y, and denote them by
f +x — y. They are also often called 1-morphisms or 1-cells. Given two
objects f,g € C (x,y) a morphism « from f to g is known as a 2-morphism or
2-cell in C. We denote this by a : f = g. Note that we have two different
notions of composition for 2-cells. Given «: f = g and f: g = hin C (z,y),
their vertical composite is defined to be their composite in C (z,y), denoted
Ba : f = h. Moreover, given o : f = g in C (z,y) and f: k = hin C (y, 2)
the functor o defines their horizontal composite, shown below:

Boa:kof=hog

If all of the categories C (x,y) are groupoids, we will sometimes call the 2-
category C a Grpd-enriched category. The 2-categories Grpd, 2Grp, Str2Grp
and Cross defined in Sections 3 and 5 are all Grpd-enriched.



We will often make use of structures related to 2-categories, which are known
as bicategories. Roughly, bicategories are to 2-categories as the strict monoidal
categories of Definition 4.18 are to the monoidal categories of Definition 4.1.
With this philosophy, bicategories are often called weak 2-categories. Although
we make use of bicategories and their theory, we will omit the defintion. For
background on bicategories and 2-categories, in particular the appropriate no-
tions of limits and adjunctions, see [24, 22, 23, 25, 27].

Example 2.2. We may form a 2-category Cat with categories as objects, func-
tors as 1-cells, and natural transformations as 2-cells. In the same way that Set
may be considered the archetypal example of a category, Cat is the archety-
pal example of a 2-category. The 2-category Grpd is a full sub-2-category of
Cat, in that the inclusion form Grpd to Cat is full on both 1-morphisms and
2-morphisms.

2.2 Internal Categories

Definition 2.3. Let C be a category with finite limits. An internal category
in C is given by a pair of objects Cy,C; € C called the object of objects and
the object of arrows. In addition, we must specify source, target and identity
morphsims s,t : C; — Cy and ¢ : Cy — (4, and a composition morphism
o:Cy x¢g,C1 — Cy. The object Cy x¢, C1 is defined via the pullback diagram
below:

D2
Cr xgy C1 ————=C

Cl - i > CYO

We require the following diagrams to commute, expressing the source and tar-
get for identity arrows and composites, and the associative and unit laws for
composition:

OQ : Cl
‘ id °
Cl CO



Cl X Co Cl %— Cl

p1 s
(& . Co
(e}
Ci x¢, C1 Cq
p2 t
Cy Co
Cl><0

Cl Xy Cl Xy Cl —_— Cl Xy 01

oxCq o
Ch Xy Cq p Cy
Co x¢c, C1 st Ci x¢c, C1 Gt Ch x¢, Co
p2 ° p1
Ch

We will often denote an internal category by C7 = Cjy. Note that the assump-
tion that C has finite limits is not really necessary; we need only guarantee
the existence of the pullbacks used to define composition. Note also that the
definition of a category internal to Set recovers the usual definition of a small
category.

Definition 2.4. Let C be a category and let C and D be internal categories in
C. An internal functor F': C — D is given by a pair of morphisms in C:

Fo : C() — D()

F1101—>D1



We require the following diagrams to commute. These say that F' preserves
source, target, identities and composition:

C,——=2 > (O
Fy Fo
Dy _ Do
Cy ! Co
Fy Fo
Dy — Dy

Co——=C1

Fy Fy
Dy D
FIXCOFI
1 Xy 1 Dy X Do D,
o o
C D
1 I 1

If we take X = Set then once again we get the familiar definition of a functor
between categories.

Definition 2.5. Let C be a category and let F,G : C — D be internal functors
in C. An internal natural transformation 6 : F' = G is given by a morphism
in C:

0 : Co — Dy



We require that the following diagrams commute:

Co
0 Fo
Dy ———— 1Dy
Co
Go

D ——— =Dy

fos,G
Cy (o5 C1) Dy xp, D1y

(Fy,00t) o

D1 XDO D1 Dl

Definition 2.6. Internal categories, functors and natural transformations in C
form a 2-category. We denote this 2-category by CatC.

Example 2.7. The category Ab of abelian groups has all small limits, so
we may consider internal categories in Ab. We call internal categories in Ab
abelian 2-groups. The 2-category CatAb is equivalent to the 2-category Ch%,
with objects 2-term chain complexes of abelian groups:

0:H—G

A chain map between two such chain complexes §1 : H; — G1 and s : Hy —>
G5 is a pair of group homomorphisms u : G; — G5 and v : Hy — H such
that the diagram below commutes:

o
H, !

Gy

H2 ﬁGQ



Let (u1,v1), (u2,v2) : 6 —> 2 be chain maps. A chain homotopy ¢ : (u1,v1) =
(ug2,v2) is a group homomorphism ¢ : G; — Hj such that for any g € G; and
h € Hy, we have the following equalities:

uz (9) —u1 (g) = d2 (¢ (9))
vz (h) — w1 (h) = ¢ (61 (h))

The proof of the equivalence is a special case of the equivalence in Section 5.3.

Remark 2.8. Any internal category in Ab is in fact an internal groupoid. This
is also true in Grp. See [7] for a proof of this fact.

Example 2.9. The category Vectc of complex vector spaces and linear trans-
formations has all small limits, so we may consider internal categories in Vectc.
These are known as Baez-Crans 2-vector spaces, and were introduced in [1]. The
2-category of Baez-Crans 2-vector spaces is equivalent to the 2-category Ch?c
of 2-term chain complexes of vector spaces, chain maps and chain homotopies.
The representation theory of strict 2-groups on Baez-Crans 2-vector spaces is
studied in [14].

Remark 2.10. An internal category C' = (Cy = Cp) in Cat is known as a double
category. Double categories offer an approach to higher category theory which
is distinct from that given by 2-categories. We may think of a double category
as having objects given by the objects of Cy, horizontal arrows the arrows of Cj,
vertical arrows the objects of C and 2-morphisms the morphisms of C;. Given
any 2-category C, we may think of C as a double category either by taking all
vertical morphisms or all horizontal morphisms to be identities. In this way, we
may think of 2-categories as examples of double categories.

3 Crossed Modules and Quadratic Modules

Crossed modules were first introduced in [39] in 1949. In [39], Whitehead defines
a crossed module associated to any CW-complex, which we call the fundamental
crossed module in Definition 3.16. In [30] Mac Lane and Whitehead show that
any pointed, connected 2-type may be reconstructed up to homotopy from its
fundamental crossed module. In this way, crossed modules are algebraic models
for connected, pointed 2-types. There are a number of ways to make this precise;
in particular, we may use the model structure on crossed modules given in
Section 7.11 to express this as an equivalence of homotopy categories. This is
described in Example 7.14.

There is a large body of literature following on from Whitehead’s work, re-
lating 2-group theory to homotopy theory. In particular, in [5], the authors
use crossed modules to model two-stage spaces - that is, spaces with non-trivial
homotopy groups only in two consecutive dimensions n and n + 1. The authors
show that for n = 2 the associated crossed module forms a reduced quadratic
module, and for n > 3 the crossed module is a stable quadratic module. In the
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language of 2-groups, introduced in Section 5, reduced quadratic modules are
equivalent to braided strict 2-groups and stable quadratic modules are equiv-
alent to symmetric strict 2-groups. Symmetric 2-groups are the 2-dimensional
analogue of abelian groups. Thus, the result in [5] the 2-dimensional analogue
of the classical fact that for a topological space X, the homotopy groups 7, (X)
are abelian for n > 2.

In this section we introduce crossed modules and quadratic modules. To fix
notation, we begin by recalling the definition of a group action.

3.1 Group Actions
Definition 3.1. Let G and H be groups. An action of G on H is a group

homomorphism as below:

p: G — Autgyp (H)

We will call a group H equipped with a G-action a G-group. If H is abelian
we will say that H is a G-module. For any ¢ € G and h € H we will de-
note p(g) (h) := 9h. With this notation, a morphism of G-groups p; : G —
Aut (Hy) and ps : G — Aut (Hs) is a group homomorphism 6 : Hy — Hj
such that for any g € G and h € Hy

0 (9h) =96 (h).
We say that such a morphism ¢ : H; — Hs is G-equivariant.
Remark 3.2. Any group action p : G — Autgrp (H) gives a function:
a:GxH — H
(9:h) +— h

The fact that p is a group homomorphism and that any element g € G acts is
mapped to a group homomorphism on H corresponds to the following condi-
tions:

9(hiha) = 9h1%hs
g1 (gzh) = 9192p
' = h

A morphism of G-groups is then a group homomorphism § : H; — H
making the following diagram commute:

GXH1$GXH2

11



We will make one final equivalent definition that generalises easily to other
categories. This will description will be useful when we consider actions of
monoidal categories in Section 4.2.

Definition 3.3. Let G be a group. The delooping of G, denoted BG, is a
groupoid with a single object ® and morphisms given by

Hompg (e,0) =G.
Composition in BG is given by g o h = gh.

Remark 3.4. The groupoid BG is called the delooping of G because its loop
space (0BG may be identified with G. See Definition 6.73 for the definition of
loop space, and Example 6.74 for a construction of QBG.

Definition 3.5. An action of G on H is given by a functor p : BG — Grp
such that p (¢) = H. The category of G-groups is then the functor category

Grp := [BG, Grp].

Example 3.6. Any group G acts on itself by conjugation. The action is defined
via the following homomorphism:

p:G — Aut(G)
g = Qg
Here ¢, (h) = ghg™! for any h € G. Note that the kernel of this homomorphism
is the centre of G:

Z(G)={geCG|ghg ' =hVhe G} ={ge G|y, =idc}

We call this action the adjoint action of G on itself, and we will often denote
the induced function as follows:

Ad:GxG — G

(9.h) +— ghg™"

We will describe a 2-dimensional analogue of this action in Example 8.7 and the
corresponding notion of the centre of a 2-group, which is known as the Drinfeld
centre.

3.2 Crossed Modules

Informally, we may think of a crossed module as a group homomorphism § :
H — G which behaves as though the target group is abelian. To make sense
of this, H must be equipped with G-action, which is related by § to the action
of G on itself by conjugation. Whitehead’s motivation for introducing crossed
modules in [39] was to capture the algebraic properties of the relative homotopy
groups of a CW-complex. This is expanded upon in Section 3.3.

12



Definition 3.7. Let H be a G-group. Recall that we may consider G itself as
a G-group, via the adjoint action of Example 3.6. A G-precrossed module is a
G-group morphism ¢ : H — G. The category of G-precrossed modules is the
comma category below:

Precrossg = (Grpg | G)

Definition 3.8. Let § : H — G be a G-precrossed module. We call 6 : H —
G a G-crossed module if the diagram below commutes:

H><H4>G><H

N

This condition is known as the Peiffer identity. G-crossed modules form a full
subcategory Crossg of Precrossg.

Unwinding Definitions 3.7 and 3.8, a G-crossed module consists of a group
H equipped with an action @ : G x H — H and a group homomorphism
0 : H — G such that for all ¢ € G and hi,ho € H we have the following
equalities:

5(h1)h2
gd(h)g™!

Example 3.9. Let H C G be a normal subgroup. Then G acts on H by
conjugation, and the inclusion map 7 : H — G defines a G-crossed module. It
is easy to show that I'm (§) C G is a normal subgroup for any G-crossed module
0 : H — @G, so normal subgroups H C G correspond exactly to G-crossed
modules § : H — G with § injective.

hihohit
5 (7h)

Example 3.10. Suppose we have a central extension as below:

0

1 N—sH G 1

That is, N C Z (H) and G = H/N. Define an action of G on H via the function
below:

a:GxH — H
(9,h) +—— khk™*

Here k € H is an element chosen such that § (k) = g. Such an element always
exists since § : H — G is surjective. To see that this action is well-defined,
suppose 6 (k1) = 6 (ko) for some ki, ko € H. Then hy'hy € Ker (5). However,

13



Ker(0) = N is in the centre of H so for any h € H we have the following
equality:
kitkoh = Rk ke,

Thus, we have the required equality below:
SO = kyhky ! = kohky ! = K2

With this action it is easy to check that § : H — G defines a G-crossed module.
Conversely, suppose ¢ : H — G is a G-crossed module with § surjective. Then

5

1 ——= Ker (9) H G 1

is a central extension by Remark 3.11, so central extensions correspond to sur-
jective G-crossed modules.

Remark 3.11. For any crossed module ¢ : H — G, we have Ker (§) C Z (H).
To see this, let z € Ker (0). Then by the Peiffer identity, for any h € H we have

the following equality:
zhe =G =1h =1

Note that this argument also shows that Ker () is an abelian group.

Definition 3.12. We may generalise the notion of G-crossed module to define
a category Cross in which we vary the group G. We call the objects of Cross
crossed modules. Given two crossed modules §; : H; — Gy and do : Hy — Go,
a morphism

(u,v) : (61 : HH — G1) — (02 : Hy — G9)

is given by a pair of group homomorphisms v : Gy — G2 and v : Hy — Ho
such that the diagrams below commute:

G1XH1$GQXH2

aq a2
Hy = Hy
H— > H
81 02
G1 G2

Thus, from the first diagram, for any g € Gy and h € H; we have “(Wy (h) =
v (9h).
We will often denote a crossed module § : H — G simply by 4.

14



We now give a definition which we will make a great deal of use of in sub-
sequent sections. The functors introduced in Definition 3.13 may be thought of
as the analogue of the first and second homotopy groups of a topological space.
We will make this precise in Section 3.3 and Example 7.14.

Definition 3.13. We may define the following two functors:

ho: Cross — Grp
0 +— Coker(9)
((u,v) : 6y —> d2) +— (@: Coker (§1) — Coker (d2))

h1:Cross — Ab
0 — Ker(9)
((u,v) : 61 —> 62) (v |Ker(sy): Ker (61) — Ker (62))
Here w : Coker (61) — Coker (62) is given by w(g) = u(g) for any g €
Coker (01). Note that Ker (J) is always abelian by Remark 3.11. We will

call a morphism of crossed modules (u,v) : 1 — d2 an equivalence if it induces
isomorphisms hg (61) = ho (02) and hq (61) = hq (02).

Example 3.14. Let G be a group with presentation F/H = G, where F is
a free group and H C F is a normal subgroup. By Example 3.9, the normal
subgroup inclusions below define crossed modules:

51:H — F
5211 — G

Let p : F — F/H be projection. Then (0,p) : ; — 02 is a morphism of
crossed modules. It is not hard to check that this morphism is an equivalence.

3.3 Fundamental Crossed Modules

We now introduce the fundamental crossed module studied in [39]. For back-
ground on CW-complexes and relative homotopy see [17].

Let X be a connected CW-complex. Consider the pair of topological spaces
(X, XW), where X(1) C X is the 1-skeleton of X. For any pair of pointed spaces
(X,Y, z,) we have the following long exact sequence induced by the inclusions
i:(Y,z,) — (X,z,) and j : (X,2,) — (X,Y)

e T (Y 0) — 7 (X, 0) —2 T (X, Y, 0) — 71 (Y, ) —> ..
If X is a connected CW-complex then in particular its 1-skeleton is path con-

nected, so we may suppress the basepoint from our notation. Furthermore,
Tn (X (1)) =0 for n # 1. Thus we have a short exact sequence as below:

l— > (X) —— % > (X’X(l)) 54>771 (X(l)) L)m (X)——=1

15



Lemma 3.15. For any connected CW-complexr X
0 :mo (X,X(l)) — M (X(l))

defines a crossed module.

See [4] for a proof of Lemma 3.15. The action of w1 (X)) on 7 (X, X))
is induced by travelling along a path in X corresponding to an element of
m (X (1)). In this way, the crossed module encodes a great deal of the geo-
metric information of X.

Definition 3.16. Let X be a connected CW-complex. Then we call
0o (X,X(l)) — M (X(l))

the fundamental crossed module of X. We will denote this by II; (X).

Remark 3.17. Note that m (X(l)) is a free group since X is a connected
graph. We call such crossed modules 0-free. The 0-free objects of Cross are
the cofibrant objects in the model structure on Cross of Definition 7.11.

Remark 3.18. By the exactness of the sequence above we have the following
isomorphisms:

ho (Il (X)) = Coker(9)
- m (X<1>) /Im (9)
= m (X(l)) /Ker (8)

I

3
2

»

hy (I1; (X))

|
3

Il

~

3
—_
£

3.4 Reduced and Stable Quadratic Modules

Definition 3.19. A reduced quadratic module is a sequence of group homo-
morphisms as below:

0

Gab ® Gab w H G

Here G is the abelianisation of G. We require that the following equalities
hold for any g1,92 € G and hi,he € H:

(Bow) (g1 ®g2) = gag195 97"
w((h)®6(hy)) = hohihy'hi!
w@h)®@g+gd(h)) = 0

We will often denote a reduced quadratic module by (w, 9).

16



Definition 3.20. Let (wq,01) and (ws,d2) be reduced quadratic modules. A
morphism of reduced quadratic modules (u,v) : (w1,01) — (wa, d2) is given by
a pair of group homomorphisms u : Gy — G5 and v : H; — Hs such that the
diagram below commutes:

w1 01

G @ G H, Gy
uab®uab v u
w2
ng X G%b Hy 5 Go
2

Definition 3.21. Let (w,d) be a reduced quadratic module. If the following
condition is satisfied for any g1, g2 € G, we call (w, d) a stable quadratic module:

W ®ge+92®91) =0

Note that this is a stronger condition than the final equality of Definition 3.19.
Let SQuad denote the full subcategory of RQuad generated by the stable
quadratic modules.

Remark 3.22. There is an obvious forgetful functor U; : SQuad — RQuad.
In addition, there is a forgetful functor U; : RQuad — Cross defined as
follows. For any reduced quadratic module

0

Gab ® Gab w H G

define its image in Cross to be the crossed module § : H — G with the action
given by:

Ih=w((@(h)®g)h
Any morphism of reduced quardatic modules (u,v) : (w1,d1) — (wa,d2) is
mapped to the corresponding morphism of crossed modules (u,v) : 67 — da.

3.5 The 2-Category of Crossed Modules

We now define 2-morphisms of crossed modules, making the category Cross
into a 2-category.

Definition 3.23. Let (u1,v1), (u2,v2) : 61 — d2 be morphisms in Cross. A
2-morphism ¢ : (u1,v1) = (ug,v2) is a function ¢ : Gy — Hs as in the

diagram below:
V1,V2

H,

H,
51 52
G1 — . G2

Ui,u2
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For any ¢,¢91,92 € G1 and h € H; we require the following equalities:

¢ (g192) = "¢ (g1) 6 (g2)

uz (9) = u1(g) 2 (¢ (9))

vz (h) = v1 (h) ¢ (61 (h))
We call a function ¢ : G; — H safisfying the first condition a u;-crossed homo-
morphism. Vertical composition of 2-morphism is given by pointwise multiplica-
tion. Therefore, any 2-morphism ¢ has an inverse, given by ¢~! (g) = (¢ (g))f1
for every g € G1. Thus, the 2-category Cross is a Grpd-enriched category.

Example 3.24. Let H and G be abelian groups. We may consider H a G-
module via the trivial action 9h := h for all ¢ € G and h € H. With respect
to this action any homomorphism § : H — G between abelian groups defines
a crossed module. Such crossed modules are 2-term chain complexes of abelian
groups, as in Example 2.7. In this case, the definitions of crossed module mor-
phisms and 2-morphisms reduce to those of chain maps and chain homotopies.

4 Monoidal Categories

Definition 4.1. A monoidal category is a category C equipped with:
e A functor @ :CxC —C
e A distinguished object 1 € C called the unit object

e Natural isomorphisms called, respectively, the associator, and the left and
right unitors:

O‘x,y,z:(:c@y)@Z — x®(y®z)
A:1l®r — =z
priz®l — =z

such that the following diagrams commute for any objects w,z,y,z € C

(w@2)@y)®z — s (@)@ (y©2) — " > W@ (r® (y® 2))
Qo z,y®2 WRAg y, 2
(W @Eey)®:z we (z®y)® 2)
zo1)®y Tl z@(19y)
M zQAy
TRy
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These diagrams express the pentagon axiom and the triangle axiom for monoidal
categories. Note that we will usually suppress the objects from our notation
when writing a, A and p.

Example 4.2. Consider the category Vect¢ of complex vector spaces and linear
transformations. Vectc forms is a monoidal category with respect to both
tensor product and direct sum. The unit object with respect to the tensor
product is C and the unit with respect to direct sum is the trivial vector space
0. In both cases the isomorphisms «, A and p are canonical.

Remark 4.3. For any object € C we may define the following functors. The
first, )V, : C — C is analogous to right multiplication:

z — zQ®T
(fiz—w) — (fQr:zzr—w®)
The second, W, : C — C is analogous to left multiplication:
z — TRz
(f:z—w) — @Rf:202z— W)

The unitors are the components of natural isomorphisms p : Yy = ide and A :
W, = idc from the functors )y and W to the identity functor. Since they are
naturally isomorphic to the identity, both functors ); and W, are equivalences.
The naturality condition for A implies that for any arrow f : x — y in C the
diargam below commutes:

10f f

1®y)\4>
Yy

In particular, taking f = A, : 1 ® x — x, we have the following identity:
)\1®m =1 ® )\:E

Similarly, the naturality of the right unitor gives the following equality for any
x €C:
Pzl = Pz & 1

Example 4.4. Suppose C is a category with finite coproducts. In particular, C
has an empty coproduct, which is simply an initial object ) € C. The universal
property of the copoduct yields isomorphsims, natural in a, b, c € C:

agpe:(@lIb) e — all (b1lc)
M :0lla — a
pe:allh) — a
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With these canonical isomorphisms, C forms a monoidal category with respect to
the coproduct. Dually, if C has finite products then C is monoidal with respect to
the product, with unit given by the terminal object. These constructions make
many familiar categories monoidal; for example, the category Set has coproduct
given by disjoint union with initial object the empty set §), and product given
by the cartesian product with terminal object given by any singleton. Set has
all finite products and coproducts, so Set is monoidal with respect to both
cartesian product and disjoint union.

Lemma 4.5. Let C be a monoidal category. Then for any x,y € C the diagrams
below commute:

(z@y)®1 = T®(y®1)
TRY
(1 1®(r®y)

Rr)RyY = ® (
TRy

See [20] for a proof of Lemma 4.5.
Lemma 4.6. In any monoidal category
Al =p1: 1®1—1

Proof. Setting every object to 1 in the triangle axiom and in the second diagram
of Lemma 4.5 we obtain the following commutative square:

1el)®l Ml 1®1
p1®1 o A,
1®1 e 1o(1®1)

Now, by Remark 4.3, we have A\;g1 = 1 ® A;. Thus, the diagram above reduces
to the following equality:

PpRl=\®1
That is, we have Yy (A1) = V1 (p1). By Remark 4.3, J; : C — C is an equiv-
alence, so in particular it is faithful. Thus, Y3 (A1) = Vi (p1) implies that
/\1 = P1- O
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Definition 4.7. Let C and D be monoidal categories. A monoidal functor
F :C — D is a functor F between the underlying categories equipped with
the following natural isomorphisms:

Uow  F(2)@F(y) — F(z®y)
Ml:l — F(l)

We require that the following diagrams commute for any z,y, z € C:

(F)e F)oF () 222 L Faey)eF() —=2 - F(zoy) o2
QF(2),F(y),F () F(ag,y,z)
Fa)® (Fy) @ F (2) s> F@) @ F (y®2) — > Fa 9 (y© 2)

F(z)®pu1 F(p)

Fz)®l

p

FO)®F(z) —" > F(1®a)

1 QF (x) F(\)

1®F(9:)—>F(x

As with the associator and the unitors, we will usually suppress the objects
from our notation when writing . We call a monoidal functor F' : C — D an
equivalence if the underlying functor is an equivalence of categories.

Remark 4.8. If FF: C — D and G : D — & are monoidal functors then their
composite G o F' : C — & has the following structure isomorphisms in &:

pey = G (1) © M) ra)
pit = G () ot
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Definition 4.9. Let G, F : C — D be monoidal functors between monoidal
categories. Then a monoidal natural transformation # : F = G is a natural
transformation such that the diagrams below commute, for any z,y € C:

F(2)®F(y) —*—>F(z®y)

0:®0, Ozcy

G (z) ® G (y) Gxoy)

Hzx,y

/ 1\
F(l) ————=G (1)

Lemma 4.10. Let F' : C — D be a monoidal functor. Then F is an equivalence
if and only if there is a monoidal functor G : D — C and monoidal natural
isomorphisms n :ide = Go F ande: F oG = idp.

A proof of Lemma 4.10 may be found in [12].

Definition 4.11. There is a 2-category with objects monoidal categories, 1-
cells monoidal functors and 2-cells monoidal natural transformations. We will
denote this 2-category by MonCat.

4.1 Braided and Symmetric Monoidal Categories

Definition 4.12. A braided monoidal category is a monoidal category C equipped
with a family of natural isomorphisms

Yoy TRQY — YR

making the diagrams below commute for all z,y, z € C:

©,y®2 @,z
(Y @z— " (Y@ 1) ® s — >y ® (1 ® 2)
Qg oy, 2z YRV, 2
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-1
TRy, 2 Xz y,z

r@Yez) ——rR(EQY) —— (t®2) Oy

Yo,z QY

PYay,z

(x®y)®sz>z®(x®y)T>(z®w)®y
z,x,y

Note that, given a braiding v;, : * ® y — y ® z, the natural isomorphisms
Ve, }J ty®xr — r ®y also constitute a braiding on C. In general these braidings
are not the same; we call a braided monoidal category symmetric if for any
x,y € C we have the following identity:

Vo =Tya YRT — T QY

Thus, we have two notions of commutativity for the tensor product on a
monoidal category. The morphisms between braided monoidal categories are
those which preserve the braiding. Note that this implies a condition on both
the underlying functor and on its structure isomorphisms. Unlike monoid mor-
phisms, which automatically preserve commutativity, not every monoidal func-
tor between braided monoidal categories is a braided monoidal functor.

Definition 4.13. Let C and D be braided monoidal categories. A braided
monoidal functor F' : C — D is a monoidal functor F' such that the diagram
below commutes:

F(2)®F(y) —*—>F(z®y)

VF(z),F(y) F(Va,y)

F(y)® F(z) Fy®x)

Hy,z

Definition 4.14. There is a 2-category with objects braided monoidal cate-
gories, 1-cells braided monoidal functors and 2-cells monoidal natural trans-
formations. We will denote this 2-category BraidMonCat. The full (on 1-
cells and on 2-cells) sub-2-category of BraidMonCat generated by symmetric
monoidal categories will be denoted SymMonCat.

4.2 Actions of Monoidal Categories

Definition 4.15. Let C be a monoidal category. We may associate C with the
bicategory BC with one object  and morphism category

Hompc (e,0) =C.
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Composition of 1-cells in BC is induced by the tensor product, and vertical
composition of 2-cells is induced by composition in C. Note that, since the
tensor product is in general neither strictly associative nor strictly unital, BC
does not form a 2-category.

Definition 4.16. Let C be a monoidal category. A left action of C on a category
A is a pseudofunctor p : BC — Cat into the 2-category Cat, such that p (e) =
A. We call A a left C-category. The strict 2-category of left C-categories is the 2-
category [BC, Cat] with objects given by pseudofunctors, 1-morphisms given by
pseudonatural transformations and 2-morphisms given by modifications. The
2-category of right C-categories is the functor 2-category [BC°P, Cat]. Note that
the bicategory BC°P has 1-morphisms reversed, but not 2-morphisms.

We will not define bicategories, pseudofunctors, pseudonatural transforma-
tions and modifications in general. However, in the case that the source bicat-
egory has only one object, pseudofunctors amonut to monoidal functors. Note,
however, that pseudonatural transformations do not recover monoidal natural
transformations. We will unwind the definitions of pseudonatural transforma-
tions and modifications in the particular case of Theorem 4.20. See [27] for the
definitions in general.

Example 4.17. Any monoidal category C acts on itself by right multiplication
via the pseudofunctor ) : BC°? — Cat. This can be described as follows:

e — C
(x:0—0) — (V,:C—C)
(prx=1y) — (Vs:Ve=Yy)

As in Remark 4.3, the functor Y, : C — C is given by:

z — zQRx
(fiz—w) — (fRr:zzr—w®)

The natural transformation )Yy : JV, = ), has components

Vg),=20¢:200 — 2Ry

The coherence isomorphisms for ) are induced by the associator o and the right
unitor p in C. Explicitly, these are natural transformations as below:

My - y:r © yy - yy@x

The component of this natural transformation at z € C is given by a, y, :
(z@y)®x — 2® (y ® ). The other structure isomorphism is given by

p1 = p_l tide = W1
Note that we are thinking of C as an element of Cat rather than MonCat. That

is, we are associating the monoidal category C with its underlying category.

24



4.3 Strictification for Monoidal Categories

Definition 4.18. We say a monoidal category C is strict if the isomorphisms
a, A and p are all identities. Similarly, a monoidal functor F' : C — D is strict
if p1 and p are identities. We will denote the 2-category of strict monoidal
categories, strict monoidal functors, and monoidal natural transformations by
StrMonCat.

Remark 4.19. Strict monoidal categories are equivalent to monoid objects in
Cat. Explicitly, a monoid is a set C equipped with a multiplication function
m : C x C — C and a function ¢ : 1 — C from the terminal set into C,
which picks out the identity element in C. We require the following diagrams
to commute, expressing associativity and unit laws for multiplication:

OCxCxC—" L oxe

mxC m
CxC _ C
IxC—™0 _ox0c=—9"" ox1
p2 m pP1

In the same way, a strict monoidal category C is a category equipped with
functors m : CxC — C and i : 1 — C from the terminal category, satisfying the
same diagrams as above. Monoid morphisms are arrows between monoids which
preserve both the multiplication m and the unit ¢. Internal monoid morphisms
in Cat amount to strict monoidal functors.

Note that a monoid object in Cat encodes the same information as an in-
ternal category in Mon, the category of monoids. This is a general principle,
referred to as the commutativity of internalisation in [2]. For a proof of this in
the case of group objects in Cat and internal categories in Grp, see [13].

Theorem 4.20. For any monoidal category C there is a monoidal equivalence

[BC°P Cat] (),)) ~C.

Here ) : BC°? — Cat is the pseudofunctor of Example 4.17. The category
[BCP, Cat] (,Y) has objects pseudonatural transformations from Y to itself
and arrows the modifications between these. This can be thought of as the
category of C-equivariant functors, where C acts on itself by right multiplication.
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Explicitly, a pseudonatural transformation from ) to itself amounts to a functor
0 :C — C and a family of natural isomorphisms:

Op:00)YV, = Y, 00

such that the following diagrams commute:

coVyo Y, — =2~ Y000,
TOpg,y
ony®x Vzooy,
Ty
yy@xoUWyzpoyyoa
tdc oo =—=0=—=001dc
Q100 oop1
Vioo ooy

Note that the functor o : C — C need not be monoidal. Given two C-equivariant
functors o, 7 : C — C, a modification between the corresponding pseudonatural
transformations amounts to a C-equivariant natural transformation. This is a
natural transformation .# : ¢ = 7 such that the diagram below commutes:

MYy
ooV, To Vs
Tg Tz
~ O ~ O
Vypoo Voot VpoT
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In components, this diagram gives the commutative square below:

Mz
c(z01) —= s r(z®1)

o(z)®x

Y T(2)®x

The tensor product on [BC°P, Cat] (), )) is given by composition of functors.

Proof. We will give a only description of the monoidal functors w : [BC°?, Cat] (V,Y) —
C and @ : C — [BC°?,Cat| (),Y). See [20] for the complete proof. The first
functor is as follows:

w: [BC?, Cat] (Y,Y)

—
(6:C—C) +—
(M :0=7T) —>

C
o (1)
(M :0(1) — 7(1))

Its weak inverse is the following functor:

w:C — [BC%,Cat](),))
 — W:C—0)
(p:x—y) — Wy W, =W,

Here W, : C — C is the functor of Remark 4.3, given by

z — xQ®z
(fiz—w) — @E®f:z20z—2xQWw)

The natural transformation Wy : W, = W, has components
W), =¢R@2z:202 —y®z2
O

The first proof of a coherence theorem for monoidal categories was given
by Mac Lane. This proof appears in [29]. The proof given in [20] and outlined
above is very different to Mac Lane’s proof. In fact, as stated above, this theorem
is a 2-dimensional version of Cayley’s theorem, which states that any monoid
acts faithfully on its underlying set by right multiplication. From a categorical
perspective, Cayley’s theorem is a special case of the Yoneda lemma applied to
the delooping of a monoid. In exactly the same way, Theorem 4.20 is a special
case of the Yoneda lemma for bicategories. For a proof of this result in full
generality see [3].
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Theorem 4.20 implies that any monoidal category C is equivalent to a strict
monoidal category via a monoidal functor. Note, however, that in general this
monoidal functor is not strict.

Furthermore, although any braided (or symmetric) monoidal category is
equivalent to a braided (symmetric) monoidal category in which a, A and p
are identites, we cannot in general make v an identity. The corresponding
coherence theorem, proved in [20], states that any braided (symmetric) monoidal
category is equivalent to a braided (symmetric) strict monoidal category in
which two composites of the commutativity isomorphism are equal if and only
if their action on the objects corresponds to the same element of the braid
group (respectively the symmetric group). In the case of symmetric monoidal
categories, we call such a monoidal category permutative.

One statement of Mac Lane’s coherence theorem for monoidal categories is
that all diagrams made up of a, A and p commute. Note that Lemma 4.5 and
Lemma 4.6 both follow from this theorem.

5 2-Groups

We have now developed the required machinery to give a concise definition of
2-groups. We begin this section by developing some elementary facts about
2-groups. Many of these results may be found in the expository article [2],
although there are more concise accounts in the early sections of [11] and [15].
For a modern account from a higher categorical point of view, see the relevant
section of [37].

Definition 5.1. Let G be a monoidal groupoid. We call G a 2-group if, for
every object g € G, the functor YV, : G — G of Remark 4.3 is an equivalence.
The 2-category 2Grp of 2-groups is the full sub-2-category of MonCat whose
objects are 2-groups. That is, the arrows in 2Grp are monoidal functors and
the 2-arrows are monoidal natural transformations.

If the underlying monoidal category of a 2-group G is braided (or symmetric)
we call G a braided (respectively symmetric) 2-group. We may thus define
the 2-category Braid2Grp of braided 2-groups, braided monoidal functors and
monoidal natural transformations, and the full sub-2-category Sym2Grp.

By Definition 5.1, for any object g in a 2-group G, the functor ), : G — G
is full, faithful and essentially surjective. In particular, since ), is essentially
surjective, there is an object g € G and an isomorphism as below:

€glyg(§)=§®g—>1

We say that such an object g is a weak left inverse to g.

Remark 5.2. Suppose g € G has two weak left inverses, ¢, : § ® g — 1 and
€g: g®g — 1. Then, since ), is full and faithful, there is a unique isomorphism
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7 : § — g making the diagram below commute

g9 gI®g

Remark 5.3. If we choose a system of weak left inverses for each object in a
2-group G, then for each g € G the isomorphism e; : § ® g — 1 determines a
unique isomorphism i, : 1 — g ® g making the diagram below commute:

(907 @y = 9®(G®g)
1g®g 9g®eg
1®g X g — g®1

P

Thus, the weak left inverse g is also weak right inverse to g. As in Remark 5.2,
this diagram commutes since ), is full and faithful. See [2] for a proof that
the commutativity of the diagram above also implies that the diagram below
commutes:

g2 (g®9) “ (Gog)®7
I®iy eg®g
g1 g 1®g

p

Definition 5.4. We call the 4-tuple (g, g,4,,€,) an adjoint equivalence if the
two diagrams of Remark 5.3 commute.

Thus, in a 2-group G we may choose an adjoint equivalence (g, g, 4, e4) for
any g € G. This implies that, as well as the functor YV, : G — G, the functor
Wy : G — G of Remark 4.3 is an autoequivalence.

Remark 5.5. A choice of adjoint equivalence (g, g,%4,€,) for each g € G defines
a functor % : G — G given as follows:

g = g
(f:g—h) — (f:§—>7l)



The morphism f : § — h is given by the composite below:

_ _ g®in  _ = gRf'®h -
7 g®1 ke g®(h®h)¥LL——»g

(Geg)@h o 1®h h

Definition 5.6. Let G and H be 2-groups. The zero morphism 0: G — H in
2Grp is defined as follows:
g — 1
(p:g—h) — (id:1—1)
Note that for any monoidal functor F' : H — K between 2-groups there is a

canonical monoidal natural isomorphism 2 : F o) = 0 with components given,
for each h € H, by the structure isomorphism of F"

h=pyt F (1) — 1

Similarly, for any F': K — G we have 0 o F' = 0.

Remark 5.7. Given a choice of adjoint equivalence for each object of G, the
isomorphisms e, : g®g — 1 and ¢y : 1 — g® g are the comopnents of natural
isomorphisms to the zero morphism. That is, for any arrow f : g — h in G the
diagrams below commute:

® —
Y rer heh
1

® —
gg rer h®h
1

We will assume from now on that any 2-group G comes equipped with a
choice of adjoint equivalence (g, g, 4, €,4) for each g € G. Note that we then also
have canonical natural isomorphisms as below:

(9)
(g@h)

1%

<

[
>

®@g
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Remark 5.8. Let F : G — H be a morphism of 2-groups. Then there are
unique isomorphisms &, : F'(g) — F' (g) for each g € G such that the following
diagrams in ‘H commute, expressing compatibility of £ with e and i:

F(g)@F(g) — 2%~ F(g) @ F () —“—>F(927)
1 = F(1)

Flg)oF () —=Y ~ p(G)eF() ——sFGog)
el iF(e)
1 - F (1)

See [2] for a proof of this fact.

Example 5.9. Let C be a category. The autoequivalence 2-group of C, denoted
Aut (C), is the category whose objects are autoequivalences of C, and whose
arrows are the natural isomorphisms between them. The monoidal product on
Aut (C) is given by composition of functors:

o: Aut (C) x Aut (C) — Aut (C)

The unit object is the identity functor. Since composition of functors is strictly
associative and unital, Aut (C) forms a strict monoidal category. Note, how-
ever, that its objects are not strictly invertible; by definition they need only be
invertible up to isomorphism.

5.1 Homotopy Invariants of 2-Groups

We now introduce the analogues for 2-groups of the functors hy and hy intro-
duced in 3.13. We make the connection explicit in Lemma 5.22.
Let G be a 2-group. Let hg (G) be the set of isomorphism classes of objects
in G. Let hy (G) = Autg (1) be the automorphisms of the unit object 1 € G.
The tensor product on G induces a group operation on both hg (G) and h; (G).
Explicitly, for a,b € hy (G) their product a % b is given by the composite
morphism below:

>\71
11— 191 g1 0

Note that A\; = p; by Lemma 4.6, so we have the following equalities:

axb = Mo(a®b) oAt
— po(a®b)op

Composition of morphisms induces a second group operation on hj (G), which is
a homomorphism for the operation induced by the tensor product. To see this,
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note that the functoriality of the tensor product gives, for any a, b, c,d € hy (G),
the following equality:

(a®@b)o(c®d)=(aoc)® (bod)
This gives the following:
(axb)o(cxd) = Mo(a®b)ortoNo(c®d) oA’
= Mo(a®@b)o(c®@d)oA?
Mo(aoc)® (bod)oA"
(aoc)*(bod)

Furthermore, by Remark 4.3, we have the two identities below:

a
a®

axid=pio(a®id)op;' =a
idxa=Xo(id®a)oA "' =a
Thus, id; : 1 — 1 is the identity for both operations. We have the following
equalities:
axb = (aoid)x(idob)
= (axid)o (id*b)
= aob
= (idxa)o (bxid)
= (idob)x(aoid)
= bxa
Thus, the two operations on hy (G) coincide, and hq (G) is abelian. This argu-
ment, known as the Eckmann-Hilton argument, is described in [2].

Now, let F': G — H be a morphism of 2-groups. The functor F' induces a
group homomorphism on kg (G) as follows:

ho (F) : ho(G) —> ho(H)
lg] — [F(9)]

Here [g] denotes the isomorphism class of an object g € G. Similarly, via its
structure isomorphism g, F' induces a group homomorphism on h; (G):

hy (F)Zhl (g — hl (H)
a — ppioF(a)om
Definition 5.10. Let 2Grp denote the 1-category obtained from the 2-category
2Grp by forgetting the 2-morphsims. The constructions given above define the

following functors:
ho : 2Grp — Grp

hy : 2Grp — Ab
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Lemma 5.11. Let F,G : G — H be morphisms of 2-groups. Suppose we have
a 2-morphism ¢ : F = G. Then hy (F) = hy (G) and hg (F) = ho (G).

Proof. Suppose we have a monoidal natural transformation ¢ : F' = G. Let
g € G. Then the component of ¢ at g gives us an arrow in H:

$g: F(9) — G(9)

Since all arrows are invertible, this implies that F' (¢g) and G (g) are isomorphic.
Thus, ho (F) = ho (G)

Now, let a : 1 — 1 be an element of hy (G). Then we have the following
equality:

—1
h(G)(a) = (uf) oG(a)opf
-1
= (¢1opy) oG(a)o(propy)

This follows from the triangle diagram of Definition 4.9. This gives the equality
below:

h(G)(a) = (uf) " odr oG (a)odiopnf

= (W) oF(a)ouf
= hi(F)(a)

This follows from the naturality of ¢ : ¥ = G at a : 1 — 1. Thus we have
hi (F) = h1 (G). O

Lemma 5.12. In any 2-group G, for any object g € G, we have the following
group isomorphisms:

og:h1(9) — Homg(g,9)
a — Ago(a®g)oA;?

Tg:h1(G) — Homg(g,9)
a — pgo(g®a)op,’
Here the set Homg (g,g) has group structure given by composition.

Proof. For any a: 1 — 1, 04 (a) and 74 (a) are defined by the following com-
mutative diagrams:

og4(a) 74(a)
9—————————=49 g————>4¢
At Ag Pyt Pg
1®ga%-1®g gR1l ———g®1
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Thus, o4 (a) = Ag o Yy (a) o At and 74 (a) = pg 0o Wy (a) 0 p, ! where Y, and

W, are the functors of Remark 4.3. Since ), and W, are functors they preserve

composition, so it is easy to see that o, and 7, define group homomorphisms.
Since ), and W, are equivalences the induced maps below are bijections:

Homg (1,1) — Homg(1®g¢,1®g)
a — a®g
Homg (1,1) — Homg(g®1,g®1)
a — g®a
It follows that o4 and 7, are invertible. O

Lemma 5.13. Let F': G — H be a morphism of 2-groups. Then we have the
following:

1. F is essentially surjective if and only if hg (F') is surjective.

2. F is faithful if and only if hq (F') is injective.

3. F is full if and only if hg (F) is injective and h; (F') is surjective.

4. F an equivalence if and only if both hy (F') and h; (F)) are isomorphisms.

Proof. We will outline the proofs of Statement 2 and Statement 3, since State-
ment 1 is not difficult, and Statement 4 follows from the first three. The proofs
of Statements 2 and 3 make use of the isomorphisms of Lemma 5.12.

If F is faithful then it follows immediately that hq (F') is injective. To see
the converse, suppose hi (F') is injective and let i,j : ¢ — h be morphisms in
G such that F' (i) = F (j). We wish to show that ¢ = j. Consider the morphism
below:

ot (7 ed) i1 —1

We have the following equalities in H:

F(j71 Oi) = idF(g)
= F(A)oF(o," (G ei)®g)oF(N)

Thus, F (09’1 (j"1 o z) ® g) = idp(10g)- Lhis implies the equality below:
F(oy' (571 0i)) =idrq

Since hy (F) is injective, this implies o, (j7! 0 i) = idy. Thus, since oy is an
isomorphism, we have i = j. Therefore F' is faithful.

Now, suppose F' is full. Then it is immediate that h; (F') is surjective. To
see that ho (F') is injective, suppose we have g, h € G such that F'(g) = F (h).
Then we have a morphism f : F (g9) — F (h) in H. Since F is full, there is a
morphism f’: g — h in G such that F (f’) = f. Thus, ¢ 2 h in G. Therefore,
ho (F) is injective.
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To see the converse, suppose that ho (F) is injective and h; (F) is surjective,
and let f : F'(g9) — F (h) be a morphism in . Then we have F'(g) = F (h).
Thus, since hg (F) is injective, there is a morphism u : ¢ — h in G. Consider
the morphism below:

fThoF (u): F(g) — F(9)
We may apply the isomorphism o;(lg) to obtain a;(lg) (f7'o F(u) in hy (H).
Since hy (F) is surjective, there is a morphism a € h; (G) satisfying the following:

(h (F))(a) = pitoF(a)om
= g;(lg) (ff1 oF(u))

That is, we have the following equality:

fTPoF(u) = opg (utoF(a)om)
= Arg o (i ®F(9) o (F(a)@F(g)) o (11 ®F () o Apfy,

Now, consider the morphism o, (a) : ¢ — g, and make the following definition:
fli=uo(og(a))™ g —>h

We claim that F (f') = f.
To see this, consider the following equalities:

froF(f) = floF(uwoF (oy(a)"
= idr()

This follows from the expression above for f ~*oF' (u) and the third commutative
diagram of Definition 4.7. O

Remark 5.14. Consider the category H (2Grp), obtained from the 2-category
2Grp by identifying 2-isomorphic morphisms. We have the following full but
non-faithful functor:

H: 2Grp — H (2Grp)

This functor takes each morphism in the 1-category 2Grp to its 2-isomorphism
class. Lemma 5.11 implies that both hg : 2Grp — Grp and h; : 2Grp —
Ab factor through H. That is, we have induced functors

ho : H (2Grp) — Grp

hi: H(2Grp) — Ab

such that hg = h~0 oH and h; = h~1 o H. In Section 7 we will show that this
category H (2Grp) is equivalent to Ho (Str2Grp), the homotopy category of
Str2Grp.
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Definition 5.15. For any group G € Grp we may define a 2-group G [0] with
object set GG, only identity morphisms and tensor product induced by multipli-
cation on G. Similarly, for any abelian group A € Ab we may define a 2-group
A [1] with a single object whose automorphism set is the set A, with composition
induced by multiplication on A. These are the object functions of the following
full and faithful functors:

0] : Grp — 2Grp
1] : Ab — 2Grp

By composing [0] and [1] with H : 2Grp — H (2Grp), we may define functors
into H (2Grp): 3

[0] : Grp — H (2Grp)
[1]: Ab — H (2Grp)

In [21], the authors describe the following adjunctions:

[1]: Ab <= % (2Grp) : Iy
0] : Grp <= # (2Grp) : ho

ho : H (2Grp) <= Grp : [0]

5.2 Strictification for 2-Groups

Definition 5.16. We call a 2-group G strict if G is a strict monoidal category,
and both e and i are identities. We will denote the 2-category of strict 2-groups,
strict monoidal functors and monoidal natural transformations by Str2Grp.
A braided 2-group is called strict if the underlying 2-group is strict. We may
thus define a 2-category BraidStr2Grp of braided strict 2-groups, braided
strict monoidal functors and monoidal natural transformations. We may sim-
ilarly define the 2-category SymStr2Grp. Note that the definition of strict
braided 2-group does not impose any strictness conditions on the braiding.

Remark 5.17. Strict 2-groups are equivalent to group objects in Cat, just as
strict monoidal categories are monoid objects in Cat. As indicated in Remark
4.19, this allows us to think of strict 2-groups as internal categories in Grp.

To be precise, there is an isomorphism of 2-categories Str2Grp = CatGrp,
where CatGrp is the 2-category of internal categories of Definition 2.6. Thus,
to describe a strict 2-group we may give a group of objects and a group of arrows,
and group homomorphisms s, ¢, i and o satisfying the axioms of Definition 2.3.
This reflects the fact that, for a strict 2-group, the monoidal product induces
group structures on both the set of arrows and the set of objects. We will denote
both Str2Grp and CatGrp by Str2Grp.

Theorem 5.18. Any 2-group G is equivalent in 2Grp to a strict 2-group.
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Proof. We know from Theorem 4.20 that any 2-group G is equivalent in MonCat
to a monoidal category in which «, p and A\ are identities. We may transport
the 2-group structure along this equivalence, and thus define a 2-group G, which
is equivalent to G in 2Grp and whose underlying monoidal category is strict.
In general, the natural isomorphisms ¢ and e in G are not identities. In [2],
the authors sketch a construction from G of an equivalent 2-group which is
strict. O

For a more direct approach to coherence for 2-groups, see [26].

Remark 5.19. As noted after the proof of Theorem 4.20 for braided and sym-
metric monoidal categories, there are similar results to Theorem 5.18 for braided
and symmetric 2-groups. In particular, the strictification theorem for symmetric
2-groups states that any symmetric 2-group G is equivalent to a strict permu-
tative 2-group G. That is, G is a permutative monoidal category in which every
object has a strict inverse. See [19] for a proof of this result.

5.3 2-Groups and Crossed Modules
We now prove a well-known result relating strict 2-groups and crossed modules.
Theorem 5.20. There is an equivalence of categories Cross ~ Str2Grp.

Proof. We will describe the functors T : Cross — Str2Grp and ¥ : Str2Grp —
Cross.

Let 6 : H — G be a crossed module. We will construct T (§) = (C; = Cy),
an internal category in Grp. Let the group of objects be given by Cy = G.
Define the group of arrows to be given by the semidirect product C; = H x G,
with multiplication defined as follows:

(h1,91) (h2, g2) = (h1? h2, g192)
We define source and target maps as follows:
s(h,g) =g
t(h,g)=0d(h)g
Finally, the identity map is given as follows:
i(9)=(Lg)

Composition in T (§) is induced by multiplication in H. That is, given mor-
phisms as below

(h1,9):9 — d(h1)g
(h2,6(h1)g):6(h1)g — &(h2)d(h1)g

their composite is given as follows:

(hiha,9) : g — 6 (h1h1) g
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Now, suppose (u,v) : 1 — J2 is a morphism of crossed modules. To define
the internal functor Y (u,v) : Y (d1) — YT (d2) we must give two group ho-
momorphisms, one between the groups of objects and the other between the
groups of arrows. On the group of objects we take the group homomorphism
u : G —> G3. On the group of arrows we take the group homomorphism
below:

’LL><1’UZH1><1G1—)H2><]G2

(h,g) — (u(h),v(9))

That this is a group homomorphism follows easily from the first diagram of
Definition 3.12, which states that for any h € H; and g € G we have “9y (h) =
v (9h).

Now, let C = (C; = Cy) be a strict 2-group. We can construct a crossed
module ¥ (C) = (§ : H — Q) as follows. Let G = Cy. Let H = Ker (s) C C
and define 6 = t|y : H — G. The action of G on H is then given as follows:

9h=1i(g)hi(g)”"

To see that this is well-defined, note that for any h € Ker (s) and for any g € G
we have the following:

s (Z (g) hi (g)_l) =gs(h)g'=gg =1

Now, suppose (Fp, F1) : C — C’ is a morphism of strict 2-groups. To define
a morphism of crossed modules ¥ (Fy, F1) : ¥ (C') — ¥ (C’) we must give two
group homomorphisms. These are defined as follows:

F()ZG—)G/

F1|HZH—>H/
0

We may use the model structures on the categories Str2Grp and Cross,
defined in Section 7, to extend the equivalence of categories in Theorem 5.20 to
an equivalence between the 2-categories Cross and Str2Grp. This is described
in Remark 7.15. Note that the induced 2-functors are isomorphisms on the
hom-groupoids.

Example 5.21. Consider the normal subgroup inclusion § : A3 — S5 of the
alternating group Ajs into the symmetric group S3. By Example 3.9, this is
a crossed module. We can picture the construction of T (4) by constructing
a directed graph whose vertices are labelled by the elements of S3 and whose
edges are given by pairs (h,g) : ¢ — hg, for g € S5 labelling a vertex, and
h € As. We label such edges by h in the picture below:
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(123) (129)

It is easy to see that this directed graph can be given the structure of a
category. The category corresponds to the action of A3z on S3 by right multi-
plication; moving to isomorphism classes of objects identifies elements of S3 in
the same orbit. Thus, as we can see by the picture, ho (Y (§)) = S3/A3 = Zs.
We can also see that the only endomorphism of the unit object is the arrow
(1,1) : 1 — 1. Thus, hy (T (§)) = 1.

Lemma 5.22. The functor T : Cross — Str2Grp preserves both hgy and
hy of Definitions 5.10 and 3.13. That is, we have hg o ¥ = hg, and a natural
isomorphism hi oY = hy.

Proof. Let 6 : H— G be a crossed module. We need to describe hg (Y (9)), the
isomorphism classes of objects in Y (¢), and hq (Y (9)), the endomorphisms of
the unit object. The objects of T (§) are given by the group G. Let g1, 92 € G.
By the description of arrows in the proof of Theorem 5.20, there is an arrow
from g1 to go if and only if g3 = § (h) g2 for some h € H. Thus, objects g; and
g2 are isomorphic if and only if g;g5 L€ Im (8). So the group of isomorphism
classes of objects in T (4) is given by the following quotient:

ho (Y (8) = G/Im ()
= Coker (9)
= ho(9)
Let (u,v) : 61 — d2 be a morphism of crossed modules. The homomorphism

induced by the functor Y (u,v) : T (d1) — YT (d2) on isomorphism classes of
objects is as follows:

ho (T (u,v)) = ho (u,v) =0 : Coker (61) —> Coker (d2)
Here w is the group homomorphism defined in Definition 3.13. Thus, we have

hooY = ho.
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Now, the group of morphisms in T (d) is given by the semidirect product
H x G. The endomorphisms of the unit object in Y (§) are the elements (h,g) €
H » G for which the following holds:

s(h,g) =t(h,g) =1

Thus, if (h,g) € h1 (Y (d)) , we have the following equalities:
s(h,g)=g=1
t(h,g)=6(h)g=25(h)=1
Thus, hy (T (0)) is the following subgroup:
hi (Y (0)) ={(h,1) e Hx G |h € Ker(§)} = Ks

Clearly we have an isomorphism taking (h,1) € K5 to h € Ker (4):

Ks = Ker (8) = hy (0)

Now, if (u,v) : 83 — J2 is a morphism of crossed modules then we have the
following:
h1 (T (u,v)) = (u xv) ‘K‘Sl : K5, — K,

The canonical isomorphisms K5 = Ker () make the diagram below commute:

(u><1'u)|K(51
Ks, Ks,
Ker (61) Ty Ker (d2)
Thus they give the components of a natural isomorphism hy o T & h;. O

Remark 5.23. In general, for a strict 2-group C = (C; = Cy), hy is given by the
coequaliser hg (C) = Coequ (s,t), and hy is given by hy (C) = Ker (s)NKer (t).

Remark 5.24. Asin Theorem 5.20, there are equivalences of categories RQuad ~
BraidStr2Grp and SQuad ~ SymStr2Grp. These equivalence are described
in [33].

5.4 2-Groups and Simplicial Groups

We give one more equivalent formulation of strict 2-groups, first described in
[28], which is closely related to the description of strict 2-groups as internal cate-
gories in Grp. We will use this formulation of strict 2-groups in the construction
of the free 2-group on a groupoid in Section 9.
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Definition 5.25. A 1-truncated simplicial group is a pair of groups G1 and Gg
and group homomorphisms s,t: G; — Gy and i : Go — G1 such that soi =
toi=1idg,. We will denote a 1-truncated simplicial group by G = (G1 = Gj).

Given two 1-truncated simplicial groups, G = (G1 = Go) and H = (H; = H,),
a morphism of 1-truncated simplicial groups f : G — H is given by a pair of
group homomorphisms fy : Go — Hy and f; : G; — H; such that the
diagrams below commute:

G, 2 Go G, : Go Gy ————=
f1 fo f1 fo fo f1
H, 4S>H0 Hy Hy Hy Hy

We denote a morphism by f = (fo, f1). We may define a category Tr! (SimpGrp)
of 1-truncated simplicial groups and their morphisms.

Theorem 5.26. We may associate Str2Grp with the full category of Tr! (SimpGrp)
on 1-truncated simplicial groups G1 = Go such that [Ker (s), Ker (t)] = 1.

The inclusion functor J : Str2Grp — Tr! (SimpGrp) has a left adjoint

P : Tr! (SimpGrp) — Str2Grp.

Proof. Let G = (G1 = Gy) be a l-truncated simplicial group with structure
morphisms s, ¢ and i. To give G the structure of an internal category in Grp
we need only define composition. Given g, h € Gy with s (h) =t (g), define their
composite as follows:

hog:=hi(s(h) 'y

It is easy to check that composition is a group homomorphism if and only if
[Ker(s),Ker (t)] = 1, where [Ker (s), Ker (t)] C Gy is the subgroup generated
by elements of the form zyx~1y~! with x € Ker (s) and y € Ker ().

Now, the functor P : Tr! (SimpGrp) — Str2Grp is given on objects
as follows. Let G = (G = Gy) be a l-truncated simplicial group. Define
P(G) = (C1, = Cp), where Cp = Go and C; = G1/[Ker(s), Ker (t)]. The
structural morphisms for P (G) are induced by those of G. Explicitly, denote
the projection as follows:

p: Gy — C1 =G/ [Ker(s), Ker(t)]

Then the source and target morphisms of P (G) are given by 3, : C; — Cy
where 5 and t are the unique morphisms such that §o0p = s and top = ¢, and
the identity morphism is given by poi: Cy — Cf.

Similarly, for any morphism of 1-truncated simplicial groups f = (f1, fo) :
G — H, define

P(f) = (fifo) : P(G) — P(H)
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Here we denote the morphism induced by f; on the quotient by

f1: G/ [Ker(s),Ker(t)] — Hy/[Ker(s),Ker(t)].
By Definition 5.25 we have the following inclusion:
fi([Ker (s),Ker(t)]) C [Ker(s), Ker (t)]

Thus, [Ker(s), Ker (t)] € Ker (po f1). We take f1 to be the unique map such

that fiop=po fi.
We wish to show that we have the following adjunction:

P : Tr! (SimpGrp) <= Str2Grp : J

The components of the unit are as follows. For any 1-truncated simplicial group
G, take ng : G — (J o P)(G) to be given by ng = (p,id). Given any mor-
phism f : G — G, where G = (G =2 Gy) is a strict 2-group, we know that
[Ker(s),Ker(t)] =1in G;. We have

f1([Ker(s),Ker(t)]) C [Ker(s),Ker(t)] =1
so the homomorphism f; : G; — G; induces a unique morphism
fi:G1/[Ker(s),Ker(t)] — G

such that f1 op = f1. The pair f = (fl, fo) : P(G) — G is then the unique
morphism such that fong = f in Tr! (SimpGrp). O

Remark 5.27. Limits in Str2Grp may be computed on the underlying groupoids.
Colimits in Tr! (SimpGrp) are computed dimension-wise; we may then com-
pute colimits in Str2Grp by applying the functor P of Theorem 5.26. Thus,
the category Str2Grp has all small limits and colimits.

6 Model Categories

In this section we recall the definition of a Quillen model category and develop
some model category theory. Model categories provide an axiomatic approach
to homotopy theory. A model category has three classes of morphisms, known as
weak equivalences, fibrations and cofibrations. Roughly, the weak equivalences
in a model category are morphisms which we want to regard as being invertible.
For example, in the model structure on Cat given in Example 6.13, the weak
equivalences are the equivalences of categories, and in the model structure on
Top of Example 6.11 the weak equivalences are weak homotopy equivalences.
Thus, the morphisms of primary interest in a model category are the weak
equivalences; the other two classes may be seen as tools to facilitate working
with the weak equivalences.

The account of model categories given in this section largely follows [10]. We
will apply the results of this section to study the homotopy theory of 2-groups
in the subsequent sections. Therefore, we have included proofs for a number of
the results so that we may refer back to the details in later sections.

42



Definition 6.1. In any category C, suppose we have a commutative square as

below:

/

A X

We say this square has a lift if there exists a morphism A : B — X such that
hoi= f and poh = g. That is, h makes the diagram below commute:

X

A f
7
/
/
i h/ g p
/
7/
7/
B

—F Y

A morphism ¢ : A — B is said to have the left lifting property (LLP) with
respect to a morphism p: X — Y ifforany f: A— X andg: B — Y
making the top diagram commute, there is a lift h: B — X as in the bottom
diagram. If ¢ has the LLP with respect to p, then we say that p has the right
lifting property (RLP) with respect to .

Definition 6.2. Let f : A — B and g : X — Y be morphisms in some
category C. We say that f is a retract of g if there are morphisms 7, r, ¢’ and
r’ making the diagram below commute, such that r oi = id4 and 7’ o' = idp.

A : X r A
f 9 f
B . Y , B

Definition 6.3. A closed Quillen model category C' is a category with three dis-
tinguished classes of morphisms, each closed under composition and containing
all identity maps:

e Weak equivalences, which we denote A ——= B .

e Fibrations, which we denote A ——= B .

43



e Cofibrations, which we denote A——— B .

If a morphism is both a fibration and a weak equivalence we call it an acyclic
fibration. Morphisms which are both cofibrations and weak equivalences are
called acyclic cofibrations. We require that the following five axioms hold:

1. C has all finite limits and colimits.

2. Suppose f and g are composable arrows in C. If two of the three maps f,
g and g o f are weak equivalences, then so is the third.

3. Suppose f is a retract of g. Then if g is a fibration, f is a fibration. If g
is a cofibration, f is a cofibration. If g is a weak equivalence, f is weak
equivalence.

4. Suppose we have one of the two diagrams below:

AT x a— 1 L x
’L[ | P AR P
B p Y 349>Y

Then we have a lift h : B — X as in the diagrams below:
A
1[
B
5. Given any map f : A — B in C, we may factor f = p o, both as a

cofibration followed by an acyclic fibration and as an acyclic cofibration
followed by a fibration, as shown below:

X — X

f
A
k4 £
/ /
7/ 7/
/ /
L|pP 7] p
/
h /h
/s
s
B
g

g Y Y

f
v
s
s
s

A

A
) ! l f
i 13K

X p

X+>B - - B
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Since they are the only type of model category we will consider, we will refer
to closed Quillen model categories simply as model categories. Axiom 4 of
Definition 6.3 states that any cofibration in C' has the LLP with respect to all
acyclic fibrations, and that any acyclic cofibration has the LLP with respect to
all fibrations. In fact, by Lemma 6.7, this property determines the cofibrations
and acyclic cofibrations.

Definition 6.4. Let C be a model category. Since C' has all finite limits and
colimits, C' has both an initial object ) and a terminal object x. We call an

object A € C cofibrant if the unique map @< A is a cofibration. We call
X € C fibrant if the unique map X ——> % is a fibration.

Remark 6.5. Suppose A € C is cofibrant, and let f : A — Z be a morphism.
Given any acyclic fibration p : W — s Z there is a morphism h : A — W
with po h = f. This follows since, by the uniqueness of arrows from the initial
object, the diagram below must commute:

0 W

[ L P

A——7
f

Thus we have a lift h : A — W in this diagram. Similarly, if X € C is fibrant

then for any morphism g : W — X and any acyclic cofibration i : W—— Z ,
there is a morphism k : Z — X such that koi = g.

Example 6.6. For any model category C', we may define a model structure on
C°P as follows:

e An arrow f: A — B in C? is a weak equivalence if the corresponding
arrow f: B — A in C is a weak equivalence.

e f: A— Bin C is a cofibration if f: B — A in C is a fibration.

e f:A— Bin C is a fibration if f: B — A in C is a cofibration.

Example 6.6 allows us to translate statements about cofibrations into the dual
statement about fibrations, and vice versa. This reflects the duality built into
the axioms of Definition 6.3.

Lemma 6.7. Let f: A — B be morphism in a model category C.

1. f is a cofibration if and only if f has the LLP with respect to all acyclic
fibrations.

45



2. f is an acyclic cofibration if and only if f has the LLP with respect to all
fibrations.

3. f is a fibration if and only if f has the RLP with respect to all acyclic
cofibrations.

4. f is an acyclic fibration if and only if f has the RLP with respect to all
cofibrations.

Proof. We will only prove Statement 1. The proof of Statement 2 is similar,
and 3 and 4 are dual. We know by Axiom 4 of Definition 6.3 that if f: A — B
is a cofibration, f has the LLP with respect to all acyclic fibrations. We must
prove the converse.

Suppose f : A — B is a morphism in C' with the LLP with respect to all
acyclic fibrations. By Axiom 5 of Definition 6.3, we may factor f as f = q o1,
where 7 is a cofibration and ¢ is an acyclic fibration, as below:

AP o p

B— B
id
Since f has the LLP with respect to all acyclic fibrations, f has the LLP with
respect to g. Thus, we have a lift in the diagram above. That is, we have a map
h: B — D such that goh = id and f o h = 4. This morphism h makes the
diagram below commute, realising f as a retract of i:

A id A id A

B D B
h q

By Axiom 3 of Definition 6.3, since i is a cofibration, this implies that f is a
cofibration. O

Remark 6.8. Any two of the three classes of morphisms in a model category
determines the third. If we know the weak equivalences, then by Lemma 6.7 we
need only specify one other class of morphism and the last is determined. Fur-
thermore, if we know both the fibrations and the cofibrations then, by Lemma
6.7, we may characterise acyclic cofibrations and acyclic fibrations. By Axiom 2
and 5 of Definition 6.3 the weak equivalences are exactly those morphisms that
factorise as an acyclic cofibration followed by an acyclic fibration.
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Thus, when defining a model structure on a category, we need only describe
two of the three classes of morphisms.

Definition 6.9. Suppose the diagram below is a pushout:
: Y

B
J‘ i
A

—X

i

We call 7/ : A — X the cobase change of 7 along 7, and j' : Y — X the cobase
change of j along 7. Similarly, suppose the diagram below is a pullback:

./
1
X ——m——

Y
3’ |J
B

A—m——

We call 7/ : X — Y the base change of 7 along j, and j' : X — A the base
change of j along 1.

Lemma 6.10. Let C be a model category. Then we have the following:
1. The class of cofibrations is closed under cobase change.
2. The class of acyclic cofibrations is closed under cobase change.
3. The class of fibrations is closed under base change.

4. The class of acyclic fibrations is closed under base change.

Proof. We will only prove Statement 1. The proof of Statement 2 is similar, and
3 and 4 are dual. Let i : A——= B be a cofibration, and suppose the diagram
below is a pushout:

A—' B



We wish to show that i/ : X — Y is a cofibration. By Lemma 6.7, this is
equivalent to showing that i’ has the LLP with respect to all acyclic fibrations.
Suppose we have an acyclic fibration p:Z —s W and a commutative dia-
gram as below:

f

X——7

Y w

g

We wish to find a lift for this diagram. Consider the commutative diagram

below:
1[
B

By Axiom 4 of Definition 6.3, since ¢ is a cofibration and p is an acyclic fibration,
there is a lift k£ : B — Z in the diagram above. Thus, we have koi = f o j'.
However, by the universal property of the pushout, this implies that there is a
unique morphism h : Y — Z such that hoj = k and hoi = f, as in the
diagram below:

Y 7

foj’
P

w

goJ

We know that hoi' = f. Furthermore, since both g and po h fill in the pushout
diagram below, by the uniqueness property, we have poh = g. Thus, h: Y — Z
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is the desired lift.

Therefore, ¢ has the LLP with respect to any acyclic fibration. Thus, ¢’ is a
cofibration. O

Example 6.11. Consider the category Top. We may define a model structure
on Top as follows:

e An arrow f : A — B is a weak equivalence if it is a weak homotopy
equivalence. That is, f is a weak equivalence if f induces isomorphisms

Je im0 (A a0) — o (B, f (ao))
for any basepoint ag € A, and for all n > 0.

e An arrow f: A — B is a fibration if it has the RLP with respect to the
inclusions

D" x {0} — D™ x [0,1]
for all n > 0. Here D™ denotes the n-disc.

e An arrow f: A — B is a cofibration if it has the LLP with respect to all
fibrations.

This is known as the Quillen model structure on Top. With respect to this
model structure, every object of Top is fibrant and CW complexes are cofibrant.
Note that Top admits other model structures. For example, the Strgm model
structure has weak equivalences given by homotopy equivalences and all objects
are both fibrant and cofibrant.

Definition 6.12. Let F' : A — B be a functor. We call F' an isofibration
if, for any object a € A and any isomorphism f : F'(a) — b in B, there
is an isomorphism g : @« — ' in A with F(g) = f. Thus we also have
F (a’) = b. Note that any functor which is both full and surjective on objects
is an isofibration.
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Example 6.13. Consider the category Cat. We may define a model structure
on Cat as follows:

e An arrow F' : A — B is a weak equivalence if it is an equivalence of
categories.

e An arrow F': A — B is a cofibration if it is injective on objects.

e An arrow I': A — B is a fibration if it is an isofibration.

This model structure is known as the canonical model structure on Cat. It
is the only model structure on Cat for which the weak equivalences are the
equivalences of categories.

Example 6.14. The model structure of Example 6.13 restricts to a model
structure on Grpd, the category of groupoids.

Remark 6.15. Let F : G — H be a functor between groupoids. Thinking
of G = (G1 = Gy) and H = (H; = Hy) as internal groupoids in Set, as in
Definition 2.3, F' determines functions Fy : Go — Hy and F} : G; — H;.
Consider the pullback below:

H1 X Hy Go Go
Fo
H, H,

S

Since Fy o s = so Fy, the functions s : Gy — Gg and F; : Gy — H;y induce a
canonical map L : Gy — Hj xg, Go. The functor F' is an isofibration if and
only if L is surjective.

6.1 Homotopies in a Model Cateogry
6.1.1 Cylinder Objects and Left Homotopies

Definition 6.16. Let C be a model category and let A € C. Consider the
coproduct A IT A and the folding map id + id : AIT A — A. This map
makes the diagram below commute, where «; : A —> A Il A are the canonical
inclusions:

A— % AT A<—2

id+id
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A cylinder object for A is an object AAI € C' with a morphism i : AITA — AAT
and a weak equivalence j:AAI~—= A such that joi = id + id. We call
a cylinder object A A I a good cylinder object if i: AITA——= AAT is a

cofibration and a very good cylinder object if in addition j:AAT "— A
is an acyclic fibration. A cylinder object, good cylinder object and very good
cylinder object for an object A € C' are shown below:

AITA AllA AITA

id+id id+id . id+id

~

AN ——A ANT

ANT ; A

We will denote i 0 g = ig and 0 aq =¢1. Thus, i =ig+14;: AILA— AN

Remark 6.17. By Axiom 5 of Definition 6.3, the folding map for any object
A € C must factorise as id + id = j o i, where i is a cofibration and j is an
acyclic fibration. Thus, every object A € C has at least one very good cylinder
object.

Lemma 6.18. Let A be a cofibrant object and let ANI be a good cylinder object
for A. Then the morphisms ig: AILA—> AANT and i1 : AITA—> ANT

are acyclic cofibrations.

Definition 6.19. Let f,g: A — X be morphisms in a model category C. Let
A N1 be a cylinder object for A. Then a left homotopy from f to g via AA T
is a morphism H : AN T — X such that Hoi= f+g¢g. Thatis, Hoip = f
and Hoip =g. If AANT is a good cylinder object then we call H a good left
homotopy. If A AT is a very good cylinder object we call H a very good left
homotopy. If we have a left homotopy from f to g then we write f ~; g. We
say that f is left homotopic to g.

Remark 6.20. Let f,g: A — X be morphisms in a model category. If f ~; g
then we may use Axiom 5 of Definition 6.3 to find a good left homotopy from
f to g. Furthermore, if X is fibrant, then there is a very good left homotopy
from f to g.

Lemma 6.21. Let A and X be two objects in a model category. Then for any
morphism f: A — X we have f ~; f. For any two morphisms f,g: A — X,
if f ~; g then g ~; f. Furthermore, if A is cofibrant, then given any three
morphisms f,g,h: A — X, if f ~; g and g ~; h, then f ~; h.

Remark 6.22. By Lemma 6.21, for any cofibrant object A € C' and any object
X € C, the relation ~; is an equivalence relation on Home (A4, X). Even if A
is not cofibrant, so that ~; is not necessarily an equivalence realtion, we may
consider the equivalence relation generated by ~; on Home (A, X). We denote
the set of equivalence classes under this equivalence relation by 7! (A4, X).
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Example 6.23. For any space A € Top, one choice of cylinder object is the
cylinder A x [0,1]. The maps ¢ and j are given as follows:

i A — Ax[0,1]
a — (a,0)

i1:A — Ax|[0,1]
a — (a,1)

jiAx[0,1] — A
(a,t) — a

For any space A the map j is a homotopy equivalence and thus a weak homotopy
equivalence. If A is a CW complex, so A is cofibrant, then the map i = ig + i1
is a cofibration, so A x [0,1] is a good cylinder object. Note that for a general
space A € Top this need not be the case. Given continuous functions f, g :
A — X a left homotopy from f to g via A x [0,1] is a continuous function
H: Ax|[0,1] — X such that H (a,0) = f (a) and H (a,1) = g (a) for all points
a € A. Thus, left homotopies from f to g via this choice of cylinder object
A x [0, 1] coincide with the classical notion of homotopy.

Example 6.24. Let I denote the interval groupoid. That is, I is the category
with two objects 0,1 € I and an invertible arrow « : 0 — 1. For any category
A € Cat, one choice of cylinder object is the product category A x I. The
functors ¢ and j are given as follows:

io:A — AxI
a +— (a,0)
(fia—b) — ((f,id): (a,0) — (b,0))

iltA — AxI
a +— (a,1)
(f:a—b) — ((f,id): (a,1) — (b,1))

The functor j = p; : AXI — A is given by projection onto the first factor. This
functor is full, faithful and surjective on objects, so it is both an isofibration and

an equivalence of categories. Thus, j: A xI=—= A is an acyclic fibration.
The functor ¢ = ig + 41 is injective on objects, so i is a cofibration. Thus for any
A € Cat, A x Iis a very good cylinder object. Given functors F,G : A — X,
a left homotopy from F' to G via A x I is a functor H : A x I — X such that
Hoiy = F and H oi; = G. For any arrow f : a — a’ in A, consider the
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commutative diagram below in A x I:

id,«
(a,0) — 22

(a,1)

(fid) e (fid)

(a/,0) ———— (d, 1)

(id,a)
Applying H to this diagram gives the following commutative diagram in X:

Fa) —2%) . G(a)

i !/

Thus, the arrows H (id,«) : F (a) — G (a) are the components of a natural
transformation from F' to G. Since the arrow (id,«) : (a,0) — (a,1) in
A x I is an isomorphism, every component H (id, «) is an isomorphism. Thus,
H : AxI— X gives a natural isomorphism from F' to G. Conversely, any
natural isomorphism from F' to G defines a functor from A x I to X. Thus, left
homotopies from F' to G via this choice of cylinder object A x I coincide with
the natural isomorphisms from F' to G. Note that this choice of cylinder object
is functorial. (For an explicit description of the functor see Remark 6.34.)

Remark 6.25. Consider the category 2, with two objects 0,1 € 2 and a single
noninvertible arrow « : 0 — 1. For any two functors F,G : A — X, functors
H:Ax2 — X with H(—,0) = F and H(—,1) = G are exactly natural
transformations from F' to G. Note, however, that A x 2 is not a cylinder object
for A since A is not equivalent to A x 2. Thus, only natural isomorphisms define
left homotopies.

Lemma 6.26. Let A € C be a cofibrant object and let p:Y = X be an
acyclic fibration. Then composition with p induces the following bijection on left
homotopy classes of morphisms:

p*:ﬂl(A,Y) — Wl(A,X)
[f] +— [pof]

Proof. To see that p, is well-defined, let f,g : A — Y be morphisms, and let
H: ANI — Y be a left homotopy from f to g, via some cylinder object
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ANI. Thenpo H: ANT — X is a left homotopy from po f to pog, so p, is
well-defined.

To see that p, is surjective, consider any morphism f : A — X. By Remark
6.5, since A is cofibrant and p is an acyclic fibration, there isamap h: A — Y
with po h = f. Thus, p. ([h]) = [po k] = [f].

To see that p, is injective, suppose we have maps f,g : A — Y such
that [po f] = [pog]. By Remark 6.20, we may find a good left homotopy
H: AN — X from po f to pog. Thus we have Hoi = (po f)+(po g), where

1: ATl AA——= A AT is the canonical map into the good cylinder object AAI.
That is, the diagram below commutes:

ATIA— Ty
1 P
ANT X

By Axiom 4 of Definition 6.3, we have a lift K : AA I — Y in this diagram.
In particular, K oi = f + g, so K is a (good) left homotopy from f to g. Thus

[f] = lg]. O

Lemma 6.27. Let X € C be fibrant. Then, for any A, B € C, the function
below is well-defined:

7 (A, B) x ' (B,X) — x'(4,X)
(If].[g]) +=— g0

6.1.2 Path Objects and Right Homotopies

Definition 6.28. Let C be a model category and let X € C. Consider the
product of X with itself and the diagonal map (id,id) : X — X x X, making
the diagram below commute, where a; : X x X — X are the projection
morphisms:

X
id (idid) N\
X X xX———— X

A path object for X is an object X! € C with a weak equivalence q: X —— X
and a morphism p : X! — X x X such that po q = (id,id). We call a path
object X7 a good path object if p: X —s= X is a fibration and a very good
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cylinder object if in addition ¢: X"~ X' is an acyclic cofibration. A path
object, good path object and very good path object for an object X € C are
shown below:

X X X

(id,id) (id,id) (id.id)
qi qi q|?
Xl—p>X><X XI—p>>X><X Xlﬁ-XXX

We will denote aigop = pp and a1 op = py. Thus, p = (pg,p1) : X — X x X.

Definition 6.29. Let f,g: A — X be morphisms in a model category C. Let
X' be a path object for X. Then a right homotopy from f to g via X! is a
morphism H : A — X! such that po H = (f,g). That is, po o H = f and
proH =g. If X! is a good path object then we call H a good right homotopy.
If X! is a very good path object we call H a very good right homotopy. If we
have a right homotopy from f to g then we write f ~, g. We say that f is right
homotopic to g.

Remark 6.30. Any path object for X € C corresponds to a cylinder object for
X € C°P, and left homotopies correspond to right homotopies. This gives us
a series of statements about path objects and right homotopies, dual to Re-
mark 6.20, and to Lemmas 6.18, 6.21, 6.26 and 6.27. For example, the dual to
Lemma 6.21 states that if X € C is fibrant then ~,. is an equivalence relation on
Home (A, X) for any A € C. For any X € C, we will denote the set of equiv-
alence classes under the equivalence relation generated by ~,. on Hom¢ (4, X)
by 7" (4, X).

Lemma 6.31. Let f,g: A — X be morphisms in a model category.
e If A is cofibrant, then f ~; g = f ~, g.

e If X is fibrant, then f ~, g = f ~; g.

Thus, if A is cofibrant and X is fibrant, two morphisms f,g: A — X are left
homotopic if and only if they are right homotopic. We write f ~ g, and we
denote the equivalence classes under this relation as follows:

7(A,X)=n"(A,X)=71"(A,X)

Note that this result is independant of the choice of (good) path object and
(good) cylinder object in the following sense: If A is cofibrant and X is fibrant
then for any fixed good cylinder object AA I, and for any fixed good path object
X', two morphisms f,g: A — X are left homotopic via A A I if and only if
they are right homotopic via X.
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Example 6.32. For any space X € Top, one choice of path object is the
mapping space Map ([0,1], X). The maps p and q are given as follows:

qg: X — Map([0,1],X)
R

p: Map([0,1],X) — X xX
v o— (v(0),7 (1)

Here v, : [0,1] — X is the constant path v, (t) = x for any t € [0,1].
Given continuous functions f,g : A — X a right homotopy from f to g via
Map ([0,1], X) is a continuous function H : A — Map ([0,1], X) such that,
for any a € A, H (a,0) = f (a) and H (a,1) = g (a), where H (a,t) denotes the
value of the path H (a) € Map([0,1],X) at t € [0,1]. Thus, right homotopies
from f to g via this choice of path object Map([0,1],X) coincide with the
classical notion of homotopy.

Example 6.33. For any category X € Cat, one choice of path object is the
functor category X!, where I is the interval groupoid of Example 6.24. We may
think of XT as the category with objects the invertible arrows o : £ — 2’ in X
and morphisms given by commutative squares as below:

r————>Y

r —————>1Y

f1

The functor ¢ : X — X! takes any object € X to arrow id, : © — z, and
any morphism f : x — 2’ to the commutative square below:

The functor p : XTI — X x X takes any object o : z — 2’ to the pair (z,2)
and a commutative square with horizontal sides (fo, f1) to the arrow (fo, f1) in
X x X. Note that for any category X, the functor category X! is a very good
path object.
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Now, given two functors F,G : A — X, a right homotopy from F to G
via X! is a functor H : A — X! such that po H = (F,G). Thus, for any
a € A we have an invertible arrow H, : F'(a) — G (a) in X and for any arrow
f :a — d’ we have the commutative diagram below:

Hq

F(a) G (a)
F(f) G(f)
F (d) T G (a)

Thus, the morphisms H, : F (a) — G (a) are the components of a natural
isomorphism from F' to GG. Conversely, any natural isomorphism from F to G
defines a functor from A to X'. Therefore, right homotopies from F to G via
this choice of path object X! coincide with the natural isomorphisms from F to

G.

Remark 6.34. The choices of cylinder object in Example 6.24 and path object
in Example 6.33 define the two functors below:

—xI:Cat — Cat
A — AxI1
(F:A—B) — (FxI:AxI— Bx]I)

(-)':Cat — Cat
X — X!

(F: X —Y) — (Fo—:X'—YT"

These functors form an adjoint pair:
— x1:Cat < Cat : (—)"

Thus for any A, X € Cat we have the following bijection, natural in A and X:

¢: Homgat (A x1,X) — Homcat (A7XI)
Given H : A x I — X, the functor ¢ (H) : A — X! is defined as follows:

a— (H (id,a) : H (a,0) — H (a,1))

H (id,
H (a,0) — 02

H (a,1)

(f:a—a)— H(id) H(fid)

H (a',0) THado H (d',1)
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Let ;G : A — X be functors, and let H : A x I — X be a functor with
Hoi=F+G. Then we can see that o (H) : A — X! satisfies po ¢ (H) =
(F,G). Similarly, if K : A — X! is a functor such that p o K = (F,G), then
0 1 (H)oi = F+ G. In this way, ¢ gives a bijection between left and right
homotopies from F' to G. Note that this is stronger than Lemma 6.31, which
does not associate a unique right homotopy to a given left homotopy. (The
proof of Lemma 6.31 uses a lifting property, and so does not give uniqueness for
an arbitrary choice of cylinder object and path object.)

6.2 The Homotopy Category of a Model Category

In this section we define the homotopy category of a model category C. This
is the category obtained from C' by formally inverting the weak equivalences.
Given any category A and any class of morphisms in A, it is always possible
to formally invert the desired morphisms using a construction given in [18].
However, in general, it is almost impossible to work with the resulting category.
In fact, starting with a small category A, the resulting category may no longer
even be locally small. Using the tools available in model category it is possible
to get a much more explicit description of its homotopy category than in the
general case. This description is given in Corollary 6.48.

6.2.1 Homotopies and Weak Equivalences

Lemma 6.35. Let f,g: A — X be morphisms in a model category.

e Suppose f ~; g. Then f is a weak equivalence if and only if g is a weak
equivalence.

e Suppose f ~, g. Then f is a weak equivalence if and only if g is a weak
equivalence.

Definition 6.36. Suppose A, X € C are both fibrant and cofibrant, and let
f: A — X be a morphism. We call a map g : X — A a homotopy inverse
for f if we have fog~idx and go f ~ id4.

Lemma 6.37. Let f : A — X be a morphism between objects which are
both fibrant and cofibrant. Then f is a weak equivalence if and only if f has a
homotopy inverse g : X — A.

6.2.2 Fibrant and Cofibrant Replacement

Definition 6.38. For any model category C, we have the following associated
categories:

e The objects of Ho (C,) are the cofibrant objects of C, and the morphisms
are right homotopy classes of morphisms in C.

e The objects of Ho(Cy) are the fibrant objects of C, and the morphisms
are left homotopy classes of morphisms in C.
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e The objects of Ho(C.y) are the objects in C' which are both fibrant and
cofibrant, and the morphisms are homotopy classes of morphisms in C'.

Definition 6.39. Let X € C, and consider the unique map ) — X. By Axiom
5 of Definition 6.3, we may factor this map as follows:

QX ——>
This gives an object QX, which is cofibrant, and an acyclic fibration px :
QX —s X . We call the object QX a cofibrant replacement for X. If X is
itself cofibrant then we take QX = X.
Given a morphism f: X — Y, consider the commutative diagram below:

8 QY
w | PY
QX ox X 7 Y

By Axiom 4 of Definition 6.3, we have a lift in this diagram. Thus we have a
morphism Qf : QX — QY making the diagram below commute:

0X Qf

QY

Similarly, we may factor the unique map X — * as follows:

X

SX — s x
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So we have an object SX, which is fibrant, and an acyclic cofibration ix :
X == SX . We call the object SX a fibrant replacement for X. If X is
itself fibrant then we take SX = X. Given a morphism f : X — Y, there is a
morphism Sf : SX — SY making the diagram below commute:

X ! Y
1x | Uty
SX ——85Y
Sf

Note that the choices for Qf and Sf are not uniquely determined. However,
Lemma 6.40 and its dual imply that they are determined up to left and right
homotopy.

Lemma 6.40. Let f : X — Y be a morphism in C. Consider any morphism
Qf : QX — QY, as in Definition 6.39, such that py o Qf = fopx. Then we
have the following:

e If g: Qf — QY is any morphism such that py og = fopx, then g ~; Qf
and g ~, Qf.

e If Y is fibrant, then for any morphism h : X — Y such that h ~; f we
have Qh ~; Qf and Qh ~, Qf.

o f: X — Y is a weak equivalence if and only if Qf : QX — QY is a
weak equivalence.

There is a dual statement for the morphism Sf : SX — SY.

Theorem 6.41. Fibrant replacement and cofibrant replacement induce the func-
tors below:
Q:C— Ho(C.)
S:C — Ho(Cy)
Q : HO(Cf) — HO(CCf)
S:Ho(C.) — Ho(Cqy)
Proof. We will only show that taking cofibrant replacement preserves identities

and composition up to right (and left) homotopy. Let X € C. Then both Qidx
and idgx fill in the diagram below:



Thus, by Lemma 6.40, we have idgx ~; Qidx and idgx ~, Qidx. Similarly,
given f: X — Y and ¢g: Y — Z, we have the following equalities:

pzoQgoQf =gopyoQf=go fopx

This is the defining property of @ (gof). That is, pzoQ (g o f) = gofopx. Thus,
by Lemma 6.40, we have Qg o Qf ~ Q (go f) and Qgo Qf ~» Q(go f). O

6.2.3 Localisation and the Homotopy Category

Definition 6.42. Let C be a category and let W be a class of morphisms in C.
A functor F': C — D is called a localisation with respect to W if it satisfies
the following conditions:

e Forany f: A— Bin W, F(f): F(A) — F (B) is an isomorphism in
D.

e Given any functor G : C — D’ such that G (f) is an isomorphism for
any f in W there is a unique functor G’ : D — D’ making the diagram
below commute:

C E D

el

D/

Remark 6.43. The universal property of a localisation implies that any two
localisations are canonically isomorphic. Note also that for any localisation
F : C — D the functor F is a bijection on objects. This follows from the
general construction given in [18].

Remark 6.44. Let C be a category, W be a class of morphisms in C, and
F : C — D be the localisation of C with respect to W. Then F : C' — D
satisfies the following weak universal property, which characterises D up to
equivalence. Given any G : C — D’ taking morphisms in W to isomorphisms,
there is a functor G’ : D — D’ and a natural isomorphism o : G’ o F' = G.
Furthermore, given any other functor G” : D — D’ and natural isomorphism
o : G" o F = @ there is a unique natural isomorphism « : G’ = G” such
that the diagram below commutes:

GoF—2F _qrop

1"
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Example 6.45. For any model category C', denote by C. the full subcategory
of C generated by the cofibrant objects. Then the canonical functor v, : C. —
Ho (C,) is the localisation of C. with respect to weak equivalences. Similarly,
Ho(Cy) and Ho (C.y) are localisations of the full subcategories C, generated
by fibrant objects, and C.s, generated by objects which are both fibrant and
cofibrant.

Explicitly, suppose F' : C. — D is a functor such that for any weak equiv-

alence f:A-——= B in C,, F(f) is an isomorphism in D. We claim that F
identifies right homotopic maps. To see this, let f,g : A — B be maps in C,
with f ~,. g. Since A is cofibrant, by the dual of Remark 6.20, we may find
a very good right homotopy H : A — B! from f to ¢g. Note that since B is

cofibrant and the canonical morphism ¢: B&~~— B! is a cofibration, B’ is
also cofibrant, so H and ¢ are both morphisms in C,, as are the canonical maps
po,p1 : B! — B. Since F maps weak equivalences to isomorphisms, F (q) is
an isomorphism in D.

Now, pg o g =p1 0q =1idp, so we have F (py) o F (q) = F (p1) o F' (g). Since
F (q) is an isomorphism, this implies that F (pg) = F (p1). However, since H is
a right homotopy from f to g, we have pgo H = f and p; o H = g. Thus we
have the following equalities in D:

F(f) = F
= F(p1)oF(H)
F

From this observation, it is apparent that F induces a unique functor F”’ :
Ho(C.) — D with F' oy, = F. Thus, v, : C. — Ho(C.) is the localisation
of C, with respect to weak equivalences.

Definition 6.46. Let C' be a model category and let W be the class of weak
equivalences in C. The homotopy category of C is the localisation of C' with
respect to W. We denote this by v: C — Ho (C).

Theorem 6.47. Let C be a model category. Then we have an equivalence
Ho(Cep) ~ Ho(C).

Proof. Consider the embedding i : C.y — C. The composite yoi : Coy —>
Ho (C) takes weak equivalences in C. to isomorphisms. Thus, there is a unique
functor ¢’ : Ho(C¢y) — Ho(C) such that i’ oy, = v oi. We claim that i
is an equivalence of categories with weak inverse induced by cofibrant-fibrant
replacement. Consider the functor So@Q : C — Ho (C.y) of Theorem 6.41. By
Lemma 6.40, S o Q takes weak equivalences to isomorphisms, so S o @) induces
a functor F': Ho(C') — Ho(Cey) with Foy=So0Q.
Now, F'oi’ =idrc,;. To see this, we have the following equality:

Foioyy = Fonyoi
= SoQo1
= ef
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This follows since we choose QX = X for cofibrant objects and SX = X for
fibrant objects, so SoQoi maps any object X € C.¢ to the object X € Ho (Cqy)
and any morphism f in C.¢ to its homotopy class. Thus, by the universal

property of localisation, we have F o4 = id.
Now, consider ¢/ o F' : Ho(C) — Ho(C). For each object X € C, the

morphism py : QX —= X is mapped under v to an isomorphism 7y (px) :
¥(QX) — v (X) in Ho(C). Similarly, the morphism igx : QX SQX
is mapped to an isomorphism v (igx) : v (QX) — v (SQX). By construction,
for any f: X — Y in C, the diagram below commutes in Ho (C):

Y(SQf)

7 (SQX) v (SQY)
Y(px)oy(igx) ! y(py )ov(igy) ™!
X Y
v (X) 5 v (Y)

Now, we have i’ o F oy =i’ 0§ 0o Q. On objects this functor is given by
(' 0SoQ)(X)=1(SQX). Note, however, that we have i’ 0 y.f =701, so for
the object SQX € Ho(C.y) we must have the following:

i (SQX) = (y01i) (SQX) = 7 (5QX)

Given an arrow f : X — Y, we have (' 0SoQ)(f) = ¢ ([SQf]). Now,
applying i’ o 7. to the morphism SQf : SQX — SQY gives the following:

(" 07ef) (SQf) = ' ([SQS])
(voi) (SQf)
= 7(5Qf)

Thus, i’ o F oy takes X € C to the object v (SQX) € Ho (C), and any morphism
fin C to~v(SQf). Therefore, the maps v (px) oy (iQx)_l are the components
of a natural isomorphism i’ o F oy = 7. Thus, by Remark 6.44, there is a
natural isomorphism i’ o F' = id,(c)-

Therefore, F' is a weak inverse for i’, so these functors give the desired
equivalence Ho (Ce¢) ~ Ho(C). Note that a similar argument implies that the
functor induced by Q 0o S : C — Ho (C,y) also yields a weak inverse to i'. [

Corollary 6.48. Let C be a model category. We may construct the homotopy
category Ho (C) as follows. The objects of Ho(C) are the objects of C. The
morphisms are given by:

Hompgocy (X,Y) = Homgc,, (SQX,SQY) =7 (SQX,SQY)
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The functor v : C — Ho (C) is defined as follows:

X — X
(f: X —Y) — ([9Qf]: X —Y)

Furthermore, any morphism f : X — Y in Ho(C) may be represented as a
composite

F=7(v) o (igr) " ov(f)ov(igx)ov(px) ™
for some map f': SQX — SQY in C.

Remark 6.49. In the construction of the homotopy category in Corollary 6.48 we
may take Homp,c) (X,Y) = 7 (QSX,QSY) rather than Hompg,c) (X,Y) =
7w (SQX,SQY). Since both constructions yield localisations, the resulting cat-
egories are canonically isomorphic. In fact, if A is cofibrant and X is fibrant,
then v induces a bijection between 7 (A4, X') and Homp,c) (A, X), so we may
take Homp,cy (X,Y) = 7 (QX,SY).

Note that the description of morphisms in the homotopy category given in
Corollary 6.48 implies that Ho (C) is locally small if C is locally small.

Remark 6.50. Given f,g: X — Y in with f ~; g or f ~, g, we have v (f) =
v (g). Thus, by the universal property of v : C — Ho(C), if F : C — D is
any functor taking weak equivalences to isomorphisms, then for any f, g with

f~igor f~.g, wehave F(f) = F(g).

Lemma 6.51. Let f : X — Y be a morphism in C. Then v(f): X — Y is
an isomorphism if and only if f : X — Y is a weak equivalence.

Proof. By definition, if f: X ——Y is a weak equivalence in C then ~ (f) is
an isomorphism. Conversely, if v (f) : X — Y is an isomorphism then 7 (f) has
an inverse g : Y — X in Ho (C). Choose a representative ¢’ : SQY — SQX
in C' such that

9="7(px) o7 (igx) oy (g) o (igy) oy (py) "

Then ¢’ is a homotopy inverse for SQf. By Lemma 6.37, this implies that
SQf is a weak equivalence. By Lemma 6.40 and its dual, this implies that
f: X — Y is a weak equivalence. O

Example 6.52. We call a CW-complex X an n-type if 7; (X, z9) = 0 for any
choice of basepoint zg € X, and any ¢ > n. We will denote the full subcategory
of Top generated by n-types by nType, and the full category of Top™* generated
by pointed connected n-types by nType} . Consider the homotopy categories
Ho(nType) and Ho(nType}), obtained by passing to homotopy classes of
maps. Note that, although neither nType nor nType} are model categories,
we may form these localisations. It is well-known that the fundamental group
induces an equivalence of categories:

71 : Ho(1Type;) — Grp
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Similarly, for any topological space X we may define its fundamental groupoid
Iy (X). The objects of Iy (X) are the points € X and the morphisms are
homotopy classes of continuous paths. That is, given two points x,y € X, we
have

Homp,yx) (z,y) = {[7] [7:[0,1] — X,7(0) = 2,7 (1) = y}

where [y] denotes the homotopy class of v. Note that for any z € X the
automorphisms of z in Il (X) give the fundamental group of X at x:

Homp,x) (z,2) = m (X, )

In [6], it is shown that the fundamental groupoid construction induces an equiv-
alence of categories as below:

Iy : Ho(1Type) — Ho(Grpd)

Here Ho (Grpd) is the homotopy category of Grpd with respect to the canon-
ical model structure of Example 6.14. Since every groupoid is both fibrant and
cofibrant, and homotopies in Grpd correspond to natural isomorphisms, the
category Ho (Grpd) has groupoids as objects and natural isomorphism classes
of functors as morphisms:

Hompgoarpa) (G, H) = 7(G,H)
{[F]|F:G — H}

6.3 Quillen Adjunctions
6.3.1 Derived Functors

Definition 6.53. Let C' be a model category and let F': C — D be a functor
into any category D. A left derived functor for F' is a pair (LF,t), where
LF :Ho(C) — D is afunctor and t : LF oy => F is a natural transformation
such that, given any other G : Ho(C) — D and s : Goy = F, there is a
unique natural transformation s’ : G = LF such that the diagram below
commutes:

GO'yS—M>LFo*y

A right derived functor for F' is a pair (RF,t), where RF : Ho(C) — D is
a functor and ¢t : FF = RF o+ is a natural transformation such that, given
any other G : Ho(C) — D and s : FF = G o 7, there is a unique natural
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transformation s’ : RF = G such that the diagram below commutes:

F

RF o~

, Goy

s 07y
Note that the universal property of a left derived functor implies that, if it exists
it, is unique up to canonical natural isomorphism. Similarly, if a right derived

functor exists, it is unique up to canonical natural isomorphism.

Example 6.54. If FF : C — D is a functor taking weak equivalences to
isomorphisms, then by the universal property of Ho (C) there is a unique functor
F’' : Ho(C) — D such that F’ oy = F. This functor F’ is both a left and
right derived functor for F.

Theorem 6.55. Let C' be a model category and let F' : C' — D be a functor.
Assume that for any cofibrant objects A, B € C' and any weak equivalence f :
A—" B | the image F (f) : F (A) — F (B) is an isomorphism in D. Then
the left derived functor LF : Ho (C) — D exists. Moreover, for any cofibrant
object A € C, the component ta : LF (A) — F (A) is an isomorphism.

Proof. The functor F' restricts to a functor F' : C. — D. Since F maps
weak equivalences between cofibrant objects to isomorphisms, by the universal
property of the localisation, there is a unique functor F’ : Ho(C.) — D such
that F’/ o, = F. Precomposing with Q : C — Ho(C,.) gives the functor
F'oQ:C — D, defined as follows:

X — F(QX)
(f: X —Y) — F(Qf) =F@Qf): F(QX) — F(QY))

This takes weak equivalences in C' to isomorphisms in D, so by the universal
property of Ho (C) we have a functor LF : Ho(C) — D such that LF oy =
F'oQ. By Example 6.54, the pair (LF,id) is both left and right derived functor
for 'oQ:C — D.

Now, the morphisms ty := F' (px) : F (QX) — F (X) give the components
of a natural transformation ¢t : LF oy = F' o Q = F. Although we will not
prove it, (LF,t) is the left derived functor for F' : C — D. See [9] for the
remainder of the proof. O

Definition 6.56. Let F' : C' — D be a functor between model categories.
Consider yo F' : C — Ho (D). We may form the left derived functor for yo F,
which we will call the total left derived functor for F. We will denote this by
LF : Ho(C) — Ho (D). Dually, the total right derived functor for F' is the
right derived functor for yo F. We will denote this by RF : Ho (C') — Ho (D).
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Lemma 6.57. Let C' and D be model categories, and let F' : C — D be a
functor taking any acyclic cofibration between cofibrant objects to a weak equiv-

alence. Then if A, B € C are cofibrant and f : A ——= B is a weak equivalence,

F(f): F(A) = F(B) is a weak equivalence.
For a proof of Lemma 6.57 see [9].

Theorem 6.58. Let C' and D be model categories. Suppose we have an adjoint
pair:

F:C<~—D:G
If any one of the equivalent conditons below is satisfied then the total derived
functors LF : Ho(C) — Ho (D) and RG : Ho (D) — Ho (C) ezist and they
form an adjoint pair:

LF:Ho(C)<= Ho(D): RG
1. F preserves cofibrations and G preserves fibrations.
2. F preserves cofibrations and acyclic cofibrations.
3. G preserves fibrations and acyclic fibrations.
We call such an adjunction F': C' <= D : G a Quillen adjunction.

Proof. For the proof that Statements 1, 2 and 3 are equivalent see [9].

Now, since F is a left adjoint, F' preserves colimits, so in particular F ((}) is
initial in D. Since F also preserves cofibrations, F' maps any cofibrant object
in C to a cofibrant object in D. Dually, G maps fibrant objects in D to fibrant
objects in C.

By Lemma 6.57, F' preserves weak equivalences between cofibrant objects
of C. Thus, yo F': C — Ho (D) takes weak equivalences between cofibrant
objects to isomorphisms, so by Lemma 6.55, the left derived functor of v o F
exists. This is the total left derived functor of F, denoted LF : Ho(C) —
Ho (D). Lemma 6.55 gives us the following construction for LF oy : C —
Ho(D):

X — F(QX)
(f+ X —Y) — ([SF(Q)): F(QX) — F(QY))
By the duals of Lemma 6.57 and Lemma 6.55, the total right derived functor
of G, RG : Ho(D) — Ho(C), exists, and RGo~y : D — Ho(C) may be
described as follows:
X — G(SX)
(f: X —Y) — ([QG(SSf)]: G(SX)— G(SY))
Now, let A € C be cofibrant and let X € D be fibrant. We will show that the
bijection
¢ : Homp (F (A),X) — Homc (A,G (X))
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induces a bijection between homotopy classes of maps:
™ (F(4),X) =7 (4,G (X))

By Remark 6.49 these sets may be identified with the morphisms in the homo-
topy categories. Explicitly, we claim that this bijection gives us the following
bijection, natural in Z and W, where the first map and the last both follow
from Remark 6.49:

HomHo(D) (LF(Z)’W) = W(F(QZ)NS’W)
~ 7 (QZ,G(SW))

Il

HomHo(C) (Za SG (W))

Now, let f,g: A — G (X) be morphisms in C, with f ~ g. By Lemma 6.31,
we may choose a good left homotopy H : ANT — G (X) with Hoi= f+g,
where i : AIl AA——= A is the canonical morphism. Since A A I is a good

cylinder object, by Lemma 6.18, the maps ig,i; : A——"> AAI are acyclic
cofibrations. This implies that A A I is cofibrant. Now, since F preserves
colimits, cofibrations and acyclic cofibrations (and thus, by Lemma 6.57, weak
equivalences between cofibrant objects), F'(A A I) is a good cylinder object for
F (A). This is illustrated below:

ATT A F(A)IIF (A)
; id+id — Fi) id+1id
ANT : A F(ANI) - F(A)

F ()

Now, consider the morphisms ¢~ (H) : F(AAT) — X and ¢~ (f), 971 (9) :
F(A) — X. Let ex : (FoG)(X) — X be the component of the counit at
X. Then, since F' preserves colimits we have the following equalities:

o ' (H)oF (i) = exoF (Hoi)

exoF(f+g)

ex o (F(f)+F(9)

= (exoF(f)) +(ex o F(g))
e (N +e7 (9)

Thus, ¢! (H) is a good left homotopy from ¢~ (f) to =1 (g), and so =1 (f) ~
¢ 1(g). Since F(A) is cofibrant and X is fibrant, =1 (f) ~; ¢! (g) if and
only if ¢~ (f) ~» »71(g), so we have the desired function from 7 (4, G (X))
to m(F (A), X). We may construct its inverse by a dual argument, using the

fact that G preserves limits. See [9] for the proof that the resulting bijection is
natural. 0
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Remark 6.59. If a Quillen adjunction also satisfies the following property then
the induced adjunction

LF :Ho(C) <= Ho(D): RG

is an equivalence. The property is as follows: For any cofibrant object A € C
and any fibrant object X € D, amap f: F (A) — X is a weak equivalence if
and only if ¢ (f) : A — G (X) is a weak equivalence.

6.4 Homotopy Pushouts and Pullbacks

In a model category C, limits and colimits need not be stable under weak equiv-
alence. That is, given two diagrams in C, the objects of which are isomorphic in
Ho (C), the (co)limits of these diagrams need not be isomorphic in Ho (C). For
instance, in Cat, this is a statement of the well-known fact that two diagrams
whose objects are equivalent need not have equivalent (co)limits. This fails
even when the equivalences form the components of a natural transformation
between the diagrams.

In this section we introduce methods of finding optimal approximations for
limits and colimits which are homotopy invariant. We will study examples of
these in Section 8 in relation to 2-groups.

6.4.1 Homotopy Pushouts
Definition 6.60. Consider the category D below:
a+—b—c

The diagram category CP has objects given by diagrams in C of the following
form:
X (a) +— X (b) — X (¢)

Arrows are commutative diagrams as below:

X (a) =— X (b)) —= X (¢)

We will denote such an arrow by f : X — Y. Given any arrow in C” consider
the two diagrams below:

fo

Y (b)) <— X (b)) —— X (a)

fo
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Denote the pushout of the first diagram by 9, (f) and the pushout of the second
diagram by 0. (f). The universal property of these pushouts gives us morphisms

ia (f) :0a (f) — Y (a) and i. (f) : 0. (f) — Y (¢) as below:

X)) — = X (a) X(b) — =X (c)

Definition 6.61. Let C be a model category, and consider the category CP
of Definition 6.60. We may define a model structure, known as the projective
model structure on CP as follows:

e An arrow f : X — Y is a weak equivalence if f,, f, and f. are weak
equivalences in C.

e An arrow f: X — Y is a cofibration i, (f), i. (f) and f, are cofibrations
in C.

e An arrow f: X — Y is a fibration if f,, f, and f. are fibrations in C.
Theorem 6.62. Now, let C be a model category and let D be the category below
a+—b—c

Since C is a model category, by Aziom 1 of Definition 6.3, C' has all finite
colimits. In particular, all pushouts exist, so the diagonal functor A\ : C — CP
has a left adjoint colim : CP — C . The adjunction

colim : CP < C : A

satisfies the equivalent conditions 1, 2 and 3 of Theorem 6.58. Thus, the total
derived functors Leolim : Ho (CP) — Ho(C) and RA : Ho(C) — Ho (CP)
exist, and we have the adjunction below:

Leolim : Ho (CP) <= Ho(C) : RA

Proof. The proof is immediate, since given a fibration f: A——= B in C,
A (f) has the following components:

ANa=AU=20).=F
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Thus, each component of A (f) is a fibration. By the definition of the projective
model structure in Definition 6.61, this implies that A (f) is a fibration. Thus,
A preserves fibrations. By a similar argument, A preserves weak equivalences,
so A satisfies Condition 3 of Theorem 6.58. O

Definition 6.63. For a diagram X € CP, we call Lcolim (X) the homotopy
pushout of X.

Remark 6.64. Given a diagram X € CP, by the construction of Theorem 6.55,
up to isomorphism in Ho (C) we may take Leolim (X) = colim (QX), where QX
is a cofibrant replacement for X. Note that X € CP is cofibrant if each of the ob-
jects X (a), X (b) and X (c) is cofibrant in C and both maps X (b))—— X (a)

and X (b))—— X (¢) are cofibrations in C.

Definition 6.65. Let f : X — Y be a map in C'. The homotopy pushout of
the diagram
f

k<—X ——>Y
is called the homotopy cokernel of f, or the mapping cone of f.

Definition 6.66. Let X € C. The suspension object of X, denoted XX, is the
homotopy pushout of the diagram below:

k<— X — > x

6.4.2 Homotopy Pullbacks
Definition 6.67. Consider the category E below:

a—b+—c¢

Morphisms in the diagram category C¥ are commutative diagrams as below:

X (a) X (b) X (¢)
fai lfb lfc
Y (a) Y (b) Y (¢)

Denote such an arrow by f : X — Y. Given any arrow in C¥ consider the
diagrams two diagrams below:

fo

X () Y (b) Y (e)

Denote the pullback of the first diagram by 9, (f) and the pullback of the second
diagram by . (f). The universal property of these pullbacks gives us morphisms

Pa (f): X (a) — 9a (f) and pe (f) - X () — e (f)-

71



Definition 6.68. Let C be a model category, and consider the category C¥ of
Definition 6.67. We may define a model structure, known as the injective model
structure on CF as follows:

e An arrow f : X — Y is a weak equivalence if f,, f» and f. are weak
equivalences in C.

e An arrow f: X — Y is a cofibration if f,, f, and f. are cofibrations in
C.

e An arrow f: X — Y is a fibration p, (f), pc (f) and f, are fibrations in
C.

Theorem 6.69. Let C' be a model category and let E be the category below:
a—bé<—c

By Aziom 1 of Definition 6.3, C' has all pullbacks, so the diagonal functor
A :C — CF has a right adjoint lim : C¥ — C . The adjunction

A:C < CF:lim

satisfies the equivalent conditions 1, 2 and 3 of Theorem 6.58. Thus, the total
derived functors Rlim : Ho (C¥) — Ho(C) and LA : Ho(C) — Ho (CF)
ezist, and we have the adjunction below:

LA : Ho(C) <= Ho (C") : Rlim

Proof. The proof is dual to the proof of Theorem 6.69. The functor A satisfies
Condition 2 of Theorem 6.58. O

Definition 6.70. For a diagram X € CF, we call Rlim (X) the homotopy
pullback of X.

Remark 6.71. Given a diagram X € CF | up to isomorphism in Ho (C), we have
Rlim (X) = lim (SX), where SX is a fibrant replacement for X. A diagram
X € CF is fibrant if each of the objects X (a), X (b) and X (c) is fibrant in C

and both maps X (a) —= X (b) and X (a) —= X (¢) are fibrations in C.

Definition 6.72. Suppose the model category C has a zero object x. Let
f: X — Y be amap in C. The homotopy pullback of the diagram

f

X—Y ~—«x

is called the homotopy kernel of f, or the mapping cocone of f.

Definition 6.73. Let C' be a model category with a zero object, and let X € C.
The loop space object of X, denoted QX, is the homotopy pullback of the
diagram below:

f— X <— %
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Example 6.74. Let G be a group. Consider the delooping groupoid BG of
Definition 3.3. We claim that the loop space Q2BG is the discrete groupoid
with objects given by the elements of G. (Recall that a category is called
discrete if its only morphisms are identities.) We may calculate QBG up to
isomorphism in Ho (Grpd) - that is, up to equivalence in Grpd - by finding
a fibrant replacement for the diagram * ——= BG <—— *x and then taking a
pullback. Note that in Grpd, the zero object * is the discrete groupoid with a
single object. By Remark 6.71, since every object of Grpd is fibrant, a fibrant
replacement for this diagram is given by the bottom row of a commutative
diagram of the form below:

* BG *

X (a) X (0) X ()

Now, consider the groupoid EG, defined via the pullback below:

EG - *

BG! = BG
Po

Since BG is fibrant, and BG! of Example 6.33 is a very good path object, by
the dual of Lemma 6.18, po : BG* ——= BG is an acyclic fibration. By Lemma

6.10, this implies that s: EG ——= x is also an acyclic fibration. (In this in-
stance this is not hard to verify directly. However, we may use an analogous
argument to construct fibrant replacements for morphisms between fibrant ob-
jects in any model category.) The objects of EG are the elements g € G, and
for any g1, g2 € EG we have:

Homzg (91,92) = {91_192}

The functor ¢t : EG — BG! is given as follows:

g%(.$.)
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g1
_—

[ ]
(911921 91 — go) — 1\[
[ ]

—_—

°
‘91192
°

92

Now, define F' = p; ot : EG — BG. Explicitly, F' is defined as follows:

g — [ )
(97921 —g2) +— (97'g2:0—>0)

For any ¢ € EG and any morphism h : ¢ —> e in BG, we have h : ¢ — gh
in EG with F (h) = h. Thus, F:EG — BG is a fibration. Furthermore,
since * is initial, the diagram below commutes:

* BG *

EG BG EG
F F

Thus, EG —— BG <— EG is a fibrant replacement for * —— BG <—— x|

and so we may calculate QBG as the pullback of EG ——= BG <— EG .

The objects of QBG are pairs (g, h) with g,h € G. For any object (g,h) €
OBG, there is one morphism k : (g,h) — (gk, hk) for each k € G and there
are no other morphisms in QBG. Now, let G denote the discrete groupoid with
objects given by the elements of G. Then the functor K : G — QBG given by
K (g) = (g,1) on objects is an equivalence. Thus, since the the loop space of a
groupoid is only defined up to equivalence, we may take G = QBG.

Remark 6.75. Other than the projective and injective model structures, we
may define a number of model structures on functor categories in order to com-
pute homotopy limits and colimits. In particular, if D is the pushout diagram
a <— b —> ¢ of Definition 6.60 and FE is the pullback diagram a — b «— ¢
of Definition 6.67, then C” and C¥ admit a family model structures known
as Reedy model structures. The Reedy model structures have the same weak
equivalences as the projective model structure of Definition 6.61 and the injec-
tive model structures of Definition 6.68. Thus, these model structures all induce
isomorphic homotopy categories, meaning the homotopy colimits we define us-
ing the projective model structure will agree with those defined using the Reedy
model structures. Dually, homotopy limits constructed using the injective model
structure agree with those constructed via the Reedy model structures.
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We will not define Reedy categories or Reedy model structures; see [36], from
which the following results are taken, for an exposition. The functor category
CP admits a Reedy model structure for which the total left derived functor

Leolim : Ho (CP) — Ho (C)

exists and defines a homotopy pushout in C. Moreover, the cofibrant objects of
CP have the form

X (a) X (b)° X (¢)

where each of the objects X (a), X (b) and X (c¢) are cofibrant, but only one of
the morphisms is a cofibration. Dually, we may calculate homotopy pullbacks
via a Reedy model structure on C¥ with fibrant objects given by

X (a) X (b) X (¢)

where X (a), X (b) and X (c) are fibrant, but only one of the morphisms is a
fibration.

Example 6.76. Let G be a group. By Remark 6.75, we may calculate QBG
by taking the pullback of the diagram below, rather than the pullback of the
diagram in Example 6.73:

F

* BG EG

Here FF = p; ot as in Example 6.73. Thus, QBG is given by the repeated
pullback below:

OBG EG £ *

BG! — BG

BG

*

It is not hard to check that this is isomorphic to the following pullback:

OBG BG!

p=(po,p1)

*+—> BG x BG
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Thus, QBG = Ker (p). The objects of Ker (p) are the morphisms of BG - that
is the elements g € G - and Ker (p) has only identity morphisms. Thus, as we
found in Example 6.74, OQOBG = Ker (p) = G is the discrete groupoid on the
elements of G.

Remark 6.77. The construction of Example 6.76 holds in general. That is, if
X, Y and Z are fibrant elements in any model category C, then the homotopy
pullback of a diagram

xtoy<? 7

may be calculated as the pullback P below:

r Yixy Z —-s7Z
g
YIT-Y

p1

X Y

f

It is routine to check that the object P is canonically isomorphic to the pullback
below:
P y!

X xZ Y xY

xg

Here Y7 is a good path object for Y and p = (po,p1) : Y/ — Y x Y is the
canonical morphism. In particular, if C' has a zero object * then the loop space
of an object X € C is presented by the kernel Ker (p).

7 Model Structure on Str2Grp

In this section we recall the Garzon-Miranda model structure on the category
Str2Grp, which was introduced in [31].

Definition 7.1. Consider the category Str2Grp, with objects strict 2-groups
and morphisms strict monoidal functors. By Remark 5.17, this is isomorphic to
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the category of internal categories in Grp. We may define a model structure
on Str2Grp as follows:

e Anarrow F' : G — H is a weak equivalence if I is a monoidal equivalence.
That is, F' is a weak equivalence of strict 2-groups if and only if F is a
weak equivalence of the underlying groupoids.

e An arrow F' : G — H is a fibration if F is a fibration of the underlying
groupoids.

e An arrow F : G — H is a cofibration if F' has the LLP with respect to
all acyclic fibrations.

Remark 7.2. The zero object * in Str2Grp is the 2-group with one object and
one morphism. The underlying groupoid of * is also the zero object in Grpd,
S0, since any groupoid is fibrant and the fibrations in Str2Grp are the fibrations
of the underlying groupoids, every strict 2-group is fibrant.

Definition 7.3. Let H = (H1 =% Ho) be a strict 2-group. Define the strict
2-group H! = (C; = Cy) as follows. Let Cy = Hj, and let

Cl = {(917927h17h2) € Hil | g?ohl = h2 091}

with multiplication defined pointwise. Define the structural morphisms as fol-
lows:

5(91,92,h1,h2) = ¢
t(g1,92,h1,h2) = g2
ilg) = (9,9,i(s(9)),i(t(9)))

Thinking of a strict 2-group as a monoidal category, H! has objects given by the
morphisms of H and arrows given by commutative squares. That is, if U (H) is
the underlying groupoid of 4, then U (H') = U (’H)I7 where U (H)I is the path
object for U (H) of Example 6.33.

Lemma 7.4. For any strict 2-group H, the 2-group H' is a good path object
for H.

Proof. Let U (H) denote the underlying groupoid of H. Then by Definition 7.3,
we have U (H') =U (H)'. Now, U (H)" is a very good path object for U (),
so in particular U (’H)I is a good path object. The canonical morphisms for the
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path object, ¢ : H — H! and p: H! — H x H are as follows:

@p:Ho — Co=H
aq:H — O
g — (i(s(9)),1(t(9),9,9)
po:Co — HoxHo
g — (s(9).t(9))
p1:C1 — Hi xHp
(91,92, h1,h2) = (h1, ho)

The underlying functions of ¢ and p recover the functors of Example 6.33, so ¢
is a weak equivalence of groupoids and p is a fibration of groupoids. Therefore,
since both weak equivalences and fibrations (but not cofibrations) of strict 2-
groups are inherited from Grpd, H! is a good path object for H (but not
necessarily a very good path object). O

Lemma 7.5. Let F,G : G — H be morphisms in Str2Grp. A right homotopy
H:G — H! from F to G, where H' is the path object of Definition 7.3,
is precisely a monoidal natural isomorphism from F to G. That is, given 1-
morphisms F,G : G — H in the 2-category Str2Grp, the right homotopies
from F to G via H' are exactly the 2-morphisms from F to G in Str2Grp.

Proof. By Remark 5.17, the data of a monoidal natural isomorphism is precisely
that of an internal natural transformation in Grp. Given morphisms F,G :
G — H, this amounts to a group homomorphism 6 : Gy — H; satisfying the
naturality condition of Definition 2.5, such that sof = Fy and tof = Gy. Given
a right homotopy H : G — H! from F to G, define § = Hy : Gy — Cy = H;.
By the argument of Example 6.33, this satisfies the naturality condition. Thus,
since Hy is a group homomorphism, Hy = 0 determines a natural isomorphism
in Grp and thus a monoidal natural isomorphism.

Conversely, given an internal natural isomorphism 6 from F to G, define
H:G — H as follows:

Hoigo — CO
x — O(x)
legl — Cl
[ (O0(s(),0(), Fi(f),Gu(f))

O

Lemma 7.6. A morphism G : G — H in Str2Grp is a cofibration if and only
if G is a retract of a morphism H : G — L with Lo = Gy * F (X)), where F (X)
is the free group on some set X.
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Proof. We will only prove the reverse implication. Suppose H : G — L is
a morphism between strict 2-groups, where Ly = Gy * F (X) for some free
group F'(X). We wish to show that H has the LLP with respect to all acyclic

fibrations. Let K : A-——-==B be an acyclic fibration, and suppose we have
morphisms M and N such that the diagram below commutes:

G M A

L————B

Since K is both a weak equivalence and a fibration, K must be surjective on
objects. That is, Ky : A9 — By is surjective. Thus, for any generator x € X we
may choose an element a € Ay such that Ky (a) = Ny (). These choices give a
function from X to By, which induces a group homomorphism ¢ : F' (X) — By.
We may make these choices in such a way that, together with My : Gg —> Ay,
the homomorphism ¢ determines a morphism Ty : Lo = Go* F' (X) — Ag such
that K() o T() = NQ and TO o HO = MQ.

Now, let z € £; and consider Ny (z) € B;. Since K is an equivalence of
categories, we may find w € Ay, unique such that s (w) = Ty (s(2)), t(w) =
Ty (t(2)), and K; (w) = Ny (z). Define T (z) = w. This pair of group homo-
morphisms defines a morphism 7' : £ — A giving a lift in the diagram above.
Thus, H has the LLP with respect to an arbitrary acyclic fibration K, so H is
a cofibration. By Axiom 3 of Definition 6.3, the class of cofibrations is closed
under retracts, so any retract of such a morphism must also be a cofibration.

See [31] for a proof of the reverse direction. O

Corollary 7.7. A strict 2-group G is cofibrant if and only if Go = F (X) is a
free group.

Theorem 7.8. We have an equivalence of categories Ho (Str2Grp) ~ H (2Grp),
where H (2Grp) is the category defined in Remark 5.14. This makes precise
one sense in which the category Str2Grp recovers the homotopy theory of the
2-category 2Grp.

Proof. We use the notation of Example 6.45. Consider the category Ho (Str2Grpcf) =
Ho (Str2Grp,.), whose objects are the cofibrant 2-groups and whose morphisms,
by Lemma 7.5, are isomorphism classes of strict monoidal functors. By Example
6.47, we have an equivalence of categories Ho (StrZGrpcf) ~ Ho (Str2Grp).
Thus we need only show that Ho (Str2Grpcf) is equivalent to H (2Grp).
Now, consider the inclusion functor ¢ : Str2Grp.; — 2Grp. Composing i
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with the functor H of Remark 5.14 gives the functor below:

Hoi:Str2Grp,; — H(2Grp)
K — K
(F:J—K) — ([F]:J —K)

Here [F] is the 2-isomorphism class of F'. By construction, this functor associates
2-isomorphic functors in Str2Grp,, so it maps equivalences to isomorphisms.
Thus, H o7 induces a unique functor Q : Ho (Str2GrpCf) — H (2Grp) such
that Qo~v.r = H oi. We claim that Q is an equivalence.

We first show that € is faithful. Suppose F,G : J — K are morphisms in
Str2Grp,; such that [F] = [G] in H (2Grp). Then there is a monoidal natural
isomorphism between F' and G. By Lemma 7.5, F and G are 2-isomorphic if
and only there is a homotopy from F' to G. Thus, in Ho (Str2Grpcf) we have
[F] = [G]. Therefore, Q is faithful.

To see that (2 is essentially surjective, let G € 2Grp. By Theorem 5.18, G is
equivalent in 2Grp to a strict 2-group G. We may take the cofibrant replacement
of definition 6.39, to find a cofibrant strict 2-group QG, which is equivalent to the
strict 2-group G. Since equivalences in 2Grp are isomorphisms in H (2Grp),
this gives an isomorphism G = QG in H (2Grp). Since Q2 (Q_C’;) = QG, this
implies that € is essentially surjective.

Now, suppose G : J — K is a monoidal functor in 2Grp between cofibrant
strict 2-groups. To conclude that €2 is full we must show that there is a monoidal
natural isomorphism 6 : G => G from a strict monoidal functor G : J — K
to G, so that [G] = {G‘} =0 ([G} ) Now, since J is a cofibrant strict 2-group,
we have J = (J1 = F (X)) where F (X) is the free group on some set X. We
may define G : J — K as follows.

Any object j € J has the form j = 27! ® 23? @ ... ® 2% for some z; € X
and g; = £1, where 2! denotes the strict inverse of z in J. On objects, we
define G as follows:

Gl @1 ®..0157) =G )" @G (22)? ®...0 G (x,)™"

Consider the family of isomorphisms below:

Gl i ®..015) =G )" @G ()7 ®...0 G (x,)™"
G)®G(@3")®... @G (x5)

Gr]'®z?®...0a5)

Here the first map is given by the canonical isomorphisms from G (z1)*" to
G (z7') of Remark 5.7. Since K is strict, these depend only on py and u, the
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structure isomorphisms of G. The second isomorphism is also composed only
of the structure isomorphism p. The commutative diagrams of Definition 4.7
imply that for any j € J this gives a unique isomorphism in £:
0;:G(j) — G
Now, for any morphism f : j — k in J, define G’(f) = 9,;1 oG (f)o0;.
This defines a strict monoidal functor G : J — K. The morphisms 6§; :
G (j) — G (j) are the components of the desired monoidal natural isomorphism

0 : G = G. Thus, Q is full. O

Corollary 7.9. Let A be a cofibrant object of Str2Grp. For any 2-group G,
let G be the equivalent strict 2-group of Theorem 5.18. We have the following
equivalence of categories:

H0m2Grp (A7 g) = HomStrZGrp (-Aa G)

Proof. The equivalence w : G — G induces the functor below for any A in
2Grp:

wo —: Homagrp (A, g_) — Homagrp (A,G)
F — woF
#:F=G) — (wob:woF = wo()

This functor has a weak inverse given by
wo —: Homagrp (A,G) — Homagrp (,A7 ,C';)

where @ : G — G is the weak inverse of w. Thus for any 2-group A we have
the equivalence below:

Homagrp (A,G) ~ Homagrp (A, G)

Now, suppose A is a cofibrant object of Str2Grp, and consider the inclusion
below:

j : Homstrz(}rp (A7 g_) — H0m2Grp (-’47 g_)

By the proof of Theorem 7.8, any monoidal functor from a cofibrant strict 2-
group to a strict 2-group is naturally isomorphic to a strict monoidal functor.
Thus, the inclusion j is essentially surjective. Furthermore, j is clearly full and
faithful. Thus, j gives an equivalence as below:

H0m2Grp (-A7 g) ~ HomStr2Grp (Aa G)

Composing these functors gives the desired equivalence:

H0m2Grp (-Aa g) = HomStr2Grp (-A; g_)
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Remark 7.10. Consider the functors of Definition 5.10 and Remark 5.23:

ho : Str2Grp — Grp
hy:Str2Grp — Ab

By Lemma 5.13, these functors take equivalences in Str2Grp to isomorphisms,
so they induce functors on the homotopy category:

ho : Ho (Str2Grp) — Grp

hi: Ho(Str2Grp) — Ab

Using the equivalence of Theorem 7.8, these recover the functors of Remark
5.14.

Definition 7.11. The equivalence of Theorem 5.20 between the categories
Str2Grp and Cross allows us to translate the model structure of Definition
7.1 onto Cross. Explicitly, suppose we have an arrow

(U,’U) : ((51 : H1 — Gl) — (52 : H2 — G2)>
in Cross. We make the following definitions:

e The arrow (u,v) is a weak equivalence if (u,v) is an equivalence in the
sense of Definition 3.13. That is, (u,v) is a weak equivalence if it induces
isomorphisms on hg and h;.

e The arrow (u,v) is a fibration if v : Hy — H> is surjective.

e The arrow (u,v) is a cofibration if it is a retract of a morphism
(u',0") ((5/1  H, —> G;) — (5; cHy, —» G;))
such that G, = G % F (X), where F (X) is the free group on some set X.

The cofibrant objects of Cross with this model structure are the O-free crossed
modules - that is, crossed modules of the form § : H — F (X)), where F (X) is
a free group on a set X. Every crossed module is fibrant.

Remark 7.12. In [32], Moerdijk and Svensson introduce a model structure on
the category of 2-groupoids, which they use to show that 2-groupoids model
all homotopy 2-types. (This is the analogue of the result in Example 6.52,
that groupoids model all homotopy 1-types.) Using the delooping of Definition
4.15, we may identify 2-groups with one object 2-groupoids. In [34], Noohi
uses this identification to adapt the Moerdijk-Svensson model structure to a
model structure on Cross. The weak equivalences in this model structure agree
with weak equivalences of Definition 7.11. However, a morphism (u,v) : §3 —
09 is a fibration in the Moerdijk-Svensson model structure if both u and v
are surjective. Thus, although all fibrations in the Moerdijk-Svensson model
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structure are fibrations in the Garzon-Miranda model structure, the converse is
not true.

However, homotopies in the Moerdijk-Svensson model structure agree with
homotopies in the Garzon-Miranda model structure, as do the cofibrant and
fibrant objects. Thus, in [34], Noohi is able to use the Moerdijk-Svensson model
structure to obtain the same characterisation of weak morphisms in terms of
strict morphisms as we have in Corollary 7.8.

Example 7.13. Let G be a group with presentation G = F'/H. Consider the
morphism below, introduced in Example 3.14:

H—9% .1

F G

P

By Example 3.14 this morphism is a weak equivalence. Moreover, since 0 :
H — 1 is surjective, (0,p) is a fibration. Thus, d; is a cofibrant replacement
for d5 in Cross.

Example 7.14. The fundamental crossed module construction of Definition
3.16 induces an equivalence of categories:

IT; : Ho(2Type.) — Ho(Cross)

As in Example 6.52, the objects of Ho (2Type}) are connected pointed 2-types,
and the morphisms are homotopy classes of maps. In this way, crossed modules
model pointed, connected 2-types.

As in Remark 3.18, we may extract the fundamental group and the second
homotopy group of a space from its fundamental crossed module. Explicitly,
for any X € 2Type}, we have ho (II; (X)) = 71 (X) and hy (111 (X)) = m2 (X).
However, given X,Y € 2Type}, the equalities m (X) = m (V) and w2 (X) =
72 (Y) alone are not enough to conclude that X is homotopy equivalent to Y.
This result tells us that the fundamental crossed module encodes genuinely new
information about a CW-complex, which is not captured by homotopy groups.

Remark 7.15. The right homotopies in Cross recover the 2-morphisms in the
2-category Cross of Definition 3.23. Thus, the equivalence of Theorem 5.20
extends to a strong equivalence between the corresponding 2-categories. That
is, the functors T and ¥ extend to 2-functors which are essentially surjective on
objects and full and faithful on both 1-cells and 2-cells.

Moreover, the model structure of Definition 7.1 may be extended to the
categories BraidStr2Grp and SymStr2Grp, and thus to RQuad and SQuad
via the equivalences of Remark 5.24. As in Cross, the right homotopies in
these model categories recover the 2-cells in the 2-categories. Therefore, the
equivalences of Remark 5.24 also induce strong equivalences of 2-categories.
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8 Kernels in 2Grp

In this section we discuss the kernel of a morphism in 2Grp, following a defini-
tion given by Vitale in [38].

Definition 8.1. Let F': G — H be a morphism in the 2-category 2Grp. The
kernel of F is given by a morphism of 2-groups k : Ker (F) — G together with
a monoidal natural isomorphism « : F o k = 0, where 0 : Ker (F) — H is
the zero morphism of Definition 5.6. The kernel satisfies the following universal
property, which characterises Ker (F') up to equivalence. Given any morphism
G : K — G and any monoidal natural isomorphism 6 : F o G = 0 there
exists a morphism G’ : K — Ker (F) and a monoidal natural isomorphism
0" : ko G’ = G such that the following diagram commutes:

FokoG — "¢ 006
Fob’
Fod 0
0

Furthermore, given G” : K — Ker (F') and a monoidal natural isomorphism
0" : ko G” = G also making the diagram above commute, there is a unique
monoidal natural transformation ¢ : G' = G’ such that the following triangle

commutes:

ko

koG" koG’

' o'

G

Definition 8.2. Let F': G — H be a monoidal functor between 2-groups. We
may construct Ker (F') as follows:

The objects of Ker (F) are pairs (g,¢,) with g € G and ¢, : F (g) — 1 a
morphism in H.

For any two objects (g,¢,) and (h, ¢) in Ker (F'), a morphism

f : (gaég) — (hygh)
is given by a morphism f : ¢ — h in G such that the diagram below commutes:

F(f)
F(g)

F(h)



Composition in Ker (F) is induced by composition in G, so Ker (F) is a groupoid.
In fact, the underlying groupoid of Ker (F') agrees with the construction in Re-
mark 6.77 of the homotopy kernel of the underlying functor F' in Grpd. We
will return to this point in Remark 8.3.

The monoidal structure on Ker (F) is as follows. The unit object is the pair
(1, ufl), where 1 : 1 — F'(1) is the structure isomorphism of F'. The tensor
product is given on objects by

(gvgg) & (hvgh) = (g & hv£g®h)

where lygp : F' (g ® h) — 1 is the following composite:

T 0,00
Flgoh) ——" > F(g)@F (h) — " 1®1—>1

The functor & : Ker (F) — G is given as follows:

(9:4y) — g
(f:(g.4g) — (h,lr)) +— (f:9—h)

The monoidal natural isomorphism x : F' o k = 0 has components given by
K(g,t,) = L4 for each object (g,£;) in Ker (F). From now on, when we reference
the kernel of a morphism in 2Grp, we will refer to this construction of the
kernel.

Remark 8.3. Let F : G — H be a morphism in Str2Grp. Since every object
of Str2Grp is fibrant, by Remark 6.77, the homotopy kernel of F' is given by
the pullback below:

P H'

G x % H < H

Fx0

By Remark 5.27, pullbacks in Str2Grp agree with pullbacks of the underlying
groupoids and the underlying groupoid of the path object #! is the path object
in Grpd. This construction of the homotopy kernel P agrees precisely with the
construction of Ker (F) in Definition 8.2.

Remark 8.4. Definition 8.1 gives Ker (F') as a bilimit in the 2-category 2Grp.
Bilimits are one of a number of notions of limit, discussed in [24, 25], that may
be considered in a 2-category.

For any morphism F : G — H in 2Grp, the construction of Ker (F') given in
Definition 8.2 also satisfies the following universal property, which characterises
the 2-group up to isomorphism rather than equivalence. Given any morphism
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G : K — G and any monoidal natural isomorphism 6 : F' o G => 0 there is a
unique morphism G’ : K — Ker (F) such that ko G’ = G. We say that limits
which satisfy such a universal property are strict homotopy limits.

In a model category C' whose objects are fibrant, the construction in Remark
6.77 of the homotopy pullback is an example of a strict homotopy pullback.
Note that the universal property of a homotopy pullback in a model category
characterises the pullback only up to isomorphism in Ho (C), while the a strict
homotopy pullback is characterised up to isomorphism in C. Thus, even in a
model category (where both concepts are defined), although they often coincide,
these concepts are distinct. The fact that the construction of the strict homotopy
kernel of a morphism in 2Grp agrees with the weaker notion of the bilimit of
Definition 8.1, and (when they are defined) with the homotopy kernels defined
via the model structure on Str2Grp, may be seen as an instance in which the
homotopy theory of 2-groups recovers their 2-category theory.

We will now develop some elementary facts about the kernel, which begin
to illustrate its central role in the 2-dimensional algebra of 2-groups.

Lemma 8.5. Let F : G — H be a monoidal functor between 2-groups. Then
we have a group isomorphism hy (Ker (F)) = Ker (hy (F)).

Proof. Suppose f : 1 — 1 is a morphism in G. Recall that by Definition 5.10,
we have the following:

(h1 (F)) (f) =p1' o F(f)om

Now, f is an endomorphism of the unit object (1, ufl) in Ker (F) if and only
if the diagram below commutes:

F(f)

F(1) F(1)

Ky Ky

1

That is, an arrow f in hy (G) is in hy (Ker (F)) if and only if (k1 (F)) (f) =
prto F(f)ou =1. O

Lemma 8.6. Let F : G — H be a morphism of 2-groups. We have the
following characterisations of F in terms of Ker (F):

1. F is faithful if and only if hy (Ker (F)) = 1.
2. F is full if and only if hy (Ker (F)) = 1.
3. F is full and faithful if and only if Ker (F) ~ x.

In this way, Ker (F') measures the injectiveness of the functor F', just as Ker (f)
measures the injectiveness of a group homomorphism f: G — H.
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Proof. Statement 1 follows from Lemma 8.5 and the fact, form Lemma 5.13,
that F is faithful if and only if hy (F') is injective.

The content of Statement 2 is as follows. We wish to show that F': G — H
is full if and only if for any two objects (g,%y), (h,€,) € Ker (F'), there is a
morphism f : g — h in G such that ¢, o F (f) = £;,. To see the forward
implication, suppose that F' is full. Consider the following morphism in H:

(Gl oly F(g) — F(h)

Since F is full, there is a morphism f : g — h in G such that F (f) = ¢, o 4,.
Thus, if F is full, then hg (Ker (F)) = 1.

For the reverse implication, suppose hg (Ker (F)) = 1. By definition, given
any object g € G for which there exists an isomorphism £, : F'(g) — 1in H
(that is, any object g € Ker (ho (F))), we have an object (g,¢,) € Ker (F).
Thus, we have a surjection as below:

h(] (ICG'I" (F)) — Ker (h() (F))
[(9:65)] +— ]

Here [z] denotes the isomorphism class of the object z. So if hgy (Ker (F)) =1
then Ker (hg (F)) = 1, and so ho (F) is injective. Now, given any morphism
k:1— 1inH, we have an associated morphism koyuy* : F (1) — 1. Consider
the objects (1,ko ;") and (1,u7") in Ker (F). Since ho (Ker (F)) = 1, we
must have a morphism f : (1, ko ul_l) — (1,u1_1) in Ker (F). That is, there
is a morphism f : 1 — 1 such that u;* o F(f) = ko pu;'. That is, for any
k € hy (M) there is a morphism f € hy (G) with (hy (F)) (f) = k. Thus hy (F)
is surjective. By Lemma 5.13, this implies that F' is full.

By Lemma 5.13, the unique map 0 : x — Ker (F) is an equivalence if and
only if both hg (0) and hq (0) are isomorphisms. Thus, Statement 3 follows from
the first two statements. O

Example 8.7. Let G be a 2-group and let BG be its delooping, as in Definition
4.15. Consider the identity pseudofunctor idgg : BG — BG. The Drinfeld
centre of G is the category whose objects are pseudonatural transformations
from idgg to itself and whose arrows are the modifications between them. We
will denote the Drinfeld centre by Z (G).

Explicitly, the objects of Z (G) are pairs (g,04), where g € G and oy is a
natural isomorphism as below:

og: Wy =Yy

Here, ), and W, are the functors of Remark 4.3, given on objects by W, (h) =
g® h and Yy (h) = h ® g. The components of these natural isomorphisms are
denoted as follows:

Ogk: 9k —k®yg
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The diagrams below must commute:

gk —2" S 1ok ®

« [e%
gk l®(k®g)
o'g11®k: l®0'g,k

(I®g)@k——=1®(gok)

(03

g®1—>1®g

A%

For any two objects (g, 04) and (h7ah) in Z(G), a morphism
fi(g,04) — (h,on)

is given by a morphism f : ¢ — h in G such that the diagram below commutes
for any k € G:

gok—"'* ek

Og,k Oh,k

k®g E®h

We may define a monoidal structure on Z (G), given on objects by

(9,09) @ (h,on) = (9 @ h,043h)

where each component o,gnr @ (§Qh) @k — k® (g®h) is given by the
following composite:

Ko,
(GOh)@k— > g@R(h@ k) ——" ~ @ (k@ h)

(gekh)@h———>=(k®g)@h————>k@ (g2 h)
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Now, consider the monoidal functor below:

v:G — Aut(9)
g — Wgoyg
(frg—h) — (pr:Wyo0Ys= Wyoly)

Here Aut (G) is the 2-group of monoidal autoequivalences of Example 5.9. The
component of the monoidal natural isomorphism ¢ at k € G is as follows:

fRkRf:g@(k®g) — h® (k®h)

With these definitions there is an obvious monoidal equivalence Ker (¢) ~ Z (G).
Note that the monoidal functor ¢ defines an action of G on itself in the sense of
Definition 4.16.

Remark 8.8. The 2-dimensional notions of kernel and centre introduced in Defi-
nition 8.1 and Example 8.7 do not embed like their 1-dimensional counterparts.
More precisely, given a monoidal functor F' : G — H, although the canonical
functor k : Ker (F) — G is faithful, in general it is not full. Much of the
richness of 2-dimensional algebra derives from this fact, which implies that the
kernel of a kernel is in general nontrivial.

To see this, consider the following description of Ker (k), given by the con-
struction of Definition 8.2. The objects are triples (g, 44, 4) where g € G, and
Ly : F(g) — 1 and j, : ¢ — 1 are morphisms. Any two objects have at most
one morphism between them. We have a morphism

It 00t (9:4g,59) — (s n)
if and only if the following equality holds:
F(gg) 0ty  =F(m)oty
The tensor product on Ker (k) is given on objects as follows:

(g,gg,]g) & (h7 gh)]h) = (g (29 ha€g®ha]g®h)

The morphisms £y4g;, and jyen are defined as in Definition 8.2.
It is easy to see that hy (Ker (k)) = 1, so by Lemma 8.6 k is faithful.
Now, consider the function below:

¥ ho (Ker (k) — hi(H)
[(9,4g.09)] — py o F(9)00,"

This is well-defined, since (g,44,74) is isomorphic to (h, ¢, g5) if and only if
F(g4) © Eg_l = F(j,) o 4;'. This also implies that ¢ is injective. To see
that 1 is surjective, suppose @ : 1 — 1 is a morphism in H. The object
(1,(u1 oa)”" ,id1> in Ker (k) is mapped onto a by ¢. Thus, ¢ is surjec-
tive. It is also not hard to check that 1 is a group homomorphism. Therefore,
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ho (Ker (k)) 2 hy (H). By the characterisation of Lemma 8.6, k is full if and
only if hy (H) = 1.

Now, consider the 2-group (hy (H))[0], where h; and [0] are the functors
of Definition 5.10 and Definition 5.15. There is a unique monoidal functor
U : Ker (k) — (h1 (H)) [0] such that ho (¥) = 1. Since

hy (Ker (k)) = by ((h1 (H)) [0]) =1

both hy (¥) = 0 and hg (¥) = ¢ are isomorphisms. Thus, by the chatacterisa-
tion of Lemma 5.13, ¥ is an equivalence.

Therefore, Ker (k) ~ (h1 (H)) [0]. By the description of Example 8.9, this
gives us an equivalence Ker (k) ~ Q (H), where Q (H) is the loop space of H.

Example 8.9. Let G be a 2-group. We define the loop space of G as follows:
Q(G) = Ker(0)

Here 0 is the unique map 0 : * — G. Using the construction of Definition 8.2
it is easy to see that 2 (G) is equivalent to the discrete 2-group (h; (G)) [0].

8.1 2-Dimensional Algebra for Symmetric 2-Groups

Let F : G — H be a morphism in 2Grp. We define the cokernel of F' to be
a morphism of 2-groups e : H — Coker (F') together with a monoidal natural
isomorphism € : eo F' = 0, satisfying a dual universal property to the kernel of
Definition 8.1. In [38], Vitale gives a construction for cokernels in Sym2Grp.
Kernels in Sym2Grp may be constructed as they are in 2Grp.

In general, without the assumption of a symmetric braiding, the construction
of the cokernel in [38] does not go through. The difficulty in carrying the
construction over to 2Grp derives from the distinction between morphisms of
2-groups and symmetric 2-groups. There are obvious forgetful 2-functors U :
Sym2Grp — Braid2Grp and U; : Braid2Grp — 2Grp, and by the
definiton of Sym2Grp, U; is full on both 1-cells and 2-cells. However, in
contrast to the forgetful functor from Ab to Grp, Uz (and therefore Uy o Us) is
not full on 1-cells.

In [8], the authors introduce the concept of a categorical crossed module,
which allows them to define normal sub-2-groups and quotients in 2Grp. The
definition of categorical crossed modules is modelled closely on the definition of
crossed modules, with 2-groups taking the place of groups, and the adjoint action
of Example 3.6 replaced by its 2-dimensional analogue, which was described in
Example 8.7. As in Example 3.9, normal sub-2-groups correspond to categorical
crossed modules which are appropriately injective. The relative complexity of
the 2-dimensonal case arises in the fact that morphisms of categorical crossed
modules are equipped with structure isomorphisms which must satisfy certain
coherence conditions. Because of this, the universal property of a quotient as
defined in [8] holds only with respect to certain morphisms in 2Grp. In the
case of symmetric 2-groups, these morphisms are exactly the braided monoidal
functors of Definition 4.13.
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The following examples illustrate the utility of cokernels in Sym2Grp.

As in the 1-dimensonal case, the cokernel of a morphism measures its sur-
jectivity. In [38], Vitale gives a dual Statement to Lemma 8.6 for cokernels in
Sym2Grp. Given a morphism F' : G — H of symmetric 2-groups, we have
the following:

1. F is essentially surjective if and only if hg (Coker (F')) = 1.
2. F is full if and only if hy (Coker (F)) = 1.
3. F is full and essentially surjective if and only if Coker (F') ~ .

Following [21], we may also define suspensions in Sym2Grp via cokernels. For
any G € Sym2Grp the suspension of G is as follows:

¥ (G) = Coker (0) =~ (ho (9)) [1]

If G is strict then this agrees with the notion of suspension obtained by applying
Definition 6.66 to the model structure mentioned in Remark 7.15. In fact, using
the cylinder objects defined in [31], we may show that for any G in Str2Grp

we have
() = (ho(9)") 1]

where hg (G)* denotes the abelianisation.

9 Free 2-Groups

Theorem 9.1. Consider the forgetful functor U : Str2Grp — Grpd. This
functor has a left adjoint F : Grpd — Str2Grp.

Proof. Let G = (G1 =2 Gy) be a groupoid. We define F (G) as follows.
Consider the 1-truncated simplicial group F (G) = (F (G1) = F (Go)) where
F (G;) is the free group on the set G,;. We will denote the generator inclusions
by ji : G; — F(G;). Given an element g € G; we denote the corresponding
element of F (G;) by j (g) = [g]. Thus, an arbitrary element of F (G;) is given
by a word of the form [g;]" [ 9] [gn] " for g1,92,...9n € G; and g = £1.

Note, in particular, that 97" denotes the multiplicative inverse of ji (¢) in
F (G;), so in general [g] " # [97!], where g~ is the inverse morphism to g.
The structure maps fo F (G) are given by the homomorphisms

F(S) ,F(t) : F(Gl) — F(GO)
where s, t and ¢ are the structure morphisms of G. That is, F' (s) is the unique

group homomorphism such that F (s) o j; = jo o s, F (¢) is unique such that
F(t)oj1 =joot, and F (i) is unique such that F (i) o jo = j1 o i.
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Now, consider the pullback G5 := G1 Xg, G1 of Definition 2.3, whose ele-
ments are composable morphisms in G. We have the following functions:

q:G — Gy
(9.h) — g

o GQ — G1
(9:h) +— hog

q:G — Gy
(g,h) — h

Consider the homomorphisms F' (¢1), F (¢2) and F (o). Let
K = Ker (F(q2)) N Ker (F (o)) C F(Gs)
and consider the subgroup H = F'(¢1) (K) in F (G1):

H = F(q)(K)

€1 En [hl o 1}51 ...[h” [} n]gn _ [hl]el o [hn]sn -1
ol @ O L G T

Now, consider the normal subgroup N C F (G;) generated by the elements of
H and elements of the form zyx~ly~! for x € Ker (F (s)) and y € Ker (F (t)).
Denote the projection onto the quotient as follows:

For any element [g1]" ... [gn]" € H corresponding to [(g1,h1)]"" ... [(gn, hn)]™"
in F'(G2) we have the following two equalities:

F@) ()™ lgal™) = t(g) .- t(gn)™
= s(h)...s(ha)™

= F(s) () bl
— F) )
-1

F(s)([g]7 - lgnl™) = s(g) .. 5(ga)™

s(h1og1)™...s(hnogn)™
F(s)([hiogi]™ ... [hnoga]™)
F(s)(1)

1

Furthermore, given z € Ker (F (s)) and y € Ker (F (t)), we have the following

92



equalities:

F () (zyz~y™) = (F 1) @) (F ) y) F O @) (F0)@)"
= (F () (@) (F @) @)
=1

F(s) (ayr~ly™") = (F()(@) (F(s) ) (F(s) (@) (F () ()"
= (F(s) ) (F(s) )"
=1

Thus, the morphisms F (s) and F (t) induce the group homomorphisms be-
low:
F(s), F(t): F(G1) /N — F(Go)

These are the unique morphisms such that F (s) op = F (s) and F (¢t)op =
F (t). We also have po F (i) : F (Go) — F (G1) /N. These form the structure
morphisms of a strict 2-group F (G) = (F (G1) /N = F (Gy)).

Now, for any groupoid G, we have a canonical morphism ng : G — F (G)
into the underlying groupoid of F (G), given by ng = (po j1,j0). To see that
this defines a functor, we require that 7g preserve source, target and identities:

joos = F(s)opoj
Joot = F(t)opoj
pojioi = poF(i)oj

These equalities hold by definition. Furthermore, we require that ns preserves
composition. To see this, note that by Theorem 5.26, composition in F (G)

is defined as follows. Given z,y € F (G1) /N with F (s) () = F (t) (y), their
composite, which we will denote by = e y to avoid confusion, is given by the
following:

voy=z((poF@)oF(s) @) v

Now, let g,h € G1 with s(g) = ¢ (h) and consider their composite go h € G;.
We wish to show the following:

pgoh) = p(la)ep(h)
= p(la) ((poF)o Fls)on) () p([A)
= p(llos) (@] [0])

That is, we need to show that the element

w = [gll(ios)(9)) " [h]lgon] "

in F (Gp) is in the subgroup N. Now, consider the element below:

v=[(iot) ()] " lgll(Eot) (g)] "
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Clearly v =1 in F'(G1). Moreover, we have the following:

[iot)(g)ogllgo(ios)(g)] [gohll(iot)(g)ogoh]™
=1lg][g) " lgoh]lgon !
-1

Thus, by the description of H above, we have w € H C N. So we have p (w) =1
in F (G1) /N as desired. Therefore, ng defines a functor.

Note that a similar calculation to the one above may be used to show that
the group homomorphism po F' (o) : F' (G2) — F (G1) /N agrees with compo-
sition in F (G). That is, given [(g1,h1)]™" ... [(gn, hn)]"" € F (G2), we have the
following:

(po F (o) ([(gr, )™ - [(gns Pn)]™™)

=p([hio 91]61 oo [hno gn]sn)

= p (1) Bl (G0 9) ()] 50 [0 8) ()] (1] Lol
= [ha]™ . [ha] ™ e [ga] ™[9]

To see that the second equality holds, we must show that the element of F (Gy)
below is in H:

[Pa]"t[Ra] [(G 0 8) (Ry)] ™ .. [(i08) (1)) [g1]™" - ..
.. [gn]e" [ © gn] ...[h1o glrsl

—€n

As above, this can be seen by considering the element below:

[ ot) ()] [(E 0 t) (h)]™ [hn] ™= o [ha] ™7 (]
] (G0 ) (hn)] 7 (i 0 ) (ha))

Now, to see that F is left adjoint to U, let G = (G1 = Gy) be a groupoid
and let G = (G = Goy) be a strict 2-group, and suppose we have a functor
L : G — G from G to the underlying groupoid of G. We wish to show that
there is a unique strict monoidal functor L' : F (G) — G such that L'ong = L,
so that n¢ is a universal arrow from G to the functor U. Consider the morphism
of 1-truncated simplicial groups

L= (L},Lg) L F(G) — G

where L; is the unique group homomorphism such that Ly o j; = L1, and Lé) is
unique such that LE) o jo = Lg. Since L is a morphism of simplicial groups, and
G is a strict 2-group, for any © € Ker (F (s)) and y € Ker (F (t)) we have the
following:

Ly (zyz~'y™!') € [Ker (s),Ker (t)] =1
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This follows by the description of strict 2-groups established in Theorem 5.26.
This gives us the inclusion below:

[Ker (F (s)), Ker (F (1))] C Ker (L])

Furthermore, since L is a functor, we know that L preserves compositon. If
we denote composition in G by % then, using the description of composition in G
from Theorem 5.26, for composable morphisms g, h € G; we have the following:

Li(9)
iosoLy)(h) " Li(g)

) (R))
ioLyos)(h) " Li(g)
) (h))

]l

Ll (h [©] g) = Ll (h

Lioios)(h) " Li(g)
B (G os) () [9))

Now, let [(g1,h1)]"" ... [(gn, hn)]™" € F (G2). We have the following expression:

Li([hyogi]™ ... [hnogn]™)
= Ly (17 16 0 ) ()] o)™ [l G0 8) ()] 0]

We may expand the right hand side above to obtain the expression below:

Ly ()™ Ly (G0 5) ()] 92)°") Ly ([h]* [ 0 8) (h2)] ™)
Ly (92)°* L ([hal™ [(i 08) (ha)] ™) ..

Now, since s (hy) =t (gi) for each k, we have the following:

Ft) (os) ()] [9d™) = F @ (ot ()] 9™
t(ge) " t(gr)™"
=1

F(s) (e [0 5) ()] ™) = s (ha)™ s (i)~
=1
This implies the inclusions below:
[(i0s) (hi)] ™" [gr]™ € Ker (F(t))

)™ [(i 0 5) (hi)] " € Ker (F(s))
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Thus, Ly ([(i o s) (b))~ [x]* ) and Ly ([]™ (i 5) (a)] " ) commute. So
we may rearrange the expression above to obtain the following:
Ly () Ly (0] [(i 0 s) (h2)) %) L1 ([0 8) ()]~ [g1]")
L1 (92) Ly ([hs]™ [(i 0 5) (hs)] ") ...
= Ly ()" Ly (h2) Ly ([ 5) (ha)] ™ [(i 0 5) ()] [on] [g]"?)
Ly (Ths]™ [0 5) (ha)] ™) ...
By a similar argument to above, we have the following inclusion:
(i) (ha)] ™ [(G05) ()] [0 [g2]* € Ker (F (1))

Thus Ey ([(00) (h2)) ™ (G 05) (k)] 91" 92" ) and Ex ([ha]® (G0 5) (k)] ™)
commute, so the expression above becomes the following:
Ly ()™ Lu (ho)™ L (h3)™ Ly ([(i 05) (h3)] = [(i05) (h2)] "™ [(i05) (hl)}_al)
Ly (g1)" L1 (g2)° ...
We may continue to argue in this fashion to obtain the equality below:
Li([log]™ .. [hn o ga]™)
= Ly ()™ L () By ([0 8) ()l ™50 o[G0 8) ()™ ) L (90)°" - L (9a)°

= Ly (bl o bl o 9) (L (Al oo ™)) L () - 0a)")
=Ly ([M]7 - [ha)™) % Ly ([92]7 - - [ga]™)
In particular, if [g1]°" ... [g.]"" € H corresponds to [(g1,h1)]™" ... [(gn, hn)]™ in
F (G2) then we have the following equality:

[hiog]™ ... [hn o gn]™ =[] ... [hn]™ =1

Thus, the equality above becomes the following:

1 = Li([h]® ... [ha]) (i0s) (LN1 ([ha]** ... [hn]“))f1 Ly ([¢]™ - [9a]™)

= Li(lga)™ - [gal™)

Thus, H C Ker (El) Combining this and the previous observation gives us

the inclusion below: .
N C Ker <L1>

Therefore, Ly induces a unique homomorphism L : F (G1) /N — Gy such that
L, op= L;. We make the following definition:

L= (L;,Lg) L F(G)—G
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By construction, this is the unique morphism such that Lo na = L.
Note that the information above uniquely determines F on morphisms. Ex-
plicitly, suppose we have a morphism in Grpd as below:

(My, My) : (G1 = Go) — (H1 = Hy)

Then F (M) = (Mi,Mé), where M(l) is unique such that M(; o jo = jo © My,

and Mi is unique such that Mi op = po M, where M, is the unique group
homomorphism such that M; o j; = 71 o M;. ]

Remark 9.2. In [5], Baues and Muro give the following construction of the free
crossed module on a pointed groupoid G = (G; = Gy). Given G, we may
construct a pointed simplicial set NG called the nerve of G. At each dimension
n € Z>o, the set NG, is the set of strings of n composable morphisms in G. In
particular, in the notation of Theorem 9.1, we have NG; = G; for i = 0,1, 2.

Now, given this simplicial set we may construct a simplicial group FNG via
the Milnor construction. See [16] for a definition of the Milnor construction.
Briefly, it is defined by taking the free group at each dimension and quotienting
out the basepoint. Given any simplicial group, we may construct its Moore
complex, (M., d), which is a chain complex of nonabelian groups. See [4] for a
definition of the Moore complex of a simplicial group. From the Moore complex,
again following [4] , we may then extract the crossed module below:

81 : M1/82 (MQ) — MO

Using the notation of Theorem 9.1, this amounts to the following construc-
tion. We know that H C Ker (F (t)) and H C Ker (F (s)). Thus

F(t) |ker(p(s)): Ker (F (s)) — F (Go)

induces a group homomorphism § : Ker (F (s)) /H — F (Gp). Consider the
crossed module below:

L(G)=(6:Ker(F(s)) JH — F(Go))

This is the free crossed module on G. For any x € F (Gy) and g € Ker (F (s)) /H,
the action of F'(Go) on F' (G1) /H is defined as follows:

g = (F (i) () g (F (i) ()
Note that under the equivalence of Theorem 5.20 we have ¥ (F (G)) = L (G).

Theorem 9.3. The adjunction
F : Grpd <= Str2Grp : U

18 a Quillen adjunction. Thus we have an induced adjunction between homotopy
categories:
LF : Ho(Grpd) < Ho (Str2Grp) : RU
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Moreover, these adjoint functors induce 2-functors U : Str2Grp — Grpd and
F : Grpd — Str2Grp which are 2-adjoint. That is, F and U are adjoint as
Grpd-enriched functors.

Proof. The functor U : Str2Grp — Grpd preserves both fibrations and weak
equivalences. This is immediate by the description of the model structure on
Str2Grp in Definition 7.1. Thus, U satisfies Condition 3 of Theorem 6.58, so
the adjunction

F : Grpd <= Str2Grp : U

is a Quillen adjunction. Note that Condition 3 of Theorem 6.58 is equivalent
to both Condition 1 and Condition 2. Thus, we may conclude that F pre-
serves cofibrations and acyclic cofibrations. By Lemma 6.57, this implies that
F preserves weak equivalences between cofibrant objects. Since every object in
Grpd is cofibrant and the weak equivalences in Grpd and Str2Grp are the
equivalences of categories, this implies that F preserves equivalences.

Now, let K,L : G — H be morphisms in Grpd and let § : K = L be a
natural isomorphism. By Example 6.24, § uniquely determines a left homotopy
J : G xI — H via the cylinder object G x I. The functor F takes J to a
morphism in Str2Grp:

FJ): F(GxI)— F(H)

By the argument in the proof of Theorem 6.58, since F preserves colimits,
cofibrations and equivalences, F (G x I) is a good cylinder object for F (G)
and F (J) is a good left homotopy from F (K) to F (L). Now, every object of
Str2Grp is fibrant, and since F preserves cofibrant objects, F (G) is cofibrant.
Thus, by Lemma 6.31, the good left homotopy F (J) determines a good right
homotopy Z : F (G) —s F (H)" from F (K) to F (L) via the good path object
F (H)" of Definition 7.3. See [31] for a proof that this right homotopy Z is
uniquely determined by F (J). Now, by Lemma 7.5, the right homotopy Z from
F(K) to F (L) via F (H)" uniquely determines a monoidal natural isomorphism
a: F(K)= F(L). To define F on 2-morphisms we take F (6) = a.

Now, let G € Grpd and let G € Str2Grp and consider morphisms K, L :
G — U (G). The proof of Theorem 6.58 describes a bijection between good left
homotopies from K to L and good left homotopies from ¢! (K) to ¢! (L),
where ¢ is the bijection induced by the adjunction:

¢ : Homseezgrp (F (G) ,G) — Homarpa (G, U (9))

Using the definition of F on natural isomorphisms, this bijection determines the
following isomorphism of categories:

HomStrZGrp (]: (G) 3 g) = HomGrpd (Ga U (g>)

Although we will not prove it, since the bijection of object sets is natural, we
may show this isomorphism of categories is strictly 2-natural. See [5] for some
justification of this. O
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Corollary 9.4. The 2-functor F : Grpd — Str2Grp of Theorem 9.1 com-
posed with the inclusion Str2Grp — 2Grp gives a 2-functor from Grpd to
2Grp, which we will also denote by F : Grpd — 2Grp. This 2-functor
defines the free 2-group on any groupoid in the following sense. Given any
groupoid G and any 2-group G, we have the following pseudonatural equivalence
of categories:

Homagrp (F (G),G) ~ Homarpa (G, U (G))

Proof. As noted in the proof of Theorem 9.3, for any groupoid G, F (G) is cofi-
brant. Note that this is also apparent from the construction of F (G) in Theorem
9.1 and the description in Corollary 7.7 of cofibrant objects in Str2Grp.

By Corollary 7.9, since F (G) is cofibrant, for any 2-group G we have the
following equivalence of categories:

HomZGrp (-/T" (G) ) g) =~ HomStr2Grp (-’T" (G) ) G)

Here G is the strict 2-category of Theorem 5.18. Theorem 9.3 gives the following
isomorphism of categories:

HomStrZGrp (]: (G> 7g_) = HomGI‘Pd (G’ U (g_))

Now, since U preserves equivalences, U (G) ~ U (Q_) Thus we have the equiva-
lence of categories below:

Homgrpa (G,U (G)) ~ Homgrpa (G, U (G))
Composing these equivalences gives the desired equivalence:
Homagrp (F (G),G) ~ Homgrpa (G, U (G))

We will not prove the pseudonaturality. For an idea of the proof, see the related
theorems in [34, 35]. O

Remark 9.5. In [5], the authors define left adjoints to the forgetful functors Uy :
SQuad — RQuad and Us; : RQuad — Cross of Remark 3.22. Using the
model structures of 7.15, which recover the 2-categorical structures of RQuad
and SQuad, these functors may be extended to 2-functors.

Recall from Remark 5.24 that we have equivalences RQuad ~ BraidStr2Grp
and SQuad ~ SymStr2Grp. We may thus define the free braided strict 2-
group on a strict 2-group and the free symmetric strict 2-group on a braided
strict 2-group. Composing these 2-functors with the 2-functor F : Grpd —
Str2Grp of Theorem 9.1 allows us to define the free braided or symmetric
2-group on a groupoid.

Further Directions

We have now developed constructions for free 2-groups and kernels of 2-group
morphisms. These constructions are of particular interest in the 2-category
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Sym2Grp, since here, as noted in Section 8.1, we may construct cokernels and
quotients. Moreover, in [38] Vitale defines a notion of 2-exactness for a sequence
of symmetric 2-groups. Using these constructions, we may define presentations
for symmetric 2-groups. As in the 1-dimensional case, descriptions of symmetric
2-groups in terms of generator and relator groupoids should offer a convenient
way of constructing symmetric 2-groups and a concrete way of working with
them.

The primary difficulty in producing these constructions in 2Grp rather than
Sym2Grp lies in the conditions which must be placed on morphisms. As noted
in Section 8.1, the quotient defined in [8] is characterised by a universal prop-
erty, which holds only with respect to morphisms satisfying certain coherence
conditions. This makes quotients in 2Grp harder to work with than quotients
in Sym2Grp, which are given simply by cokernels. This, however, is an un-
avoidable aspect of 2-group theory.
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