Tutorial 5 - Algebra 2019
(1) Show that \mathbb{Z} is a PID, UFD, GCD domain, and Euclidean domain. Try to consider the properties you used in order to find a hierarchy between these classes.
(2) Let $\mathcal{R}=\{f: \mathbb{C} \rightarrow \mathbb{C} \mid f$ is entire $\}$ be the ring of entire functions. Fill out some the following table with Yes or No, explaining each entry.

	GCD Domain	UFD	PID	Euclidean Domain
$\mathbb{Z}[X]$				
\mathbb{Z}_{4}				
$\mathbb{Z}[\mathrm{i}]$				
$\mathbb{R}[X, Y]$				
\mathcal{R}				
$\mathbb{Z}\left[\frac{1}{2}(1+\sqrt{-19})\right]$				

(3) Use the Euclidean algorithm to find inverses of some elements in $\mathbb{Z}_{5}[\mathrm{i}]$ and $\mathbb{Z}_{2}[X] /\left\langle X^{3}+X+1\right\rangle$.
(4) Show that 9 is reducible in $\mathbb{Z}[i]$, and hence show that 3 is not prime (what are the units in $\mathbb{Z}[\mathrm{i}]$? This may be worth proving).
(5) Is \mathbb{Q} a free module over \mathbb{Z} ?

