TUTORIAL 5 - ALGEBRA 2019

- (1) Show that Z is a PID, UFD, GCD domain, and Euclidean domain. Try to consider the properties you used in order to find a hierarchy between these classes.
- (2) Let $\mathcal{R} = \{f : \mathbb{C} \to \mathbb{C} \mid f \text{ is entire}\}$ be the ring of entire functions. Fill out some the following table with Yes or No, explaining each entry.

	GCD Domain	UFD	PID	Euclidean Domain
$\mathbb{Z}[X]$				
\mathbb{Z}_4				
$\mathbb{Z}[i]$				
$\mathbb{R}[X,Y]$				
\mathcal{R}				
$\mathbb{Z}[\frac{1}{2}(1+\sqrt{-19})]$				

- (3) Use the Euclidean algorithm to find inverses of some elements in $\mathbb{Z}_5[i]$ and $\mathbb{Z}_2[X]/\langle X^3 + X + 1 \rangle$.
- (4) Show that 9 is reducible in Z[i], and hence show that 3 is not prime (what are the units in Z[i]? This may be worth proving).
- (5) Is Q a free module over \mathbb{Z} ?