Assignment 1

Due Monday, 3 April 2017, Noon

- 1. Let $N \trianglelefteq G$ be a normal subgroup, and assume that there exists a group homomorphism $p: G \to N$ that is left inverse to the inclusion of N in G.
 - (a) Show that there exists a group homomorphism

$$f: G \longrightarrow N \times (G/N)$$

satisfying

$$(\forall n \in N) \qquad f(n) = (1, n)$$

and

$$(\forall g \in G)$$
 $(pr_2 \circ f)(g) = gN.$

Here pr_2 denotes the projection to the second factor.

- (b) Prove that the homomorphism f you constructed in part (a) is in fact an isomorphism.
- (c) Reformulate the questions and answers above in terms of short exact sequences.
- 2. Let $\mathbb{Z}[i]$ be the ring of Gaussian integers, and $\mathbb{Z}[i, j, k]$ the ring of integer quaternions.
 - (a) Find all ring homomorphisms
 - i. from $\mathbb{Z}[i]$ to $\mathbb{Z}[i]$,
 - ii. from $\mathbb{Z}[i]$ to $\mathbb{Z}[i, j, k]$,
 - iii. from $\mathbb{Z}[i, j, k]$ to $\mathbb{Z}[i]$, and
 - iv. from $\mathbb{Z}[i, j, k]$ to $\mathbb{Z}[i, j, k]$.
 - (b) For each of your answers in (a) indicate which are endomorphisms, which are automorphisms, what are the respective kernels and images.
- 3. Let A be the abelian group

$$A = (\mathbb{Z}/4\mathbb{Z})^3.$$

- (a) Identify the endomorphism ring of A.
- (b) Identify all possible ways to equip A with the structure of a module over the group algebra Z[S₃]. Justify your answer.
- 4. In this question \mathbb{Z} refers to the abelian group $(\mathbb{Z}, +)$.
 - (a) Identify the group of (group) automorphisms of \mathbb{Z} .
 - (b) Find all possible actions of \mathbb{Z} on itself.
 - (c) For each action ρ you found in (b), form the semi-direct product $\mathbb{Z} \rtimes_{\rho} \mathbb{Z}$ and describe it in terms of generators and relations.
 - (d) For each of these actions write $\mathbb{Z} \rtimes_{\varrho} \mathbb{Z}$ as a quotient of a free group.

Justify your answers.