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Chapter 1

Introduction

In classical representation theory, there are various formulations of the notion of a

projective representation of a finite group, of which a few are

(i) a group homomorphism ϱ : G −→ PGL(V,C),

(ii) a map ϱ : G −→ GL(V,C) with 2-cocycle γ : G×G −→ C× such that

ϱ(g)ϱ(h) = γ(g, h)ϱ(gh)

(iii) a group homomorphism ϱ : G̃ −→ GL(V,C), for G̃ a central extension of G by

C×,

(iv) a module over the twisted group algebra Cθ G for some 2-cocycle θ : G×G −→ C×.

In this work, we study the representation theory of finite 2-groups. As is the

case for projective representations of finite groups, there are various formulations of

a finite 2-group representation. We list them here, in corresponding order:

(i) a gerbal representation of G, as in [FZ11],

(ii) a projective 2-representation of G with 3-cocycle α : G×G×G −→ C×, which

will be described in Definition 2.0.38,
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(iii) a monoidal functor1 G −→ 1-Aut(V ), where V is an object in a strict C-linear

2-category and G is a 2-group extension of G by [pt/C×],

(iv) a module category (as in [Ost03b]) over VecαG, the ‘categorified twisted group

algebra’ of G with 3-cocycle α.

We will primarily focus on representations of finite 2-groups of the form CαG(C×)

acting on an object of a strict C-linear 2-category. We use this C-linearity condition

so as to compare our work with that of [GK08], [Bar09] and [Ost03a]. We expect

that most of our work could be formulated in the more general case, in the spirit of

[FZ11].

We also study the character of a finite 2-group representation. In the classical

setting, given a linear representation ϱ : G −→ GL(V,C) of a finite group G, the

character of ϱ is the map χ : G −→ C defined by

χ(g) = tr(ϱ(g))

We can similarly define the character of a projective 2-representation in terms of

the categorical trace defined in [Bar09] and [GK08]; for each g ∈ G, we get a C-vector

space X(g) = Tr(ϱ(g)) with conjugation isomorphisms βg,h : X(g) −→ X(hgh−1).

Our main result is as follows

Theorem. The character of a projective 2-representation of G with 3-cocycle

α : G×G×G −→ U(1)

is a representation of the twisted Drinfeld double Dα(G).

In other words, if g, h, k ∈ G, then the composition

X(g)
βg,h−−→ X(hgh−1)

βhgh−1,k−−−−−→ X(khgh−1k−1)

is equal to

X(g)
τ(α)([k|h]g)βkh,g−−−−−−−−−→ X(khgh−1k−1)

1See Definition 1.1.30
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where τ(α)([k|h]g) ∈ U(1) is the transgression of α, as defined in Definition 1.1.18.

While we initially restricted our attention to projective 2-representations, we

later realised that viewing projective 2-representations as module categories over

VecαG lead to interesting results. In particular, Ostrik’s classification of indecompos-

able module categories over VecαG allows us to make very general statements about

projective 2-representations. Furthermore, this approach allows us to use the notion

of the tensor product of module categories (as in [ENO10]) to describe a notion of

induction for projective 2-representations similar to that described in [GK08, §7].

Finally, we present a comparison of the various formulations listed above, describ-

ing the similarities between gerbal representations and projective 2-representations,

and also the explicit connection between projective 2-representations and module

categories over VecαG.

1.1 Background

1.1.1 Category theory

We recall the basic notion of a category. A good introduction to category theory

is available in [Lan98]. Categories should be thought of as a convenient means of

studying not only mathematical objects, but also the maps between them.

Definition 1.1.1. A category C consists of

(i) a collection ob(C) of objects

(ii) for each x, y ∈ ob(C), a collection HomC(x, y) of arrows between then. We will

write f : x −→ y to mean that f ∈ HomC(x, y).

(iii) for each x, y, z ∈ ob(C), a composition function

◦ : HomC(y, z)× HomC(x, y) −→ HomC(x, z)

which assigns to arrows f : x −→ y and g : y −→ z their composite g ◦ f :

x −→ z
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(iv) for each x ∈ ob(C), an identity arrow idx : x −→ x on x

such that

(i) composition is associative, i.e. (h ◦ g) ◦ f = h ◦ (g ◦ f) for composable arrows

f, g, h, and

(ii) if f : x −→ y, then

idy ◦f = f = f ◦ idx

Example 1.1.2. Some examples of categories are

(i) The category Set has objects sets, with arrows the functions between them.

(ii) For k a field, the category of k-vector spaces Veck has objects k-vector spaces,

with arrows the k-linear maps between them.

(iii) The category of groups Grp has objects groups, with arrows the group homo-

morphisms between them.

(iv) The category of abelian groups Ab has objects abelian groups, with arrows the

group homomorphisms between them.

(v) The category of topological spaces Top has objects topological spaces, with ar-

rows the continuous functions between them.

We now recall some basic terminology. We say an arrow f : x −→ y is invertible

if there is a g : y −→ x such that f ◦ g = idy and g ◦ f = idx. We say that two

objects x, y ∈ ob(C) are isomorphic (denoted x ∼= y) if there exists an invertible

arrow between them. There is a natural notion of an arrow between categories;

these are known as functors.

Definition 1.1.3. Let C,D be categories. A functor F : C −→ D consists of the

following data

(i) for each object x ∈ ob(C), an object F (x) ∈ ob(D),

(ii) for each arrow f : x −→ y in C, an arrow F (f) : F (x) −→ F (y) in D
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such that

(i) F (idx) = idF (x), and

(ii) F (f ◦ g) = F (f) ◦ F (g) for composable arrows f, g in C.

Example 1.1.4. Let C be a category. Then we have an identity functor idC : C −→ C,

which assigns each object and arrow of C to itself.

Example 1.1.5 ([Lan98, Chapter I §3]). The powerset functor P : Set −→ Set

assigns to each set X ∈ Set its powerset P(X), and to each function f : X −→ Y

the map P(f) : P(X) −→ P(Y ) which sends A ∈ P(X) to f(A) ∈ P(Y ).

We note that functors can be composed; given F : C −→ D and G : D −→ F , the

functor GF : C −→ F sends x ∈ ob(C) to GF (x) ∈ ob(F), and an arrow f : x −→ y

in C to GF (f) : GF (x) −→ GF (y) in F . It is a basic exercise to show that GF is

indeed a functor.

There is also a notion of arrows between functors; these are known as natural

transformations.

Definition 1.1.6. Let C,D be categories, and F,G : C −→ D functors. A natural

transformation τ : F =⇒ G is a collection of arrows in D

{τx : F (x) −→ G(x)}x∈ob(C)

such that if f : x −→ y is an arrow in C, then the diagram

F (x)
τx
> G(x)

F (y)

F (f)

∨
τy
> G(y)

G(f)

∨

commutes. We call the arrow τx : F (x) −→ G(x) the x component of τ , and we say

that τ is a natural isomorphism if each component τx : F (x) −→ G(x) is invertible.
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We now have a way of comparing categories; we say that two categories C,D

are isomorphic if there exist functors F : C −→ D and G : D −→ C such that

FG = idD and GF = idC, where idD and idC are the identity functors on D and C

respectively. An isomorphism of categories is a strong condition; we will often want

to use a weaker notion.

Definition 1.1.7. Let C and D be categories. We say C and D are equivalent if

there exists functors F : C −→ D and G : D −→ C and natural isomorphisms

ϵ : FG =⇒ idD, η : idC =⇒ GF . We call the data (F,G, ϵ, η) an equivalence of

categories. We will often call F (and G) an equivalence of categories.

We will be interested in categories with additional properties and/or structure.

In particular, we are interested in groupoids and monoidal categories.

1.1.2 Groupoids

Definition 1.1.8. A groupoid is a category G such that every arrow is invertible.

We say that a groupoid G is finite if it has finitely many objects and arrows.

Example 1.1.9. Let G be a group, and take G to be the category with one object

pt, with arrows HomG(pt, pt) = G, where composition of arrows is that induced by

the group structure on G. Then G is a groupoid.

It is a simple exercise to show that a group could be defined as a groupoid with a

single object. Furthermore, every groupoid is equivalent (in the sense of Definition

1.1.7) to a disjoint union of groups, where a group is thought of as a single object

groupoid.

We now recall some terminology for working with groupoids, and various methods

for constructing groupoids which we will use.

Definition 1.1.10 ([Wil08, §1.1]). Let G be a groupoid, and let

xn
gn←−− . . .

g2←−− x1
g1←−− x0
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be a sequence of n composable arrows in G. We call such a sequence an n-simplex,

and we write this sequence as

[gn| . . . |g1]

Definition 1.1.11 ([Wil08, §1.3.1]). Let G be a finite groupoid, then we define the

loop groupoid (or inertia groupoid) ΛG to be the category with objects

ob(ΛG) =
⊔
x∈G

HomG(x, x)

For each x, y ∈ ob(G) and arrows γ ∈ HomG(x, x), g ∈ HomG(x, y), we define an

arrow in ΛG

gγ : γ −→ gγg−1

This arrow will be denoted by g when the source is clear. Let

gn . . . g1γg
−1
1 . . . g−1

n

gn←−− . . .
g2←−− g1γg

−1
1

g1←−− γ

be an n-simplex in ΛG, then we write this sequence as

[gn| . . . |g1] γ

Example 1.1.12 ([Wil08, §1.4.1]). Let G be a finite group, and X a finite set with

a left G-action. The action groupoid GG(X) is the groupoid whose objects are the

elements of X, and whose arrows are of the form

g · x g←− x,

for each pair x ∈ X and g ∈ G, with composition defined in the obvious way.

Let G be a finite group, then unpacking Definition 1.1.11, the loop groupoid

ΛG has objects the elements of G, and for each pair g, h ∈ G, there is an arrow
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hg : g −→ hgh−1. Let X = Gc be G with left G-action given by conjugation, then

it is clear that GG(Gc) = ΛG. An explicit illustration of the inertia groupoid ΛS3 is

provided in [Wil08, §1.3.1 Figure 3].

1.1.3 Projective representations of finite groups & groupoids

To discuss projective 2-representations, we must first refresh our knowledge of pro-

jective representations of finite groups and groupoids. A good introduction is avail-

able in [Wil08]. For our purposes, we think of group and groupoid cohomology

entirely in terms of functions satisfying a cocycle condition. For all of the defini-

tions in this section, G is a finite groupoid, G is a finite group, and k is a field.

Definition 1.1.13. A function θ mapping 2-simplices in G to values in k× is called

a 2-cochain on G with values in k×. If G = G, then a 2-cochain is a function (not

necessarily a group homomorphism) θ : G×G −→ k×. We say that such a 2-cochain

is normalised if it satisfies

θ(g, e) = θ(e, e) = θ(e, g) (1.1)

for all g ∈ G, where e is the identity element in G.

Definition 1.1.14. A 2-cochain θ on G is called a 2-cocycle on G with values in k×

if it satisfies

θ([g1|g2g3])θ([g2|g3]) = θ([g1g2|g3])θ([g1|g2]) (1.2)

for every 3-simplex [g1|g2|g3] in G.

If G = G, then a 2-cocycle is a function θ : G×G −→ k× satisfying

θ(g1, g2g3)θ(g2, g3) = θ(g1g2, g3)θ(g1, g2) (1.3)

for all g1, g2, g3 ∈ G.

Definition 1.1.15. A function α mapping 3-simplices in G to values in k× is called
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a 3-cocycle on G with values in k× if it satisfies

α([g2|g3|g4])α([g1|g2g3|g4])α([g1|g2|g3]) = α([g1g2|g3|g4])α([g1|g2|g3g4]) (1.4)

for every 4-simplex [g1|g2|g3|g4] in G.

As before, if G = G, then a 3-cocycle is a function α : G × G × G −→ k×

satisfying

α(g2, g3, g4)α(g1, g2g3, g4)α(g1, g2, g3) = α(g1g2, g3, g4)α(g1, g2, g3g4) (1.5)

for all g1, g2, g3, g4 ∈ G. We say that such a 3-cocycle is normalised if it satisfies

α(e, g2, g3) = α(g1, e, g3) = α(g1, g2, e) = 1

for all g1, g2, g3 ∈ G, where e is the identity element in G and 1 is the identity

element in k×.

Definition 1.1.16. Let θ : G × G −→ k× be a 2-cochain. The coboundary of θ is

the 3-cocycle dθ given by

(dθ)(g, h, k) =
θ(gh, k)θ(g, h)

θ(g, hk)θ(h, k)

for all g, h, k ∈ G.

Definition 1.1.17. Let α, α′ : G×G×G −→ k× be 3-cocycles. We say that α and

α′ are cohomologous if there exists a 2-cochain θ : G×G −→ k× such that

α′/α = dθ

Definition 1.1.18 ([Wil08, Theorem 3]). Let G be a finite groupoid. The trans-

gression of a 3-cocycle α on G with values in U(1) is the 2-cocycle τ(α) on the loop

groupoid ΛG with values in U(1) defined by

τ(α)([h|g]γ) = α([h|g|γ])α([hgγg−1h−1|h|g])
α([h|gγg−1|g])

(1.6)
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Definition 1.1.19 ([Wil08, Theorem 3]). Let G be a finite groupoid. The trans-

gression of a 2-cochain θ on G with values in U(1) is the 1-cochain τ(θ) on the loop

groupoid ΛG with values in U(1) defined by

τ(θ)([g]γ) =
θ([gγg−1|g])
θ([g|γ])

(1.7)

Definition 1.1.20 ([Wil08, §2.3.1]). Let G be a finite groupoid and θ be a 2-cocycle

on G with values in U(1). A projective representation2 of G with 2-cocycle θ consists

of the following data

1. for each x ∈ ob(G), a C-vector space F (x)

2. for each arrow g : x −→ y in G, a C-linear map F (g) : F (x) −→ F (y) such that

F (g2)F (g1) = θ([g2|g1])F (g2g1)

for every 2-simplex [g2|g1] in G.

In the case G = G, this recovers the familiar definition of a projective repre-

sentation [Kar93, §3.1] of G, which we may also think of as a group homomor-

phism ϱ : G −→ PGL(V ) with V some C-vector space, which yields a 2-cocycle

θ : G×G −→ U(1) after a choice of lift ϱ̄ : G −→ GL(V ).

There are equivalent ways to define projective representations of groupoids;

Willerton [Wil08, §2.3.1] describes the central extension

U(1) −→ Gθ −→ G

where Gθ is the category whose objects are those of G, with arrows

Hom Gθ (x, y) := U(1)× HomG(x, y)

2Willerton calls these a θ-twisted representations of G
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where composition is given by (z2, g2)◦(z1, g1) := (θ([g2|g1])z2z1, g2◦g1). A projective

representation of G can then be thought of as a representation of Gθ in which the

central U(1) acts in a natural way.

Definition 1.1.21 ([Wil08, §2]). Let G be a finite groupoid, and θ a normalised 2-

cocycle on G with values in U(1). The twisted groupoid algebra Cθ G is the C-algebra

spanned by the arrows in G, such that the product ⟨g2⟩⟨g1⟩ is zero if g2 and g1 are

not composable in G, and is θ([g2|g1])⟨g2 ◦ g1⟩ otherwise.

Willerton similarly describes how the category of projective representations of

G is equivalent to the category of representations of the twisted groupoid algebra

Cθ G [Wil08, Proposition 8]; this is analogous to the equivalence between projective

representations of G and modules over the twisted group algebra Cθ G [Kar93, The-

orem 3.2]. An important example for us of a twisted groupoid algebra will be the

twisted Drinfeld double.

Definition 1.1.22 ([Wil08, Theorem 17]). Given a finite group G and a 3-cocycle α

on G with values in U(1), the twisted Drinfeld double Dα(G) is the twisted groupoid

algebra Cτ(α) (ΛG), where τ(α) is the transgression map defined in Definition 1.1.18.

1.1.4 Monoidal categories

We present the definition of a monoidal category as given in [Lan98, Chapter VII].

Definition 1.1.23. A monoidal category is a categoryM with the following data

(i) a functor ⊗ :M×M−→M, called the tensor or monoidal product

(ii) an object 1 ∈ ob(M), called the unit object

(iii) a natural isomorphism aX,Y,Z : (X ⊗ Y ) ⊗ Z −→ X ⊗ (Y ⊗ Z), called the

associativity isomorphism or associator

(iv) natural isomorphisms λX : 1⊗X −→ X and ϱX : X⊗1 −→ X, called the left

and right units respectively
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such that the pentagon diagram

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z

aW⊗X,Y,Z
>

W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y⊗Z

>

(W ⊗ (X ⊗ Y ))⊗ Z

aW,X,Y ⊗id

∨
aW,X⊗Y,Z

>W ⊗ ((X ⊗ Y )⊗ Z)

id⊗aX,Y,Z

∧

and the triangle diagram

(X ⊗ 1)⊗ Y aX,1,Y
> X ⊗ (1⊗ Y )

X ⊗ Y
id⊗λY<ϱX⊗id >

commute for all W,X, Y, Z ∈ ob(M). In the language of [BL04], this is a weak

monoidal category.

Remark 1.1.24. The tensor product ⊗ :M×M −→M is a functor, hence it is

necessary to describe the tensor product of objects, and the tensor product of arrows.

however we will omit a description of the tensor product of arrows when it is clear

from the context. Similarly, we will often omit a description of the left and right

unit isomorphisms.

The notion of a monoidal category will be used to describe both 2-groups and

module categories. We proceed by listing some some examples of monoidal cate-

gories.

Example 1.1.25 ([Eti09, §1.3.1]). The category Set may be given the structure of

a monoidal category. Let the tensor product of sets X and Y be X ⊗ Y := X × Y

their Cartesian product, and take the unit object to be the one element set 1 = {∗}.

Let the associativity isomorphism aX,Y,Z be given by the standard isomorphism

(X × Y )× Z
∼=−→ X × (Y × Z)
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This example can be naturally extended to both Grp and Top3.

Example 1.1.26 ([Eti09, §1.3.3]). Let R be a commutative ring, then the category

of left R-modules R-Mod is a monoidal category, with monoidal product being given

by the tensor product of R-modules ⊗R. The unit object is 1 = R, considered as an

R-module.

Notable special cases of this example are R = k for some field k, and R = Z.

This gives us a monoidal structure on the categories Veck and Ab respectively.

A stricter notion of monoidal category will often be useful.

Definition 1.1.27 ([Lan98, Chapter VII §1]). A monoidal category M is said to

be strict if aX,Y,Z , λX and ϱX are identity arrows for all X, Y, Z ∈ ob(M). We will

say that a monoidal category is non-strict if it is not strict.

Note that ifM is a strict monodial category, then we have equalities

(X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) and 1⊗X = X = X ⊗ 1

for all X, Y, Z ∈ ob(M). However this should not be taken as a characterisation of

strict monoidal categories: we will see examples of non-strict monoidal categories

for which these equalities hold. In other words, the choice of associativity and unit

isomorphisms is an important part of the data of a monoidal category.

Example 1.1.28 ([Eti09, §1.3.6]). Let G be a group, and A an abelian group. Let

CG(A) = GA(G) (see Example 1.1.12), where the A-action on G is trivial. Unpacking

this, CG(A) is the groupoid with objects the elements of G, and arrows

HomCG(A)(g, h) =

A if g = h

∅ if g = h

with composition induced by the group structure of A. We give CG(A) the following

monodial structure

3More generally, any category C with finite products is monoidal, where the tensor product of
objects X,Y is given by the product X × Y , and the unit object 1 is the terminal object in C
[Lan98, Chapter VII, §1].

13



• If g, h ∈ G, let g ⊗ h := gh, and

• If a : g −→ g and b : h −→ h are arrows, let a⊗ b := ab : gh −→ gh

The unit object is 1 = e the identity element of G, with associator ag,h,k = idghk

corresponding to the identity element of A. This is an example of a strict monoidal

category.

For this example, it is instructive to think of the associator as a map

α : G×G×G −→ A

(g, h, k) 7−→ ag,h,k = idghk

It is natural to ask whether there are more interesting choices of α giving a monoidal

structure on CG(A). The pentagon and triangle diagrams tell us that such a map

must satisfy the equations

α(g1, g2, g3)α(g1, g2g3, g4)α(g2, g3, g4) = α(g1, g2, g3g4)α(g1g2, g3, g4)

α(g1, 1, g2) = 1

for all g1, g2, g3, g4 ∈ G. This motivates our next example.

Example 1.1.29 ([Eti09, §1.3.7]). Let α : G × G × G −→ A be a normalised

3-cocycle (see Definition 1.4). Let CαG(A) be the monoidal category whose objects,

arrows, monoidal product, unit object, and unit isomorphisms are the same as those

of CG(A). Let the associator be given by

ag,h,k = α(g, h, k) ∈ HomCαG(A)(ghk, ghk)

For non-trivial α, this gives CαG(A) a non-strict monoidal structure.

We will be very interested in monoidal categories of the form CαG(A) where α is

non-trivial; these are examples of 2-groups with non-trivial associators. Before de-

scribing 2-groups, we recall monoidal functors. These are functors between monoidal

categories respecting the monoidal structure.
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Definition 1.1.30. Let M and N be monoidal categories. A monoidal functor

F :M−→ N is a functor F :M−→ N along with the following data

(i) a natural isomorphism ϕX,Y : F (X)⊗ F (Y ) −→ F (X ⊗ Y ), and

(ii) an isomorphism ϕ : 1N −→ F (1M)

such that the diagrams

(F (X)⊗ F (Y ))⊗ F (Z) ϕX,Y ⊗id
> F (X ⊗ Y )⊗ F (Z) ϕX⊗Y,Z

> F ((X ⊗ Y )⊗ Z)

F (X)⊗ (F (Y )⊗ F (Z))

aF (X),F (Y ),F (Z)

∨
id⊗ϕY,Z

> F (X)⊗ F (Y ⊗ Z) ϕX,Y⊗Z
> F (X ⊗ (Y ⊗ Z))

F (aX,Y,Z)

∨

and

1N ⊗ F (X)
λ′
F (X)

> F (X)

F (1M)⊗ F (X)

ϕ⊗id

∨
ϕ1M,X

> F (1M ⊗X)

F (λX)

∧

commute. We say that two monoidal categories are equivalent if there is a monoidal

functor between them that is an equivalence of categories.

Remark 1.1.31. This is sometimes called a strong monoidal functor, however we

follow the convention used in [Ost03a, BL04].

Example 1.1.32 ([CE04, Example 1.7]). Let α, α′ : G×G×G −→ A be normalised

3-cocycles. Recalling Example 1.1.29, the categories Cα′
G (A) and CαG(A) have the same

objects and arrows, so we have an identity functor

F : Cα′

G (A) −→ CαG(A)

on underlying categories. We wish to give F the structure of a monoidal functor.

If θ : G×G −→ A is a normalised 2-cochain such that α′/α = dθ (see Definition

1.1.16), then let

ϕg,h = θ(g, h) ∈ HomCαG(A)(gh, gh)
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This gives F the structure of a monoidal functor.

We note that F is an equivalence, Cα′
G (A) and CαG(A) are equivalent monoidal cat-

egories when α and α′ are cohomologous. Moreover, Cα′
G (A) and CαG(A) are equivalent

monoidal categories if and only if α′ and α are cohomologous 3-cocycles.

1.1.5 2-groups

We now present the notion of a 2-group. A good introduction to 2-groups is available

in [BL04].

Definition 1.1.33 ([BL04, Definition 2]). A 2-group is a monoidal groupoid G with

every object weakly invertible, that is, for each g ∈ ob(G), there exists h ∈ ob(G)

such that g ⊗ h ∼= 1 and h⊗ g ∼= 1.

We have defined what is known as a weak 2-group in the language of [BL04].

Definition 1.1.34 ([BL04, §2]). A strict 2-group is a strict monoidal groupoid G

with every object invertible, that is, for each g ∈ ob(G), there exists g−1 ∈ ob(G)

such that g ⊗ g−1 = 1 and g−1 ⊗ g = 1.

We have the following important classification of 2-groups from the unpublished

thesis of Sinh [Sin75].

Proposition 1.1.35 (see [Sin75] and [BL04, §8.3]). Let G be a 2-group. Then G is

determined up to equivalence by the data of

(i) a group G,

(ii) an abelian group A with a G-action, and

(iii) an element [α] of the corresponding cohomology group H3(G,A)

As remarked previously, the monoidal category CαG(A) of Example 1.1.29 is a

2-group. We will focus our attention on 2-groups of this form; this classification

says that we may understand the representation theory of a large class of 2-groups

by studying the representation theory of CαG(A).
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1.1.6 String diagrams and 2-categories

We recall the notion of a 2-category, and notate these 2-categories using string

diagrams, closely following [Bar09, Chapter 4] and [CW10, §1.1].

Definition 1.1.36 ([Lan98]). A 2-category C consists of the following data

1. A class of objects ob(C).

2. For each pair x, y ∈ ob(C) a category 1-HomC(x, y). We call an object A ∈

1-HomC(x, y) a 1-morphism from x to y, notated A : x −→ y. In string diagram

notation, A is drawn

y
b

x

A

Given A,B ∈ 1-HomC(x, y), we call an arrow ϕ ∈ Hom1-HomC(x,y)(A,B) =

2-HomC(A,B) a 2-morphism from A to B, denoted ϕ : A ⇒ B. In string di-

agram notation, ϕ is drawn

y x

A

B

ϕ

Composition of morphisms in 2-HomC(x, y) is notated by ◦, e.g. if ϕ : A ⇒ B

and ϕ′ : B ⇒ C, where A,B,C : x −→ y are 1-morphisms, then we have a

2-morphism ϕ′ ◦ ϕ : A⇒ C; we call this vertical composition of 2-morphisms. In

string diagram notation, we have

17



y x

A

C

y x

A

C

B =

ϕ

ϕ′

ϕ′ ◦ ϕ

The equals sign in this figure indicates that both string diagrams refer to the

same 2-morphism.

3. The composition bifunctor

1-HomC(y, z)× 1-HomC(x, y) −→ 1-HomC(x, z)

(A,B) 7→ AB

Unpacking this definition, we note that if A,B : x −→ y and C,D : y −→ z are

1-morphisms and ϕ : A ⇒ B, ψ : C ⇒ D are 2-morphisms, then we have the

composition ϕψ : CA ⇒ DB where CA,DB : x −→ z are 1-morphisms from

x to z; we call this horizontal composition of 2-morphisms. In string diagram

notation, we have

y x

A

B

z

C

D

y

x

A

B

z

C

D y

=ψ ϕ ψϕ

4. The natural associativity isomorphism

αA,B,C : (AB)C ⇒ A(BC)

It is defined for any three composable 1-morphisms A,B,C and satisfies the pen-

tagonal axioms, see [Lan98]. We suppress these isomorphisms from our notation;

Bartlett provides a strictification argument [Bar09, Proposition 4.1] that we are

allowed to do this,
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5. For any x ∈ ob(C), a 1-morphism 1x ∈ 1-HomC(x, x) called the unit morphism,

with 2-isomorphisms

ϵϕ : 1xA⇒ A for any A : y −→ x,

ζψ : B1x ⇒ B for any B : x −→ z

satisfying the axioms of [Lan98]. By the same strictification argument of Bartlett,

we can omit these isomorphisms from our notation.

We also need the notion of a k-linear 2-category. A k-linear 2-category C has the

key features that 2-HomC(A,B) is a k-vector space (where A,B ∈ 1-HomC(x, y) are

1-morphisms) and composition is k-bilinear. In particular, if ϕ, ϕ′ ∈ 2-HomC(A,B)

are 2-morphisms related by a scalar s ∈ k (i.e. sϕ = ϕ′), then we draw

s
ϕ

A

B

ϕ′

A

B

xy xy

We will occasionally omit borders and labels of diagrams where the context is

clear. We have the following important example of a 2-group arising from a 2-

category.

Example 1.1.37 ([BL04, Example 33]). Let C be a strict 2-category, and V ∈ ob(C).

Then there is a strict 2-group 1-Aut(V ), called the strict automorphism 2-group of

V . The objects of 1-Aut(V ) are the invertible 1-morphisms A : V −→ V in C,

with arrows being the invertible 2-morphisms between them. The monoidal structure

on 1-Aut(V ) is that induced by the composition of 1-morphisms and the horizontal

composition of 2-morphisms, with identity object 1 = idV : V −→ V the identity

arrow on V .
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Chapter 2

Projective 2-representations

In classical representation theory, we study a group by understandings it actions

on a vector space by automorphisms. It it thus natural to study a 2-group by

understanding its actions on an object of a strict 2-category by automorphisms.

In this section, we will study the action of finite 2-groups of the form CαG(k×) on an

object of a strict k-linear 2-category; we will call these projective 2-representations.

We later discuss the close relationship between these and the gerbal representations

introduced in [FZ11].

Definition 2.0.38. Let G be a finite group, and C a k-linear 2-category. A projective

2-representation of G on C consists of the following data

(a) an object V of C

(b) for each g ∈ G, a 1-automorphism ϱ(g) : V −→ V , drawn as

g
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(c) for every pair g, h ∈ G, a 2-isomorphism ψg,h : ϱ(g)ϱ(h)
∼=⇒ ϱ(gh), drawn as

gh

bc

g h

(d) a 2-isomorphism ψ1 : ϱ(1)
∼=⇒ idV , drawn as

bc

such that the following conditions hold

(i) for any g, h, k ∈ G, we have

ψg,hk(ϱ(g)ψh,k) = α(g, h, k)ψgh,k(ψg,hϱ(k))

where α(g, h, k) ∈ k×. In string diagram notation, we draw this as

bc

bcg

h k

hk

ghk

bc

bc

g h

k

gh

ghk

α(g, h, k)

(ii) for any g ∈ G, we have

ψ1,g = ψ1ϱ(g) and ψg,1 = ϱ(g)ψ1

22



In string diagram notation, we draw these as

bc

g

g

=

bc

g and bc

g

g

=

bc

g

2.1 The 3-cocycle condition

Recall a gerbal representation [FZ11, Definition 2.8] of a group G on a category V is

the assignment to each g ∈ G of an equivalence F (g) : V −→ V such that F (e) ∼= idV

and F (g)F (h) ∼= F (gh). The main difference between our definition and that of a

gerbal representation is the choice of a specific isomorphism

ψg,h : ϱ(g)ϱ(h)
∼=

=⇒ ϱ(gh)

as part of the data. In [FZ11], Frenkel and Zhu show that given F a gerbal rep-

resentation of G, then any choice of isomorphism c(g, h) : F (g)F (h)
∼=

=⇒ F (gh)

yields a 3-cocycle on G satisfying condition (i). Similarly, by considering the vari-

ous 2-isomorphisms between ϱ(g1)ϱ(g2)ϱ(g3)ϱ(g4) and ϱ(g1g2g3g4), we may prove the

following.

Proposition 2.1.1 (Compare [FZ11, Theorem 2.10]). Let ϱ be a projective 2-

representation of a group G. Then the map α : G × G × G −→ k× appearing

in condition (i) is a normalised 3-cocycle on G with values in k×.
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Proof. We use 2.0.38 (i) for all steps of our proof. Consider

g2
g1

bc

bc

bc

g3

g4

g1g2g3g4

α(g1g2, g3, g4)

g2g1

bc

bc
g1g2g3g4

g4

g3
bc

α(g1, g2, g3g4)

g2

g1 bc

bc
g1g2g3g4

g4

g3
bc

On the other hand, we have

α(g2, g3, g4)

g2
g1

bc

bc

bc

g3

g4

g1g2g3g4

g2
g1

bc

bc

bc

g3

g4

g1g2g3g4

g2
g1

bc

bc
bc

g3

g1g2g3g4

g4

α(g1, g2g3, g4)

g2

g1

bc

bc
bc

g3

g1g2g3g4

g4

α(g1, g2, g3)

Comparing these diagrams, we find

α(g1g2, g3, g4)α(g1, g2, g3g4) = α(g2, g3, g4)α(g1, g2g3, g4)α(g1, g2, g3) (2.1)

which is Equation 1.4, so α is indeed a 3-cocycle.
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Example 2.1.2 (Compare [GK08, §5.1]). Let G be a finite group with a normalised

2-cochain θ. Let α = dθ be the 3-cocycle given by the coboundary of θ, then we

define a projective 2-representation of G on VecC with corresponding 3-cocycle α.

For g ∈ G, we let

ϱ(g) = idVecC : VecC −→ VecC

be the identity functor on VecC. For g, h ∈ G let ψg,h : ϱ(g)ϱ(h)
∼=⇒ ϱ(gh) be given by

multiplication by θ(g, h). Let ψ1 : ϱ(1)
∼=⇒ idVecC be given by multiplication by θ(1, 1).

We recall some further notation for working with projective 2-representations.

To represent ψ−1
g,h : ϱ(gh)

∼=⇒ ϱ(g)ϱ(h), we draw

gh

bc

g h

Similarly, to represent ψ−1
1 : idC

∼=⇒ ϱ(1), we draw

bc

Finally, we let

g g−1
bc

bc

g g−1

=

and

g g−1
bc

bc

g g−1=
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Corollary 2.1.3. The following graphical equation holds after inverting condition

(i) of Definition 2.0.38.

α(g, h, k)

bc

bc k

hg

gh

ghk

bc

bc

kh

g

hk

ghk

that is,

(ψ−1
g,hϱ(k))ψ

−1
gh,k = α(g, h, k)(ϱ(g)ψ−1

h,k)ψ
−1
g,hk

Corollary 2.1.4 ([Bar09, §7.1.1]). We have ψ1 ◦ ψ−1
1 = idC and ψ−1

1 ◦ ψ1 = ϱ(1),

drawn as

(a)

bc

bc

= (b)

bc

=

bc

Similarly, if g, h ∈ G, then ψ−1
g,h ◦ ψg,h = ϱ(g)ϱ(h) and ψg,h ◦ ψ−1

g,h = ϱ(gh), drawn as

(c) =

bc

bc

g

g

h

h

gh g h (d) =

gh

gh

gh
bc

bc

g h
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Finally, for g ∈ G, we have ψ1,g(ψ
−1
1 ϱ(g)) = ϱ(g) = ψg,1(ϱ(g)ψ

−1
1 ), drawn as

(e) =
bc

g

gbc

bc

gg

bc

=

g

2.1.1 Some graphical equations for projective 2-representations

Lemma 2.1.5 ([Bar09, Lemma 7.3 (ii)]). The following graphical equation holds

bc

=

bc

Proof.

bc bc
bc bc

bc

bc

bc

bc
= = =

The first equality follows from 2.1.4 (c), the second from 2.1.4 (e), with the final

following by definition.

Lemma 2.1.6 (Compare [Bar09, Lemma 7.3 (iii)]). The following graphical equa-

tions hold

(i)
bc

hg

gh

α(gh, h−1, h)−1 bc

gh

g h
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(ii)
bc

hg

gh

α(g, g−1, gh) bc

gh

g h

Proof. We will prove (ii); the proof of (i) is almost identical. By combining 2.1.4

(c) and (e), we get

bc

hg

gh

=
bc

hg

gh

bc
bc

Next, by 2.0.38 (i), we get

α(g, g−1, gh)bc

hg

gh

bc
bc

bc

gh

g
h

bc
bc

A final application of 2.1.4 (d) gives us the desired result.

Corollary 2.1.7 (Compare [Bar09, Lemma 7.3 (i)]). The following graphical equa-

tions hold

(i)
α(g, g−1, g)−1

g

g

g

(ii) α(g, g−1, g) g

g

g
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Proof. We will prove (i); the proof of (ii) is almost identical. By applying 2.1.6 and

then 2.1.4 (e), we have

=

g

g g

bc

bc
α(g, g−1, g)−1

bc

g

bc
g

g

= g

as required.

Corollary 2.1.8 (Compare [Bar09, Lemma 7.3 (iv)]). The following graphical equa-

tion holds

(gh)−1g h
bc

α(h,h−1,g−1)

α(g,h,(gh)−1)
hg (gh)−1

bc

Proof. Applying 2.1.3. we get

α(g, h, (gh)−1)−1

hg (gh)−1

bc
hg

bc
(gh)−1

Inverting the equation derived in part (ii) of 2.1.6 gives the desired result.

As a final note, the projective 2-representations of a group G with 3-cocycle α

on a k-linear 2-category C form a 2-category. We adapt the following definitions of

[Bar09].

Definition 2.1.9 ([Bar09, §7.1.2]). Let ϱ : V −→ V and ϑ : T −→ T be projective

2-representations of a finite group G with 3-cocycle α on a k-linear 2-category C

where V, T ∈ ob(C). A 1-morphism σ : ϱ −→ ϑ of projective 2-representations

consists of the following data
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(a) a 1-morphism σ : V −→ T in C, drawn as

σ

VT or simply

σ

(b) for each g ∈ G, a 2-isomorphism σ(g) : ϑ(g)σ
∼=⇒ σϱ(g) in C, drawn as

σ

g

g

such that the diagrams

σϱ(gh)

σϱ(g)ϱ(h)

σψg,h >

ϑ(gh)σ

σ(gh)<

ϑ(g)σϱ(h)

σ(g)ϱ(h)

∧

<
ϑ(g)σ(h)

ϑ(g)ϑ(h)σ

ηg,hσ

∧

σ

ϑ(1)σ

η1σ

∨
σ(1)

> σϱ(1)

σψ1

>

commute, where ψg,h : ϱ(g)ϱ(h)
∼=⇒ ϱ(gh) and ηg,h : ϑ(g)ϑ(h)

∼=⇒ ϑ(gh).

In string diagram notation, we draw these as

σ

h

g

bc
gh

σ

h
g

bc

gh

= and

σ

bc

σ

bc

=
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Definition 2.1.10 ([Bar09, §7.1.3]). Given 1-morphisms σ, ν : ϱ −→ ϑ of projective

2-representations, a 2-morphism θ : σ ⇒ ν is a 2-morphism θ : σ ⇒ ν in C, drawn

as

σ

bcθ
ν

such that the diagram

ϑ(g)σ
ϑ(g)θ

> ϑ(g)ν

σϱ(g)

σ(g)

∨
θϱ(g)

> νϱ(g)

ν(g)

∨

commutes. We draw this as

σ

bcθ
ν

=

g

g

σ

bcθ
ν

g

g

Definition 2.1.11. Let 2Repαk (G, C) be the 2-category with objects being projective

2-representations of a finite group G with 3-cocycle α on a k-linear 2-category C,

with 1 and 2-morphisms as defined above.
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2.2 The character of a projective 2-representation

Recall that the character of a classical representation ϱ is the map χ : G −→ k

defined by χ(g) = tr(ϱ(g)). This motivates the following definition of [GK08] and

[Bar09].

Definition 2.2.1 ([GK08, Definition 3.1] and [Bar09, Definition 7.8]). Let C be a 2-

category, x ∈ ob(C) and A ∈ 1-HomC(x, x) a 1-endomorphism of x. The categorical

trace of A is defined to be

Tr(A) = 2-HomC(1x, A)

where 1x is the identity 1-morphism of x.

Remark 2.2.2. Note that if C is a k-linear 2-category (as is the case when study-

ing projective 2-representations), then the categorical trace of a 1-endomorphism

A : x −→ x is a k-vector space.

Definition 2.2.3 (Compare [GK08, Definition 4.8] and, in particular, [Bar09, Defi-

nition 7.9]). Let ϱ be a projective 2-representation of a finite group G. The character

of ϱ is the assignment

g 7−→ Tr(ϱ(g)) := X(g) for each g ∈ G

and the collection of isomorphisms

βg,h : X(g) −→ X(hgh−1)

defined by
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g

bcη

hgh−1

h

h−1bc

bc

g

bcη
βg,h

for each g, h ∈ G. That the βg,h are isomorphisms is a consequence of Theorem

2.2.5. We note that the definitions in [GK08] and [Bar09] are the special case α = 1,

although they look a bit different at first sight.

Example 2.2.4 ([GK08, Definition 4.12]). Let ϱ be a projective 2-representation of

a finite group G on a k-linear 2-category with finite-dimensional 2-Hom(A,B). If

g, h ∈ G is a pair of commuting elements, then βg,h is an automorphism of X(g).

Let the joint trace be the map

χ(g, h) = Tr(βg,h)

defined for commuting g, h ∈ G. As in [GK08, §5.1], let us consider the character

and joint trace of the projective 2-representation defined in Example 2.1.2. For

g ∈ G, we have

X(g) = Tr(idVecC) = C

Let g, h ∈ G be commuting elements, then it follows from Definition 2.2.3 that the

joint trace χ(g, h) is given by multiplication by

θ(h, g)

θ(hgh−1, h)
=
θ(h, g)

θ(g, h)
= τ(θ)([g]h)

the transgression of the normalised 2-cochain θ (see Definition 1.1.19).

We now present our main result.

Theorem 2.2.5. Let G be a finite group, α a 3-cocycle on G with values in U(1),
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and ϱ a projective 2-representation of G with 3-cocycle α. The character of ϱ is then

a projective representation of ΛG with 2-cocycle τ(α).

Corollary 2.2.6. In the situation of the theorem, the character of ϱ is a represen-

tation of the twisted Drinfeld double

Dα(G) = Cτ(α) (ΛG)

Proof of theorem. To verify that the character of ϱ is a projective representation of

ΛG with 2-cocycle τ(α), we require that if r, g, h ∈ G, then

βgrg−1,hβr,g = τ(α)([h|g]r)βr,hg

Let η ∈ X(r), then by applying 2.1.4 (d) twice, we find

r

bcηg

bc

bc

bc

h

hgrg1h−1

bc

r

bcηg

bc

bc

h

hgrg1h−1

bc

bc
bc

bc bc

bc=
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Applying 2.1.8 twice, we have

r bcηg
bc

bc

h

hgrg1h−1

bc

bc
bc

bc
bc

bc

α(h,g,(hg)−1)

α(g,g−1,h−1)

r

bcηg

bc

bc

h

hgrg1h−1

bc

bc

bc

bc
bc

bc

α(g,g−1,h−1)

α(h,g,(hg)−1)

r

bcηg

bc

bc

h

hgrg1h−1

bc

bc

bc

bc

bc

bc

These two factors cancel, so the first and last diagram in this figure are equal.

We redraw this diagram by removing the loop (as per 2.1.4 (d)), then apply 2.1.4

(c) to get

r

g
h

g

h

hgrg1h−1

bc

bc

bc

bc

bc

bc bcη

hg

=

r

g
h

g

h

bc

bc

bc

bc
bc

bc bcη

hg

bc
bc
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Next, we apply 2.0.38 (i) to obtain

g
h

g

h

hgrg1h−1

bc

bc

bc

bc
bc

bc bcη

hg

bc
bc

r

g
h

gh

bc

bc

bc

bc
bc

bc bcη

hg

bc
bcgrg−1 α(h, grg−1, g)

By removing the loop and applying 2.1.3, we get

hgrg1h−1

r

g
h

g

h

bc

bc

bc

bc

bc bcη

hg

bc α(hgrg−1h−1, h, g)−1

hgrg−1h−1

rg

h

bc

bc

bc

bc

bc bcη

hg

bc
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Finally, we remove this loop then apply 2.0.38 (i) to compute

α(h, g, r)−1

hgrg1h−1

r
g

h

bc

bc

bc bcη

bc

hgrg1h−1

bc

bc

bc

bcη

bc

hg

r

h
g

After removing the loop we recognise this final diagram as being βr,hg(η). We

have therefore shown that

α(h, grg−1, g)

α(hgrg−1h−1, h, g)α(h, g, r)
βgrg−1,hβr,g(η) = βr,hg(η)

that is,

βgrg−1,hβr,g(η) = τ(α)([h|g]r)βr,hg(η)

as required.

Remark 2.2.7. The character of a projective 2-representation with 3-cocycle α is

a map

X : ΛG −→ VecC

This map is (in general) not a functor1. Consider the restriction of X to G, which

is a full subgroupoid of the inertia groupoid ΛG. The data of this restriction is a

C-vector space X(1) and automorphisms {βg = β1,g : X(1) −→ X(1)}g∈G such that

βgβh = τ(α)([g|h]1)βgh = βgh

for all g, h ∈ G, where the last equality follows directly from Definition 1.1.18. In

other words, this restriction determines an ordinary representation of G.

1The proof that X is a functor in the case α ≡ 1 is the content of [GK08, Proposition 4.10]
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Chapter 3

Module categories

We proceed by considering module categories over the monoidal category VecαG de-

scribed in [Ost03a]. This is a natural approach; the category VecαG can be thought of

as a categorification of the twisted group algebra Cθ G, and we recall that modules

over Cθ G are equivalent to projective representations of G with 2-cocycle θ.

Indeed, we will show that the data of a projective 2-representation of G on

a k-linear category C with 3-cocycle α is equivalent to the data of a VecαG-module

category structure on C (this is in fact a 2-categorical equivalence). This allows us to

gain further insight into projective 2-representations. In particular, this equivalence

will allow us to describe a notion of induction of projective 2-representations1.

We recall some basic terms.

Definition 3.0.8 ([BK01, Definition 1.13 and §1.1]). Let C be an abelian category

over k. We say an object U in C is simple if any injection V ↩→ U is either 0 or an

isomorphism. We say C is semisimple if any object V ∈ C is isomorphic to a direct

sum of simple objects.

Definition 3.0.9 (see [ENO05, §2.1]). Let G be a finite group. Let VecG be the

monoidal category with objects finite dimensional G-graded k-vector spaces

W =
⊕
g∈G

Wg

1The case α = 1 is described in [GK08, §7].
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and arrows k-linear maps f : W −→ W ′ preserving the G-grading. The simple

objects in VecG are the spaces kg, where

(kg)h =

k if g = h

0 otherwise

for each g ∈ G. The monoidal structure on VecG is given by

(V ⊗W )g =
⊕
h∈G

Vgh−1 ⊗Wh

with trivial associator.

Let α : G×G×G −→ k× be a normalised 3-cocycle. Let VecαG be the monoidal

category with the same objects and tensor product as VecG, but with associator

ag,h,i : (kg ⊗ kh)⊗ ki −→ kg ⊗ (kh ⊗ ki)

defined by

ag,h,i(u⊗ v ⊗ w) = α(g, h, i) · u⊗ v ⊗ w

The pentagon diagram is satisfied precisely because α is a 3-cocycle, as was the case

with Example 1.1.29.

The categories VecG and VecαG are examples of abelian semisimple categories

over k with finitely many simple objects. In this section, we only consider abelian

semisimple categories over k with finite dimensional hom spaces2, and assume that

all functors are additive. We provide the general notion of a module category here,

closely following [Ost03a].

Definition 3.0.10 ([Ost03a, Definition 6]). A module category over a monoidal

category C is a k-linear abelian category M together with an exact bifunctor ⊗ :

C×M −→M and natural associativity and unit isomorphisms mX,Y,M : (X⊗Y )⊗

M −→ X ⊗ (Y ⊗M), ℓM : 1⊗M −→M for any X, Y ∈ C, M ∈ M such that the

diagrams

2That is, for any pair of objects x, y, the k-vector space HomC(x, y) is a finite dimensional
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((X ⊗ Y )⊗ Z)⊗M

(X ⊗ (Y ⊗ Z))⊗M

aX,Y,Z⊗id

<
(X ⊗ Y )⊗ (Z ⊗M)

mX⊗Y,Z,M

>

X ⊗ ((Y ⊗ Z)⊗M)

mX,Y⊗Z,M

∨
id⊗mY,Z,M

> X ⊗ (Y ⊗ (Z ⊗M))

mX,Y,Z⊗M

∨

and

(X ⊗ 1)⊗M mX,1,M
> X ⊗ (1⊗M)

X ⊗M

id⊗ℓM

<

rX⊗id

>

commute. We say thatM is a (left) C-module category.

Example 3.0.11 ([Ost03a, §2.3]). (i) Let C be a monoidal category (see Defini-

tion 1.1.23), it is clear that the monoidal structure on C induces a C-module

category structure on C.

(ii) Let F : C −→ Veck be a monoidal functor (see Definition 1.1.30), then we

have the natural isomorphism ϕX,Y : F (X) ⊗k F (Y ) −→ F (X ⊗ Y ) and an

isomorphism ϕ : 1k −→ F (1C). We claim that this determines a C-module

category structure on Veck. For X ∈ ob(C) and V ∈ ob(Veck), set X ⊗

V := F (X) ⊗k V . Let the associativity isomorphism mX,Y,V be given by the

composition

(X ⊗ Y )⊗ V = F (X ⊗ Y )⊗k V
ϕ−1
X,Y ⊗kid
−−−−−→ (F (X)⊗k F (Y ))⊗k V

∼=−→ F (X)⊗k (F (Y )⊗k V ) = X ⊗ (Y ⊗ V )

and the unit isomorphism ℓV be given by the composition

1C ⊗ V = F (1C)⊗k V
ϕ−1⊗kid−−−−−→ 1k ⊗k V

∼=−→ V

41



Example 3.0.12 ([Eti09, Example 2.5.10]). A module category M over VecG is a

collection of exact functors F (g) :M −→M (where F (g)(M) := kg ⊗M for M ∈

ob(M)), together with a collection of natural isomorphisms ϕg,h : F (g)F (h) −→

F (gh) such that

ϕg,hi(F (g)ϕh,i) = ϕgh,i(ϕg,hF (i)) : F (g)F (h)F (i) −→ F (ghi)

where g, h, i ∈ G.

At this stage, we note that a VecG-module category structure onM is precisely

an action of G on V (as in [GK08, §4.2]). We therefore expect that a VecαG-module

category structure onM is equivalent to a ‘twisted’ action of G on V .

Example 3.0.13. A module category M over VecαG is a collection of exact func-

tors F (g) : M −→ M, together with a collection of natural isomorphisms ϕg,h :

F (g)F (h)
∼=

=⇒ F (gh) such that

ϕg,hi(F (g)ϕh,i) = α(g, h, i)ϕgh,i(ϕg,hF (i)) : F (g)F (h)F (i) −→ F (ghi)

where g, h, k ∈ G.

Comparing this with Definition 2.0.38, we see that a VecαG-module category struc-

ture onM gives us a projective 2-representation of G with 3-cocycle α onM.

3.1 Module functors and module natural trans-

formations

Definition 3.1.1 ([Ost03a, Definition 7]). Let M1 and M2 be two module cate-

gories over a monoidal category C. Amodule functor fromM1 toM2 is a functor F :

M1 −→M2 together with a natural isomorphism cX,M : F (X⊗M) −→ X⊗F (M),
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where X ∈ ob(C) and M ∈ ob(M1) such that the diagrams

F ((X ⊗ Y )⊗M)

F (X ⊗ (Y ⊗M))

F (mX,Y,M )

<
(X ⊗ Y )⊗ F (M)

cX⊗Y,M

>

X ⊗ F (Y ⊗M)

cX,Y⊗M

∨
id⊗cY,M

> X ⊗ (Y ⊗ F (M))

mX,Y,F (M)

∨

and

F (1C ⊗M)
F (ℓM )

> F (M)

1C ⊗ F (M)

ℓF (M) >c1C ,M

>

commute. We say that F is a C-module functor. If F is furthermore an equivalence

of categories (see Definition 1.1.7), then we say that F is an equivalence of C-module

categories.

We will make use of the following definitions provided in [Ost03a, Definition 7].

Definition 3.1.2. We say that two module categories M1 and M2 over C are

equivalent if there is a module functor fromM1 toM2 which is an equivalence of

categories (recall Definition 1.1.7).

Definition 3.1.3 (also see [Eti09, Proposition 2.4.1]). Given two module categories

M1 and M2 over C, their direct sum is the category M1 ⊕M2 with the obvious

C-module category structure.

Definition 3.1.4. We say that a module categoryM over C is indecomposable if it

is not equivalent to a non-trivial direct sum of module categories.

We wish to construct a 2-category whose objects are the module categories over

a monoidal category C, and whose 1-morphisms are the module functors between

them. To do this, we will need to describe a natural transformations between module

functors.natural transformation between module functors.
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Definition 3.1.5 ([Hov99, Definition 4.1.7]). LetM1 andM2 be module categories

over C, and let F, G :M1 −→M2 be C-module functors with corresponding natural

isomorphisms cX,M and dX,M , whereX ∈ ob(C) andM ∈ ob(M1). Amodule natural

transformation from F to G is a natural transformation θ : F ⇒ G such that the

diagram

F (X ⊗M)
cX,M

> X ⊗ F (M)

G(X ⊗M)

θX⊗M

∨
dX,M

> X ⊗G(M)

id⊗θM

∨

commutes. We say that θ is a C-module natural transformation.

Definition 3.1.6. Let 2Mod(C) be the 2-category whose objects are module cate-

goriesM over C, with 1-morphisms being the C-module functors, and 2-morphisms

being the C-module natural transformations between them.

For convenience, we state the following result. We will state it in more detail in

Theorem 4.3.3.

Theorem. Let C be the 2-category of k-linear categories. Then there is a weak

equivalence of 2-categories

2Repαk (G, C) −→ 2Mod(VecαG)

In other words, a projective 2-representation of G with 3-cocycle α on a k-linear

category V is equivalent to a VecαG-module category structure on V .

3.2 Algebra objects and modules in monoidal cat-

egories

In [Ost03a], Ostrik provides a classification of indecomposable module categories

over VecαG, which we wish to apply (using the equivalence of Theorem 4.3.3) to clas-

sify ‘irreducible’ projective 2-representations. Before we present this classification,
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we recall the notion of an algebra object in a monoidal category, and a module over

such an algebra object.

Definition 3.2.1 ([Ost03a, Definition 8(i)], [Lan98, VII §3]). Let C be a monoidal

category. An algebra object (or monoid object) is an object A of C with a multi-

plication arrow m : A ⊗ A −→ A and a unit arrow e : 1C −→ A such that the

diagrams

(A⊗ A)⊗ A

A⊗ (A⊗ A)

aA,A,A

<
A⊗ A

m⊗id

>

A⊗ A

id⊗m

∨
m

> A

m

∨

and

1C ⊗ A
λA

> A

A⊗ A

m
>

e⊗id

>

A⊗ 1C
ϱA

> A

A⊗ A

m
>id⊗e

>

commute.

Definition 3.2.2 ([Ost03a, Definition 8(ii)], [Lan98, VII §4]). A right module over

an algebra object A in a monoidal category C is an object M of C with an action

arrow s :M ⊗ A −→M such that the diagrams

(M ⊗ A)⊗ A

M ⊗ (A⊗ A)

aM,A,A

<
M ⊗ A

s⊗id

>

M ⊗ A

id⊗m

∨
s

>M

s

∨
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and

M ⊗ 1C
ϱM

>M

M ⊗ A

s
>id⊗e

>

commute.

Definition 3.2.3 ([Ost03a, Definition 8(iii)]). A morphism between two right mod-

ules (M1, s1) and (M2, s2) over an algebra object A in a monoidal category C is an

arrow f ∈ HomC(M1,M2) such that the diagram

M1 ⊗ A
f⊗id
>M2 ⊗ A

M1

s1

∨
f

>M2

s2

∨

commutes.

Remark 3.2.4. Let A be an algebra object in a monoidal category C, and let

ModC(A) be the category whose objects are the right modules over A in C, and

whose arrows are the A-module morphisms between them.

Then ModC(A) is an abelian category (by [Ost03a, Lemma 3]), and moreover,

is a C-module category: given a right A-module (M, s) in C and X ∈ ob(C), then

X ⊗ A is a right A-module with action arrow given by id⊗s.

3.3 Classification of indecomposable module cat-

egories

Let C be a semisimple rigid3 monoidal category with finitely many simple objects

and simple unit object; VecαG is an example of such a category. In [Ost03a, Theorem

1], Ostrik proves that every semisimple indecomposable module category M over

3A monoidal category C is rigid if every object has right and left duals (see [BK01, §2.1] for
more details).
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C is equivalent to ModC(A), for some algebra object A ∈ ob(C). Ostrik applies

this classification to the case C = VecαG (i.e. [Ost03b, Example 2.1]), which we now

interpret in terms of projective 2-representations.

Lemma 3.3.1 ([Ost03b, Example 2.1]). Let H ⊆ G be a subgroup of a finite group

G, and let θ : H ×H −→ C× be a normalised 2-cochain such that dθ = α|H . Then

the twisted group algebra object4 Cθ H is an algebra object in VecαG, where we take

( Cθ H)g =

C g ∈ H

0 g /∈ H

with multiplication morphism defined by

vh1 ⊗ vh2 := θ(h1, h2)vh1h2

for hi ∈ H with vhi ∈ ( Cθ H)hi.

Proof. The pentagonal axiom is satisfied by our requirement that dθ = α|H . The

triangular axioms are satisfied because θ : G×G −→ C× is a normalised 2-cochain.

Remark 3.3.2. It is important to note that the twisted group algebra object is (in

general) not an algebra. For example, if α|H is non-trivial with dθ = α|H , then θ is

not a 2-cocycle, so Cθ H is not an algebra, as it fails to be associative.

We have the following result of Ostrik.

Lemma 3.3.3 ([Ost03b, Example 2.1]). The indecomposable module categories over

VecαG are classified by the conjugacy classes of pairs (H, θ) where H ⊆ G is a subgroup

and θ a 2-cochain on H with values in C× such that α|H = dθ.

In other words, every semisimple indecomposable module category over VecαG is

equivalent as a VecαG-module category to ModVecαG
( Cθ H) where Cθ H is the twisted

group algebra object constructed in Lemma 3.3.1. We now consider some technical

lemmas.
4Ostrik denotes this by A(H, θ)
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Lemma 3.3.4. LetM be a right Cθ H-module in VecαG. ThenMg
∼= Mgh as C-vector

spaces for all h ∈ H.

Proof. It suffices to consider non-zero Mg. For any h ∈ H, we have the composition

jg,h :Mg
∼= Mg ⊗ Ch

s−→Mgh

The triangle diagram implies that jg,1 : Mg −→ Mg is an isomorphism. Therefore

by inspecting the pentagon diagram, we get that the composition

Mg

jg,h−−→Mgh
gh,h−1

−−−−→Mg

is an isomorphism, so in particular, jg,h is injective. However the same argument

tells us that jgh,h−1 is injective. We conclude that jg,h is an isomorphism.

Corollary 3.3.5 (compare [Ost03b, Proposition 3.2], [ENO10, §2.7]). The number

of simple objects in ModVecαG
( Cθ H) is equal to the number of left cosets of H in G.

Proof. By the previous lemma, we have that any simple object M = ⊕g∈GMg in

ModVecαG
( Cθ H) is isomorphic to Cg ⊗ Cθ H, from which the result follows.

Consider the special case where G = H and dθ = α for some 2-cochain on G.

Then ModVecαG
( Cθ G) is an abelian category over C with one simple object. We have

the following proposition.

Proposition 3.3.6. There is an equivalence of VecαG-module categories

ModVecαG
( Cθ G) −→ VecC

where the VecαG-module category structure on VecC is that defined in Example 2.1.2.

Proof. For more details on how the VecαG-module category structure on VecC is

defined, see Theorem 4.3.3. Let F : ModVecαG
( Cθ G) −→ VecC be the functor

M =
⊕
g∈G

Mg 7−→M1
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together with isomorphisms defined by the composition

cg,M : F (Cg ⊗M) = Cg ⊗Mg−1
∼= Mg−1

jg−1,g−−−→M1 = F (M)

We claim that F is an equivalence of VecαG-module categories. From the module

structure on M , we get the commuting diagram

M(gh)−1
∼= F ((Cg ⊗ Ch)⊗M)

M(gh)−1
∼= F (Cg ⊗ (Ch ⊗M)

α((gh)−1,g,h)−1

<
Mh−1

∼= F (Ch ⊗M)

j(gh)−1,g

>

M(gh)−1
∼= F (Cgh ⊗M)

θ(g,h)

∨ j(gh)−1,gh
>M1

∼= F (M)

jh−1,h

∨

However we recognise this as the pentagon diagram of Definition 3.1.1, so F is indeed

a VecαG-module category functor. That F is an equivalence follows immediately from

the previous lemma, so we are done.

In other words, when α = dθ for a 2-cochain θ on G, the pair (G, θ) occurring in

Ostrik’s classification of indecomposable module categories over VecαG is equivalent

to the projective 2-representation defined in Example 2.1.2.

3.4 Induction of projective 2-representations

Recall induction for projective representations [Kar94]: If H is a subgroup of a finite

group G and W is a left θ|HCH module for some 2-cocycle θ : G×G −→ k×, then

V = Cθ G⊗θ|HCH W

is a left Cθ G module. In other words, a projective representation of a subgroup

H ⊆ G with 2-cocycle θ|H induces a projective representation of G with 2-cocycle

θ.

Given the equivalence between module categories over VecαG and projective 2-

representations, this suggestions a natural definition of the induced projective 2-
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representation.

Definition 3.4.1 ([ENO10, Proposition 3.5]). LetM be a right C-module category5,

and N be a left C-module category. The tensor product ofM and N is defined to

be

M�C N = FunC(Mop,N )

the abelian category of C-module functors from the opposite categoryMop to N .

Remark 3.4.2 ([ENO10, §2.9]). IfM is a right C-module category, thenMop is a

left C-module category with C-action ⊙ given by

X ⊙M :=M ⊗ ∗X

for X ∈ C and M ∈ M. The object ∗X is known as the left dual of X, and will

exist for all examples that we are interested in.

Definition 3.4.3. Let G be a finite group with 3-cocycle α : G × G × G −→ C∗,

and let H ⊆ G be a subgroup of G. If V is a left VecαH-module category, then let

ind|GH(V) := VecαG �VecαH
V = FunVecαH

((VecαG)
op ,V)

be the induced left VecαG-module category.

Remark 3.4.4 (see [ENO10, Remark 3.6]). We note that the restriction of the

monoidal structure on VecαG makes VecαG into a (VecαG,Vec
α
H)-bimodule category,

hence the category ind|GH(V) has a left VecαG-module category structure.

In detail, if we have a VecαH-module functor

F : (VecαG)
op −→ V

together with natural isomorphisms

ch,M : F (Ch ⊙M) = F (M ⊗ Ch−1) −→ Ch ⊗ F (M)

5It is a simple exercise to write the definition of a right C-module category based on the definition
of a left C-module category; we do not do it here.
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Then for g ∈ G, (Cg ⊗ F ) is the VecαH-module functor given by

(Cg ⊗ F )(M) = F (M ⊗ Cg)

together with natural isomorphisms

dh,M = ch,Cg−1⊙M = ch,M⊗Cg : (Cg ⊗ F )(Ch ⊙M) −→ Ch ⊗ (Cg ⊗ F )(M)

In the case of a trivial 3-cocycle α = 1, the notion of induced projective 2-

representation corresponds with the notion of induced 2-representation discussed in

[GK08, §7].

Proposition 3.4.5. Let ϱ be a 2-representation6 of a subgroup H ⊂ G on a k-linear

category V. Then the induced 2-representation defined in [GK08, Definition 7.1] is

equivalent to ind|GH(V) as a VecG-module category.

Outline of proof. Let I be the induced 2-representation of ϱ as defined in [GK08,

Definition 7.1], and let F ∈ ob(ind|GH(V)) with natural isomorphisms ch,M as de-

scribed above. Let f : G −→ ob(V) be given by f(g) = F (Cg). For each g ∈ G and

h ∈ H, let ug,h be the isomorphism

ug,h := ch−1,g : f(gh) −→ ϱ(h−1)f(g)

By the pentagon diagram, we have that the diagram

f(gh1h2)
ug,h1h2 > ϱ((h1h2)

−1)f(g)

ϱ(h−1
2 )f(gh1)

ugh1,h2

∨
ϱ(h−1

2 )ug,h1> ϱ(h−1
2 )ϱ(h−1

1 )f(g)

ψ−1

h−1
2 ,h−1

1

∨

commutes, and the triangle diagram gives that ug,1 = ψ−1
1,f(g), hence (f, ug,h) is an

object of I. Similarly, a VecG-module natural transformation ν : F ⇒ F ′ is precisely

an arrow (f, ug,h) −→ (f ′, u′g,h) in I. This describes an equivalence ind|GH(V) −→ I.

6We call a projective 2-representation with 3-cocycle α = 1 a 2-representation, see [GK08].
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Finally, the VecG-module category structures on ind|GH(V) and I are the same, so

we are done.

We note that there is an equivalence of right VecαH-modules

VecαG
∼=

⊕
r∈R

rVecαH

This suggests the following proposition, which we do not include the details of here.

Proposition 3.4.6. Let H ⊂ G be a subgroup, and ϱ a projective 2-representation

of H with 3-cocycle α|H . Then

ind|GH(ϱ) ≃
⊕
r∈R

rϱ

as left VecαG-module categories, where R is a left transversal of H in G.

This uses the above decomposition of VecαG and distributivity of the tensor prod-

uct of module categories. This suggests the following conjecture

Conjecture. Let H ⊂ G be a subgroup, and θ a 2-cochain on H such that dθ = α|H .

Then

indGH(ModVecαH
( Cθ H)) ≃ ModVecαG

( Cθ H)

as left VecαG-module categories.

This can be seen as a combination of the previous proposition with Corollary

3.3.5. Assuming this conjecture, we have the following corollary.

Corollary 3.4.7 (compare [GK08, Proposition 7.3]). Let ϱ be a projective 2-representation

of a group G with 3-cocycle α on a semisimple k-linear abelian category V with

finitely many simple objects. Then

V ∼=
m⊕
i=1

indGHiϱθi

where the Hi are subgroups of G, θi is a 2-cochain on Hi such that dθi = α|Hi, and

ϱθi is the projective 2-representation corresponding to the pair (Hi, θi) described in

Example 2.1.2.
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Outline of proof. By Lemma 3.3.3, we have the decomposition

V ≃
m⊕
i=1

ModVecαG
(θiCHi)

into indecomposable components, where Hi and θi are as above. By our conjecture,

we get

V ≃
m⊕
i=1

indGHiModVecαHi
(θiCHi)

Finally, by Lemma 3.3.6, we have

V ≃
m⊕
i=1

indGHiϱθi

where ϱθi is the projective 2-representation corresponding to the pair (Hi, θi) de-

scribed in Example 2.1.2.
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Chapter 4

Comparison of formulations of

2-group representations

As a final note, we provide a brief overview of the various formulations of a 2-group

representation listed in the introduction.

4.1 Gerbal representations

In [FZ11], Frenkel and Zhu showed that a gerbal representation of a group G on an

abelian category C determines an action of G on the group Z(C)× = Tr(idC)
×, and

that such a representation determines a cohomology class [α] ∈ H3(G,Z(C)×). We

present their result here.

Theorem 4.1.1 ([FZ11, Theorem 2.10]). Let F be a gerbal representation of G on

C, and choose isomorphisms ψg,h : F (g)F (h)
∼=−→ F (gh) for all g, h ∈ G. Then given

g, h, k ∈ G, there is a unique element α(g, h, k) ∈ Z(C)× sending the isomorphism

F (g)F (h)F (k)
ψg,kF (k)
−−−−−→ F (gh)F (k)

ψgh,k−−−→ F (ghk)

to

F (g)F (h)F (k)
F (g)ψh,k−−−−−→ F (g)F (hk)

ψg,hk−−−→ F (ghk)

This defines a map α : G×G×G −→ Z(C)× such that
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(i) α is a 3-cocycle on G with values in Z(C)×, that is, α ∈ Z3(G,Z(C)×).

(ii) Given a different choice of isomorphisms ψ′
g,h : F (g)F (h)

∼=−→ F (gh), the new

cocycle α′ differs from α by a coboundary, so there is a well-defined cohomology

class [α] ∈ H3(G,Z(C)×) associated to the gerbal representation F .

From this, we see that a projective 2-representation is a special case of a gerbal

representation, where we require that our 3-cocycle α takes values in k× ⊂ Z(C)×

and that G acts on k× trivially.

4.2 2-group representations

Let G be a 2-group extension of G by [pt/C×]. Then a representation of G is a

monoidal functor

G −→ 1-Aut(V )

where V is an object in a strict C-linear 2-category C and 1-Aut(V ) is the corre-

sponding strict automorphism 2-group of V . We require that C be strict so as to

make use of string diagrams; we have seen that they can be an incredibly useful

tool. In the case G = CαG(C×) (see Example 1.1.29), this definition reduces to that

of a projective 2-representation.

4.3 Module categories over VecαG

We present the equivalence between projective 2-representations of a finite group G

with 3-cocycle α on a k-linear categoryM and VecαG-module category structures on

M.

Lemma 4.3.1. Let ϱ :M−→M be a projective 2-representations of a finite group

G with 3-cocycle α on a k-linear categoryM. ThenM has a VecαG-module category
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structure given by

Vg ⊗M := ρ(g)(M)

mg,h,M := ψ−1
g,h(M)

lM := ψ1(M)

for g, h ∈ G and M ∈ M. Furthermore, if σ : ϱ1 −→ ϱ2 is a morphism of such

projective 2-representations, then σ :M1 −→M2 is a VecαG-module category functor

with natural isomorphism given by

cg,M = σ(g)−1(M)

Finally, if θ : σ ⇒ ϕ is a 2-morphism of projective 2-representations, then θ is

equivalent to the data of a VecαG-module natural transformation θ : σ ⇒ ϕ.

Lemma 4.3.2. Let M be a k-linear module category over VecαG, then there is a

projective 2-representation ϱ of G onM with 3-cocycle α given by

ρ(g) := Vg ⊗−

ψg,h := m−1
g,h,−

ψ1 := l−

for g, h ∈ G. If F : M1 −→ M2 is a module category functor over VecαG, then

F :M1 −→M2 together with the 2-isomorphism

σ(g) := c−1
g,− : F (ϱ1(g)) −→ ϱ2(g)F (4.1)

is a morphism of projective 2-representations. As noted previously, if θ : σ ⇒ ϕ

is a module natural transformation over VecαG, then θ : σ ⇒ ϕ is equivalent to a

2-morphism of projective 2-representations.

Theorem 4.3.3. The assignment

2Repαk (G, C) −→ 2VecαG-Mod (4.2)
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described in Lemma 4.3.1 is a weak equivalence of 2-categories.

Proof. Tedious but straight forward.
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