Tutorial 6 – Algebra 2019

Let $F \subset K$ be fields, and let *a* be an element of *K*.

- (1) Recall what it means for a to be algebraic over F.
- (2) In class, you saw a fast forward version of the proof that the field extension generated by F and a is isomorphic to the quotient of a polynomial algebra. In this tutorial, you will fill in the details.
 - (a) Recall the definition of the relevant map ϕ from a polynomial algebra to K.
 - (b) Show that $im(\phi)$ is an integral domain.
 - (c) Using the first isomorphism theorem, argue that $ker(\phi)$ is a prime ideal.
 - (d) Show that F[x] is a PID.
 - (e) Prove that ker(phi) is maximal.
 - (f) Prove that ker(phi) = (p(x)) where p(x) is an irreducible polynomial.
 - (g) Prove that $im(\phi)$ is a field.
 - (h) Prove $im(\phi) = F(a)$.
 - (i) Describe F(a) as a quotient of the polynomial algebra F[x].
- (3) Work through some examples. A good place to get a feel for what is going on is the extension $\mathbb{F}_2 \subset \mathbb{F}_{16}$.