
Assignment 1 - Commutative and Multilinear Algebra

1

Show that the symmetric and the exterior powers are exponential in the following sense.
There exist natural isomorphisms.

a)

Sn(V ⊕W ) ∼=
⊕
k+l=n

Sk(V )⊗ Sl(W )

b)

Λn(V ⊕W ) ∼=
⊕
k+l=n

Λk(V )⊗ Λl(W )

Here V and W are vector spaces over a fixed field, k and the tensor product and direct sum
are taken over k.

a) We wish to that that there exists a natural transformation between the functors
Sn(−⊕−) and

⊕
k+l=n S

k(−)⊗ Sl(−).

Let k be a field and V,W,X, Y be vector spaces over k with linear maps α : V → X
and β : W → Y .

This means we need to find a family of isomorphisms ϕV,W and ϕX,Y that make the fol-
lowing diagrams commute for all V,W,X, Y, α, β.

Sn(V ⊕W )
ϕV,W→

⊕
k+l=n S

k(V )⊗ Sl(W )
↓ Sn(α⊕β) ↓ ⊕

k+l=n S
k(α)⊗Sl(β)

Sn(X ⊕ Y )
ϕX,Y→

⊕
k+l=n S

k(X)⊗ Sl(Y )

Let C,D,E, F be ordered sets such that {vc}c∈C is an ordered basis for V , {wd}d∈D is an
ordered basis for W , {xe}e∈E is an ordered basis for X, {yf}f∈F is an ordered basis for Y .
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We will abuse notation slightly and consider vc, wd ∈ V ⊕W and xe, yf ∈ X ⊕ Y . Then
{{vc}c∈C , {wd}d∈D} is an ordered basis for V ⊕W and {{xe}e∈E, {yf}f∈F} is a basis for X⊕Y .

This means that
vi1 · ... · vik · wj1 · ... · wjl

with k + l = n, i1, ..., ik ∈ C, j1, ..., jl ∈ D with i1 ≤ ... ≤ ik and j1 ≤ ... ≤ jl forms a basis
for Sn(V ⊕W ). Similarly

xi1 · ... · xik · yj1 · ... · yjl
with k + l = n, i1, ..., ik ∈ E, j1, ..., jl ∈ F with i1 ≤ ... ≤ ik and j1 ≤ ... ≤ jl forms a basis
for Sn(X ⊕ Y ).

Now we also have
(vi1 · ... · vik)⊗ (wj1 · ... · wjl)

with k + l = n, i1, ..., ik ∈ C, j1, ..., jl ∈ D with i1 ≤ ... ≤ ik and j1 ≤ ... ≤ jl forms a basis
for
⊕

k+l=n S
k(V )⊗ Sl(W ). Similarly

(xi1 · ... · xik)⊗ (yj1 · ... · yjl)

with k + l = n, i1, ..., ik ∈ E, j1, ..., jl ∈ F with i1 ≤ ... ≤ ik and j1 ≤ ... ≤ jl forms a basis
for
⊕

k+l=n S
k(X)⊗ Sl(Y ).

Define the linear map on the basis vectors as follows

ϕV,W : Sn(V ⊕W )→
⊕
k+l=n

Sk(V )⊗ Sl(W ) s.t

ϕV,W (vi1 · ... · vik · wj1 · ... · wjl) = (vi1 · ... · vik)⊗ (wj1 · ... · wjl)

ϕX,Y : Sn(X ⊕ Y )→
⊕
k+l=n

Sk(X)⊗ Sl(Y ) s.t

ϕX,Y (xi1 · ... · xik · yj1 · ... · yjl) = (xi1 · ... · xik)⊗ (yj1 · ... · yjl)

We can see that these maps are bijections between the basis vectors and so are isomorphisms
of vector spaces. We now wish to show that these isomorphisms doesn’t depend on the choice
of bases.

Let {rc}c∈C be another ordered basis for V and {sd}d∈D another ordered basis for W . We
will abuse notation slightly and consider ri, sj ∈ V ⊕ W . Then {{rc}c∈C , {sd}d∈D} is an
ordered basis for V ⊕W .

This means that
ri1 · ... · rik · sj1 · ... · sjl
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with k + l = n, i1, ..., ik ∈ C, j1, ..., jl ∈ D with i1 ≤ ... ≤ ik and j1 ≤ ... ≤ jl forms a basis
for Sn(V ⊕W ).

Now we also have
(ri1 · ... · rik)⊗ (sj1 · ... · sjl)

with k + l = n, i1, ..., ik ∈ C, j1, ..., jl ∈ D with i1 ≤ ... ≤ ik and j1 ≤ ... ≤ jl forms a basis
for
⊕

k+l=n S
k(V )⊗ Sl(W ).

Define the linear map on the basis vectors as follows

φV,W : Sn(V ⊕W )→
⊕
k+l=n

Sk(V )⊗ Sl(W ) s.t

φV,W (ri1 · ... · rik · sj1 · ... · sjl) = (ri1 · ... · rik)⊗ (sj1 · ... · sjl)

We can see that this map is a bijection between the basis vectors and so is an isomorphism
of vector spaces. We now wish to show that this isomorphism is the same as our initial
isomorphism ϕV,W .

We wish to show ϕV,W = φV,W and ϕX,Y = φX,Y .

Let A ∈ GL(V ), B ∈ GL(W ) be the change of basis matrices such that ri =
∑

j∈C Aijvj,
si =

∑
j∈D Bijwj.

Consider the difference between the images of the basis vectors.

ϕV,W (ri1 · ... · rik · sj1 · ... · sjl)− φV,W (ri1 · ... · rik · sj1 · ... · sjl)

= ϕV,W

((∑
m1∈C

Ai1m1vm1

)
· ... ·

(∑
mk∈C

Aikmk
vmk

)
·

(∑
n1∈D

Bj1n1wn1

)
· ... ·

(∑
nl∈D

Bjlnlwnl

))
−(ri1 · ... · rik)⊗ (sj1 · ... · sjl)

=
∑

m1,...,mk∈C

∑
n1,...,nl∈D

Ai1m1 ...Aikmk
Bj1n1 ...BjlnlϕV,W (vm1 · ... · vmk

· wm1 · ... · wml
)

−(ri1 · ... · rik)⊗ (sj1 · ... · sjl)

=
∑

m1,...,mk∈C

∑
n1,...,nl∈D

Ai1m1 ...Aikmk
Bj1n1 ...Bjlnl(vm1 · ... · vmk

⊗ wm1 · ... · wml
)

−(ri1 · ... · rik)⊗ (sj1 · ... · sjl)

=

((∑
m1∈C

Ai1m1vm1

)
· ... ·

(∑
mk∈C

Aikmk
vmk

)
⊗

(∑
n1∈D

Bj1n1wn1

)
· ... ·

(∑
nl∈D

Bjlnlwnl

))
−(ri1 · ... · rik)⊗ (sj1 · ... · sjl)
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= (ri1 · ... · rik)⊗ (sj1 · ... · sjl)− (ri1 · ... · rik)⊗ (sj1 · ... · sjl) = 0

So for any basis vector ri1 · ... · rik · sj1 · ... · sjl we have

ϕV,W (ri1 · ... · rik · sj1 · ... · sjl) = φV,W (ri1 · ... · rik · sj1 · ... · sjl)

This shows that ϕV,W = φV,W as they are both defined to be linear maps and the images of
the basis vectors to the same for each map.

Similarly it can be shown that ϕX,Y does not depend on the initial choice of bases xi and yj.

This means that we can define ϕV,W for any V,W without dependence on a choice of a basis
for V,W . So is a candidate for a natural transformation between the functors Sn(− ⊕ −)
and

⊕
k+l=n S

k(−)⊗ Sl(−).

To show that ϕV,W and ϕX,Y are natural we now need to consider the following compo-
sitions

ϕX,Y ◦ (Sn(α⊕ β))(⊕
k+l=n

Sk(α)⊗ Sl(β)

)
◦ ϕV,W

Now let α(vi) =
∑

j∈E αijxj and β(wi) =
∑

j∈F βijyj.

ϕX,Y ◦ (Sn(α⊕ β)) (vi1 · ... · vik · wj1 · ... · wjl)

= ϕX,Y (α(vi1) · ... · α(vik) · β(wj1) · ... · β(jl))

= ϕX,Y

((∑
k1∈E

αi1k1xk1

)
· ... ·

(∑
kk∈E

αikkkxkk

)
·

(∑
l1∈F

αj1l1xl1

)
· ... ·

(∑
ll∈F

αjlllxll

))

= ϕX,Y

( ∑
k1,...,kk∈E

∑
l1,...,ll∈F

αi1,k1 ...αikkkβj1l1 ...βjlll(xk1 · ... · xkk · yl1 · ... · yll)

)

=
∑

k1,...,kk∈E

∑
l1,...,ll∈F

αi1,k1 ...αikkkβj1l1 ...βjlll(xk1 · ... · xkk ⊗ yl1 · ... · yll)

=

((∑
k1∈E

αi1k1xk1

)
· ... ·

(∑
kk∈E

αikkkxkk

))
⊗

((∑
l1∈F

αj1l1xl1

)
· ... ·

(∑
ll∈F

αjlllxll

))
= (α(vi1) · ... · α(vik))⊗ (β(wj1) · ... · β(jl))

=

(⊕
k+l=n

Sk(α)⊗ Sl(β)

)
((vi1 · ... · vik)⊗ (wj1 · ... · wjl))
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=

(⊕
k+l=n

Sk(α)⊗ Sl(β)

)
◦ ϕV,W (vi1 · ... · vik · wj1 · ... · wjl)

Now we have two linear maps that agree on each basis vector so

ϕX,Y ◦ (Sn(α⊕ β)) =

(⊕
k+l=n

Sk(α)⊗ Sl(β)

)
◦ ϕV,W

This shows that ϕ(−,−) is a natural transformation between the functors Sn(− ⊕ −) and⊕
k+l=n S

k(−)⊗ Sl(−).

b) We wish to that that there exists a natural transformation between the functors
Λn(−⊕−) and

⊕
k+l=n Λk(−)⊗ Λl(−).

Let k be a field and V,W,X, Y be vector spaces over k with linear maps α : V → X
and β : W → Y .

This means we need to find a family of isomorphisms ϕV,W and ϕX,Y that make the fol-
lowing diagrams commute for all V,W,X, Y, α, β.

Λn(V ⊕W )
ϕV,W→

⊕
k+l=n Λk(V )⊗ Λl(W )

↓ Λn(α⊕β) ↓ ⊕
k+l=n Λk(α)⊗Λl(β)

Λn(X ⊕ Y )
ϕX,Y→

⊕
k+l=n Λk(X)⊗ Λl(Y )

Let C,D,E, F be ordered sets such that {vc}c∈C is an ordered basis for V , {wd}d∈D is an
ordered basis for W , {xe}e∈E is an ordered basis for X, {yf}f∈F is an ordered basis for Y .
We will abuse notation slightly and consider vc, wd ∈ V ⊕W and xe, yf ∈ X ⊕ Y . Then
{{vc}c∈C , {wd}d∈D} is an ordered basis for V ⊕W and {{xe}e∈E, {yf}f∈F} is a basis for X⊕Y .

This means that
vi1 ∧ ... ∧ vik ∧ wj1 ∧ ... ∧ wjl

with k + l = n, i1, ..., ik ∈ C, j1, ..., jl ∈ D with i1 < ... < ik and j1 < ... < jl forms a basis
for Λn(V ⊕W ). Similarly

xi1 ∧ ... ∧ xik ∧ yj1 ∧ ... ∧ yjl
with k + l = n, i1, ..., ik ∈ E, j1, ..., jl ∈ F with i1 < ... < ik and j1 < ... < jl forms a basis
for Λn(X ⊕ Y ).

Now we also have
(vi1 ∧ ... ∧ vik)⊗ (wj1 ∧ ... ∧ wjl)
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with k + l = n, i1, ..., ik ∈ C, j1, ..., jl ∈ D with i1 < ... < ik and j1 < ... < jl forms a basis
for
⊕

k+l=n Λk(V )⊗ Λl(W ). Similarly

(xi1 ∧ ... ∧ xik)⊗ (yj1 ∧ ... ∧ yjl)

with k + l = n, i1, ..., ik ∈ E, j1, ..., jl ∈ F with i1 < ... < ik and j1 < ... < jl forms a basis
for
⊕

k+l=n Λk(X)⊗ Λl(Y ).

Define the linear map on the basis vectors as follows

ϕV,W : Λn(V ⊕W )→
⊕
k+l=n

Λk(V )⊗ Λl(W ) s.t

ϕV,W (vi1 ∧ ... ∧ vik ∧ wj1 ∧ ... ∧ wjl) = (vi1 ∧ ... ∧ vik)⊗ (wj1 ∧ ... ∧ wjl)

ϕX,Y : Λn(X ⊕ Y )→
⊕
k+l=n

Λk(X)⊗ Λl(Y ) s.t

ϕX,Y (xi1 ∧ ... ∧ xik ∧ yj1 ∧ ... ∧ yjl) = (xi1 ∧ ... ∧ xik)⊗ (yj1 ∧ ... ∧ yjl)

We can see that these maps are bijections between the basis vectors and so are isomorphisms
of vector spaces. We now wish to show that these isomorphisms doesn’t depend on the choice
of bases.

Let {rc}c∈C be another ordered basis for V and {sd}d∈D another ordered basis for W . We
will abuse notation slightly and consider ri, sj ∈ V ⊕ W . Then {{rc}c∈C , {sd}d∈D} is an
ordered basis for V ⊕W .

This means that
ri1 ∧ ... ∧ rik ∧ sj1 ∧ ... ∧ sjl

with k + l = n, i1, ..., ik ∈ C, j1, ..., jl ∈ D with i1 < ... < ik and j1 < ... < jl forms a basis
for Λn(V ⊕W ).

Now we also have
(ri1 ∧ ... ∧ rik)⊗ (sj1 ∧ ... ∧ sjl)

with k + l = n, i1, ..., ik ∈ C, j1, ..., jl ∈ D with i1 < ... < ik and j1 < ... < jl forms a basis
for
⊕

k+l=n Λk(V )⊗ Λl(W ).

Define the linear map on the basis vectors as follows

φV,W : Λn(V ⊕W )→
⊕
k+l=n

Λk(V )⊗ Λl(W ) s.t

φV,W (ri1 ∧ ... ∧ rik ∧ sj1 ∧ ... ∧ sjl) = (ri1 ∧ ... ∧ rik)⊗ (sj1 ∧ ... ∧ sjl)
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We can see that this map is a bijection between the basis vectors and so is an isomorphism
of vector spaces. We now wish to show that this isomorphism is the same as our initial
isomorphism ϕV,W .

We wish to show ϕV,W = φV,W and ϕX,Y = φX,Y .

Let A ∈ GL(V ), B ∈ GL(W ) be the change of basis matrices such that ri =
∑

j∈C Aijvj,
si =

∑
j∈D Bijwj.

Consider the difference between the images of the basis vectors.

ϕV,W (ri1 ∧ ... ∧ rik ∧ sj1 ∧ ... ∧ sjl)− φV,W (ri1 ∧ ... ∧ rik ∧ sj1 ∧ ... ∧ sjl)

= ϕV,W

((∑
m1∈C

Ai1m1vm1

)
∧ ... ∧

(∑
mk∈C

Aikmk
vmk

)
∧

(∑
n1∈D

Bj1n1wn1

)
∧ ... ∧

(∑
nl∈D

Bjlnlwnl

))
−(ri1 ∧ ... ∧ rik)⊗ (sj1 ∧ ... ∧ sjl)

=
∑

m1,...,mk∈C

∑
n1,...,nl∈D

Ai1m1 ...Aikmk
Bj1n1 ...BjlnlϕV,W (vm1 ∧ ... ∧ vmk

∧ wm1 ∧ ... ∧ wml
)

−(ri1 ∧ ... ∧ rik)⊗ (sj1 ∧ ... ∧ sjl)

=
∑

m1,...,mk∈C

∑
n1,...,nl∈D

Ai1m1 ...Aikmk
Bj1n1 ...Bjlnl(vm1 ∧ ... ∧ vmk

⊗ wm1 ∧ ... ∧ wml
)

−(ri1 ∧ ... ∧ rik)⊗ (sj1 ∧ ... ∧ sjl)

=

((∑
m1∈C

Ai1m1vm1

)
∧ ... ∧

(∑
mk∈C

Aikmk
vmk

)
⊗

(∑
n1∈D

Bj1n1wn1

)
∧ ... ∧

(∑
nl∈D

Bjlnlwnl

))
−(ri1 ∧ ... ∧ rik)⊗ (sj1 ∧ ... ∧ sjl)

= (ri1 ∧ ... ∧ rik)⊗ (sj1 ∧ ... ∧ sjl)− (ri1 ∧ ... ∧ rik)⊗ (sj1 ∧ ... ∧ sjl) = 0

So for any basis vector ri1 ∧ ... ∧ rik ∧ sj1 ∧ ... ∧ sjl we have

ϕV,W (ri1 ∧ ... ∧ rik ∧ sj1 ∧ ... ∧ sjl) = φV,W (ri1 ∧ ... ∧ rik ∧ sj1 ∧ ... ∧ sjl)

This shows that ϕV,W = φV,W as they are both defined linear maps and the images of the
basis vectors to the same for each map.

Similarly it can be shown that ϕX,Y does not depend on the initial choice of bases xi and yj.

This means that we can define ϕV,W for any V,W without dependence on the choice of a basis
for V,W . So is a candidate for a natural transformation between the functors Λn(− ⊕ −)
and

⊕
k+l=n Λk(−)⊗ Λl(−).
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To show that ϕV,W and ϕX,Y are natural we now need to consider the following compo-
sitions

ϕX,Y ◦ (Λn(α⊕ β))(⊕
k+l=n

Λk(α)⊗ Λl(β)

)
◦ ϕV,W

Now let α(vi) =
∑

j∈E αijxj and β(wi) =
∑

j∈F βijyj.

ϕX,Y ◦ (Λn(α⊕ β)) (vi1 ∧ ... ∧ vik ∧ wj1 ∧ ... ∧ wjl)

= ϕX,Y (α(vi1) ∧ ... ∧ α(vik) ∧ β(wj1) ∧ ... ∧ β(jl))

= ϕX,Y

((∑
k1∈E

αi1k1xk1

)
∧ ... ∧

(∑
kk∈E

αikkkxkk

)
∧

(∑
l1∈F

αj1l1xl1

)
∧ ... ∧

(∑
ll∈F

αjlllxll

))

= ϕX,Y

( ∑
k1,...,kk∈E

∑
l1,...,ll∈F

αi1,k1 ...αikkkβj1l1 ...βjlll(xk1 ∧ ... ∧ xkk ∧ yl1 ∧ ... ∧ yll)

)

=
∑

k1,...,kk∈E

∑
l1,...,ll∈F

αi1,k1 ...αikkkβj1l1 ...βjlll(xk1 ∧ ... ∧ xkk ⊗ yl1 ∧ ... ∧ yll)

=

((∑
k1∈E

αi1k1xk1

)
∧ ... ∧

(∑
kk∈E

αikkkxkk

))
⊗

((∑
l1∈F

αj1l1xl1

)
∧ ... ∧

(∑
ll∈F

αjlllxll

))
= (α(vi1) ∧ ... ∧ α(vik))⊗ (β(wj1) ∧ ... ∧ β(jl))

=

(⊕
k+l=n

Λk(α)⊗ Λl(β)

)
((vi1 ∧ ... ∧ vik)⊗ (wj1 ∧ ... ∧ wjl))

=

(⊕
k+l=n

Λk(α)⊗ Λl(β)

)
◦ ϕV,W (vi1 ∧ ... ∧ vik ∧ wj1 ∧ ... ∧ wjl)

Now we have two linear maps that agree on each basis vector so

ϕX,Y ◦ (Λn(α⊕ β)) =

(⊕
k+l=n

Λk(α)⊗ Λl(β)

)
◦ ϕV,W

This shows that ϕ(−,−) is a natural transformation between the functors Λn(− ⊕ −) and⊕
k+l=n Λk(−)⊗ Λl(−).
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2

Let R be a Noetherian ring, and let

x = (x1, ..., xn)

be a sequence of elements in R. Write (e1, ..., en) be the standard basis of the free R-module
Rn. Let K•(R, x) be the chain complex

R
∂1←− Λ1Rn ∂2←− Λ2Rn ∂3←− ...

∂n←− ΛnRn ←− 0

where the exterior powers are taken over R, and ΛiRn sits in degree i, and the differentials
are defined, on the basis discussed in class, as

∂i(ej1 ∧ ej2 ∧ ... ∧ eji) =
i∑

k=1

(−1)k+1xjkej1 ∧ ... ∧ êjk ∧ ... ∧ eji

a) What is K•(R, x) for a sequence x = (x) of length 1?

R
∂1←− Λ1R←− 0

With ∂1 : Λ1R→ R the R-linear map such that ∂1(e1) = x.

So that with the canonical identification Λ1R ∼= R we have ∂1 corresponding to multiplication
by x.

b) Show that K•(R, x) is indeed a chain complex.

δi−1 ◦ δi(ej1 ∧ ej2 ∧ ... ∧ eji) = δi−1

(
i∑

k=1

(−1)k+1xjkej1 ∧ ... ∧ êjk ∧ ... ∧ eji

)

=
i∑

k=1

(−1)k+1xjkδi−1(ej1 ∧ ... ∧ êjk ∧ ... ∧ eji)

=
i∑

k=2

(−1)k+1xik

(∑
1≤l<k

(−1)l+1xilej1 ∧ ... ∧ êjl ∧ ... ∧ êjk ∧ ... ∧ eji

)

+
i−1∑
k=1

(−1)k+1xik

(∑
k<l≤i

(−1)lxilej1 ∧ ... ∧ êjk ∧ ... ∧ êjl ∧ ... ∧ eji

)
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=
∑

1≤k<l≤i

(−1)k+l+2xilxikej1 ∧ ... ∧ êjl ∧ ... ∧ êjk ∧ ... ∧ eji

+
∑

1≤k<l≤i

(−1)k+l+1xikxilej1 ∧ ... ∧ êjk ∧ ... ∧ êjl ∧ ... ∧ eji

(Note: that when k < l that ejl is actually the (l − 1)-th position as we removed the k-th
position where we had ejk . This is why we only get the (−1)k+l+1 instead of the (−1)k+l+2.)

=
∑

1≤l<k≤i

(−1)k+l+2xilxikej1 ∧ ... ∧ êjl ∧ ... ∧ êjk ∧ ... ∧ eji

−
∑

1≤k<l≤i

(−1)k+l+2xikxilej1 ∧ ... ∧ êjk ∧ ... ∧ êjl ∧ ... ∧ eji

=
∑

1≤l<k≤i

(−1)k+l+2xilxikej1 ∧ ... ∧ êjl ∧ ... ∧ êjk ∧ ... ∧ eji

−
∑

1≤l<k≤i

(−1)k+l+2xilxikej1 ∧ ... ∧ êjl ∧ ... ∧ êjk ∧ ... ∧ eji = 0

Where we have simply switched the dummy variables in the second summation.

We have showed that for any i > 1 and any basis vector ej1∧...∧eji that ∂i−1◦∂i(ej1∧...∧eji) =
0. This shows that ∂2 = 0 which means that K•(R, x) is indeed a chain complex.

(Note: that if we take ∂0 = 0 then trivially ∂0 ◦ ∂1 = 0.)

d) Show that
K•(R, x, y) = K•(R, x)⊗R K•(R, y)

where ⊗R is the tensor product of chain complexes.

The definition of the tensor product of chain complexes is given as follows. Let

C0

∂c1←− C1

∂c2←− C2

∂c3←− ... and D0

∂d1←− D1

∂d2←− D2

∂d3←− ...

be chain complexes over R. (i.e Ci and Dj are R-modules.

Then

C0

∂c1←− C1

∂c2←− C2

∂c3←− ...

⊗R

D0

∂d1←− D1

∂d2←− D2

∂d3←− ...

10



:=
⊕
k+l=0

(Ck ⊗R Dl)
∆1←−

⊕
k+l=1

(Ck ⊗R Dl)
∆2←−

⊕
k+l=2

(Ck ⊗R Dl)
∆3←− ...

where
∆i :

⊕
k+l=i

(Ck ⊗R Dl)→
⊕

k+l=i−1

(Ck ⊗R Dl) s.t

for xk ∈ Ck and yl ∈ Dl

∆k+l(xk ⊗ yl) = ∂ck(xk)⊗ yl + (−1)kxk ⊗ ∂dl(yl)

Now we will consider the tensor product of K•(R, x) ⊗R K•(R, xn+1). If we can prove that
K•(R, x)⊗R K•(R, xn+1) = K•(R, x, xn+1) then by induction we can see that K•(R, x, y) =
K•(R, x)⊗R K•(R, y) for any y = (y1, ..., ym) not just y = xn+1.

We have the following from the definition of tensor product of chain complexes

K•(R, x)⊗R K•(R, xn+1) = R
D1←− Λ1(Rn)⊕ Λ1(R)

D2←− Λ2(Rn)⊕ Λ1(Rn)⊗ Λ1(R)
D3←− ...

...
Di←−
(
Λi(Rn)

)
⊕
(
Λi−1(Rn)⊗ Λ1(R)

) Di+1←− ...
Dn←− (Λn(Rn))⊕

(
Λn−1(Rn)⊗ Λ1(R)

)
←− 0

where for a ∈ Λi(Rn) and b⊗ en+1 ∈ Λi−1(Rn)⊗ Λ1(R) we have

Di(a+ b⊗ en+1) =
(
∂i(a) + (−1)i+1xn+1b

)
+ (∂i−1(b)⊗ en+1)

where we have made repeated use of the fact that for A an R-module we have a natural
isomorphism R ⊗R A ∼= A and that the chain map for K•(R, xn+1) is simply multiplication
by xn+1 as was discussed in part a).

We want to show that this chain complex is isomorphic to K•(R, x, xn+1).

We must define isomorphisms ϕi : Λi(Rn) ⊕ Λi−1(Rn) ⊗ Λ1(R) → Λi(Rn+1) such that
ϕi−1 ◦Di = ∂i ◦ ϕi that is ϕi such that the following diagram commutes.

R
D1←− Λ1(Rn)⊕ Λ1(R)

D2←− Λ2(Rn)⊕ Λ1(Rn)⊗ Λ1(R)
D3←− ...

↓ϕ0 ↓ϕ1 ↓ϕ2

R
∂1←− Λ1(Rn+1)

∂2←− Λ2(Rn+1)
D3←− ...

...
Dn+1←− (Λn(Rn))⊕ (Λn−1(Rn)⊗ Λ1(R)) ←− 0

↓ϕn ↓
...

∂n+1←− Λn+1(Rn+1) ←− 0

We will use a similar isomorphism we constructed in question 1. Explicitly we consider the
basis of Λi(Rn) and Λi−1(Rn)⊗Λ1(R) given by ej1 ∧ ...∧ eji ∈ Λi(Rn) and em1 ∧ ...∧ emi−1

⊗
en+1 ∈ Λi−1(Rn) ⊗ Λ1(R) where j1, ..., ji,m1, ...,mi−1 ∈ {1, ..., n} with j1 < ... < ji and
m1 < ... < mi−1.
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Then define ϕi to be the linear map such that ϕi(ej1 ∧ ...∧eji) = ej1 ∧ ...∧eji ∈ Λi(Rn+1) and
ϕi(em1 ∧ ...∧ emi−1

⊗ en+1) = em1 ∧ ...∧ emi−1
∧ en+1. We can see that this is an isomorphism

as it is induced by a bijective map between the basis vectors of a free R-module.

Now we wish to show that ϕi−1 ◦Di = ∂i ◦ ϕi on each of the basis vectors.

ϕi−1 ◦Di(ej1 ∧ ... ∧ eji) = ϕi−1(δi(ej1 ∧ ... ∧ eji))

= ϕi−1

(
i∑

k=1

(−1)k+1xjkej1 ∧ ... ∧ êjk ∧ ... ∧ eji

)

=
i∑

k=1

(−1)k+1xjkϕi−1(ej1 ∧ ... ∧ êjk ∧ ... ∧ eji)

=
i∑

k=1

(−1)k+1xjkej1 ∧ ... ∧ êjk ∧ ... ∧ eji

= ∂i(ej1 ∧ ... ∧ eji) = ∂i ◦ ϕi(ej1 ∧ ... ∧ eji)

We also have
ϕi−1 ◦Di(em1 ∧ ... ∧ emi−1

⊗ en+1)

= ϕi−1(∂i−1(em1 ∧ ... ∧ emi−1
)⊗ en+1 + (−1)i+1em1 ∧ ... ∧ emi−1

⊗ ∂(en+1))

= ϕi−1

(
i−1∑
k=1

(−1)k+1xmk
em1 ∧ ... ∧ êmk

∧ ... ∧ emi−1
⊗ en+1 + (−1)i+1xn+1em1 ∧ ... ∧ emi−1

)

=
i−1∑
k=1

(−1)k+1xmk
ϕi−1

(
em1 ∧ ... ∧ êmk

∧ ... ∧ emi−1
⊗ en+1

)
+(−1)i+1xn+1ϕ

(
em1 ∧ ... ∧ emi−1

)
=

i−1∑
k=1

(−1)k+1xmk
em1 ∧ ... ∧ êmk

∧ ... ∧ emi−1
∧ en+1 + (−1)i+1xn+1em1 ∧ ... ∧ emi−1

=
i∑

k=1

(−1)k+1xmk
em1 ∧ ... ∧ êmk

∧ ... ∧ emi

where we denote mi = n+ 1.

= ∂i(em1 ∧ ... ∧ emi
) = ∂i ◦ ϕi(em1 ∧ ... ∧ emi−1

⊗ emi
) = ∂i ◦ ϕi(em1 ∧ ... ∧ emi−1

⊗ en+1)

So for all basis vectors ej1 ∧ ...∧ eji ∈ Λi(Rn) and em1 ∧ ...∧ emi−1
⊗ en+1 ∈ Λi−1(Rn)⊗Λ1(R)

we have
ϕi−1 ◦Di(ej1 ∧ ... ∧ eji) = ∂i ◦ ϕi(ej1 ∧ ... ∧ eji)

ϕi−1 ◦Di(em1 ∧ ... ∧ emi−1
⊗ en+1) = ∂i ◦ ϕi(em1 ∧ ... ∧ emi−1

⊗ en+1)
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As ϕi−1 ◦Di and ∂i ◦ ϕi are linear maps we see that ϕi−1 ◦Di = ∂i ◦ ϕi.

This shows that ϕi is an isomorphism between K•(R, x, xn+1) = K•(R, x) ⊗R K•(R, xn+1).
By induction we have K•(R, x, y) ∼= K•(R, x)⊗R K•(R, y).

We also get by induction that

K•(R, x) ∼= K•(R, x1)⊗R ...⊗R K•(R, xn)

Using a) we see that the i-th degree of the RHS is given by

i1+...+in=i⊕
i1,...,in∈{0,1}

Λi1(R)⊗R ...⊗R Λin(R) ∼=
i1+...+in=i⊕
i1,...,in∈{0,1}

R ∼= R

n
k



where we take Λ0(R) = R. If we let ej1...ji be the basis vector for the j1, ..., ji term in the
summation. We get the chain map

Di(ej1...ji) =
i∑

k=1

(−1)k+1xjkej1...êjk ...ji

Note that this means our complex is made of out free R-modules.

c) Assuming that x is an R-regular sequence, show that K•(R, x) is a free resolution of
R/(x).

A sequence (x1, ...xn) is R-regular if and only if for i ∈ 1, ..., n that xi + (x1, ..., xi−1) ∈
R/(x1, ..., xi) is not a 0 divisor where for i = 1 we mean x1 ∈ R is not a zero divisor.

Firstly note that R and Λi(Rn) are both free R-modules (this was made explicit at the
end of d)) and so if we show that

0←− R/(x1, ..., xn)
qn←− K•(R, x1, ..., xn)

is exact. Then by definition K•(R, x1, ..., xn) is a free resolution of R/(x1, ..., xn). We will
show this by induction. Our base case is given as follows.

0←− R/(x1)
q1←− R

∂1←− R←− 0

Our inductive step will be the following. If

0←− R/(x)
qn←− R

∂1←− Λ1Rn ∂2←− Λ2Rn ∂3←− ...
∂n←− ΛnRn ←− 0

is exact then

0←− R/(x)
qn+1←− R

∂1←− Λ1Rn+1 ∂2←− Λ2Rn+1 ∂3←− ...
∂n+1←− Λn+1Rn+1 ←− 0

is exact. The result will then follow by induction.
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Base Case: We will prove the base case. Consider

0←− R/(x1)
q1←− R

∂1←− R←− 0

Then notice that q1 ◦ ∂1(r) = q1(x1r) = x1r + (x1) = 0 + (x1).

So 0←− R/(x1)
q1←− R

∂1←− R←− 0 is indeed as chain complex.

Now note that ∂1 is injective as for r ∈ R we have 0 = ∂1(r) = x1r. We know that
(x1) is an R-regular sequence so in particular x1 is not a zero divisor. This means that r = 0
which in turn means that ∂1 is injective.

Now we can also see that q1 is surjective as it is a quotient map.

This shows that 0 ←− R/(x1)
q1←− R

∂1←− R ←− 0 is a short exact sequence and there-
fore we have that

0←− R/(x1)
q1←− K•(R, x1)

is exact and therefore we have that K•(R, x1) is a free resolution of R/(x1).

Inductive Step: Let

0←− R/(x)
qn←− R

∂1←− Λ1Rn ∂2←− Λ2Rn ∂3←− ...
∂n←− ΛnRn ←− 0

be an exact chain complex. Consider

0←− R/(x, xn+1)
qn+1←− R

∂1←− Λ1Rn+1 ∂2←− Λ2Rn+1 ∂3←− ...
∂n+1←− Λn+1Rn+1 ←− 0

From question d) we have

0←− R/(x, xn+1)
qn+1←− R

∂1←− Λ1Rn+1 ∂2←− Λ2Rn+1 ∂3←− ...
∂n+1←− Λn+1Rn+1 ←− 0

∼= 0←− R/(x, xn+1)
qn+1←− R

D1←− Λ1(Rn)⊕ Λ1(R)
D2←− Λ2(Rn)⊕ Λ1(Rn)⊗ Λ1(R)

D3←− ...

...
Di←−
(
Λi(Rn)

)
⊕
(
Λi−1(Rn)⊗ Λ1(R)

) Di+1←− ...
Dn←− (Λn(Rn))⊕

(
Λn−1(Rn)⊗ Λ1(R)

)
←− 0

There are four cases of interest. Need to prove exactness at R/(x, xn+1), R, Λ1(Rn)⊕Λ1(R)
and (Λi(Rn))⊕ (Λi−1(Rn)⊗ Λ1(R)). Cases 1 and 2 and part d) prove that we have a chain
complex.

Case 1: R/(x, xn+1)

ker(0) = R/(x, xn+1) and as qm is a quotient map and therefore surjective Im(qn+1) =
R/(x, xn+1).

So ker(0) = Im(qn+1).
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Case 2: R

ker(qn+1) = (x1, ..., xn+1).

So Im(D1) =
{
D1(

∑n+1
i=1 riei)|ri ∈ R

}
=
{∑n+1

i=1 riD1(ei)|ri ∈ R
}

=
{∑n+1

i=1 rixi|ri ∈ R
}

=
(x1, ..., xn+1).

So ker(qn+1) = Im(D1).

Case 3: Λ1(Rn)⊕ Λ1(R)

We know that D1 ◦D2 = 0 so we see that Im(D2) ⊆ ker(D1).

We want to show that ker(D1) ⊆ Im(D2).

Let D1(
∑n+1

i=1 riei) =
∑n+1

i=1 rixi = 0 or in other words
∑n+1

i=1 riei ∈ ker(D1). We want
to show that

∑n+1
i=1 riei ∈ Im(D2).

Now consider the expression 0 = D1(
∑n+1

i=1 riei) in the following quotient

0 + (x1, ..., xn) =
n+1∑
i=1

rixi + (x1, ..., xn) = rn+1xn+1 + (x1, ..., xn)

As x1, ..., xn+1 is R-regular xn+1 is not a zero divisor in R/(x1, ..., xn) so rn+1 + (x1, ..., xn) =
0 + (x1, ..., xn). In other words

rn+1 ∈ (x1, ..., xn)

This means rn+1 =
∑n

i=1 sixi for some si ∈ R. So we get

n+1∑
i=1

riei =

(
n∑

i=1

riei

)
+

n∑
i=1

sixien+1

and also

0 =
n+1∑
i=1

rixi =
n∑

i=1

(ri + sixn+1)xi

So

∂1(
n∑

i=1

(ri + sixn+1)ei) = 0

This means by our inductive assumption, ker(∂1) = Im(∂2), that there exists p ∈ Λ2(Rn)
such that

∂2(p) =
n∑

i=1

(ri + sixn+1)ei
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Consider p+
∑n

i=1 siei ⊗ en+1 ∈ Λ1(Rn)⊕ Λ1(R). Now note that

D1

(
p+

n∑
i=1

siei ⊗ en+1

)
= ∂2(p) + ∂1

(
n∑

i=1

siei

)
⊗ en+1(−1)2+1

n∑
i=1

sixn+1ei

=
n∑

i=1

(ri + sixn+1)ei +
n∑

i=1

sixien+1 −
n∑

i=1

sixn+1ei

=
n∑

i=1

riei + rn+1en+1 =
n+1∑
i=1

riei

where we used the fact that the si ∈ R were defined such that
∑n

i=1 sixi = rn+1. This shows
that ker(D1) ⊆ Im(D2) and therefore that ker(D1) = Im(D2).

Case 4: (Λi(Rn))⊕ (Λi−1(Rn)⊗ Λ1(R)) for 2 ≤ i ≤ n (we use ∂i−1 which means that i > 1
so this does not apply to case 3).

We know from b) and d) that Di ◦ Di+1 = 0. This means that Im(Di+1) ⊆ ker(Di).
So we must know show that Im(Di+1) ⊇ ker(Di).

Let (a+ b⊗ en+1) ∈ (Λi(Rn))⊕ (Λi−1(Rn)⊗ Λ1(R)) such that Di(a+ b⊗ en+1) = 0. That is
let a+ b⊗ en+1 ∈ ker(Di).

Di(a+ b⊗ en+1) =
(
∂i(a) + (−1)i+1xn+1b

)
+ (∂i−1(b)⊗ en+1) = 0

⇒ ∂i(a) + (−1)i+1xn+1b = 0 and ∂i−1(b) = 0

As we have assumed for our induction that 0←− R/(x1, ..., xn)
qn←− K•(R, x1, ..., xn) is exact

we have ker(∂i−1) = Im(∂i) and ker(∂i) = Im(∂i+1). Therefore there exists q ∈ Λi(Rn) such
that ∂i(q) = b. Therefore

0 = ∂i(a) + (−1)i+1xn+1b = ∂i(a) + (−1)i+1xn+1∂i(q) = ∂i(a+ (−1)i+1xn+1q)

So a+ (−1)i+1xn+1q ∈ ker(∂i) = Im(∂i+1).

So there exists p ∈ Λi+1(Rn) such that ∂i+1(p) = a+ (−1)i+1xn+1q.
Consider p+ q ⊗ en+1 ∈ (Λi+1(Rn))⊕ (Λi(Rn)⊗ Λ1(R)).

Di+1(p+ q ⊗ en+1) = ∂i+1(p) + (−1)i+2xn+1q + ∂i(q)⊗ en+1

= a+ (−1)i+1xn+1q + (−1)i+2xn+1q + b⊗ en+1

= a+ (−1)i+1xn+1q − (−1)i+1xn+1q + b⊗ en+1 = a+ b⊗ en+1

This shows that a+ b⊗ en+1 ∈ Im(Di+1). This means that ker(Di) ⊆ Im(Di+1).

Therefore ker(Di) = Im(Di+1) for all 2 ≤ i ≤ n+ 1

This covers all cases in the induction and completes the proof.
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3

Let X be a compact Hausdorff space and let C(X) denote the ring of all real-valued contin-
uous function on X.

Let x ∈ X and mx = {f ∈ C(X)|f(x) = 0}.

We claim that mx is maximal.
We have the following short exact sequence where the first arrow is inclusion and the second
arrow is evaluation at x.

0→ mx ↪→ C(X) � R→ 0

So C(X)/mx
∼= R. We know if a ring quotient an ideal is a field that the ideal must be

maximal.
Therefore mx is maximal.

Denote Max(C(X)) by X̃.

Define µ : X → X̃ such that µ(x) = mx.

We claim that this is a homeomorphism between X and X̃.

Injectivity: First to show injectivity we need to use Urysohn’s Lemma noting that X is
compact Hausdorff.
Urysohn’s lemma says for x 6= y ∈ X there exists f ∈ C(X, [0, 1]) such that f(x) = 1 and
f(y) = 0. So f ∈ my but f /∈ mx. Therefore if x 6= y then µ(x) = mx 6= my = µ(y).
Therefore µ is injective.

Surjectivity: We will now show that µ is surjective.
Let m ∈ X̃.
Define the following subset

V (m) = {x ∈ X|∀f ∈ m f(x) = 0}

There are two cases V = ∅ and V 6= ∅.
Suppose that V = ∅.
Then for each x ∈ X there exists fx ∈ m such that fx(x) 6= 0.
As fx(x) 6= 0 and fx is continuous there exists an open neighbourhood x ∈ Ux such that
0 /∈ fx(Ux).
Consider the cover

⋃
x∈X Ux = X.

As X is compact there exists a finite subcover.
That is there exists points x1, ..., xn ∈ X such that

⋃n
i=1 Uxi = X.

Consider the function f =
∑n

i=1(fxi)
2 : X → R≥0.

For x ∈ X we have x ∈ Uxj for some j = 1, ..., n.
So 0 < fxj(x)2 ≤

∑n
i=1(fxi)(x)2 = f(x).
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This means that ∀x ∈ X f(x) 6= 0 which means that 1
f

is continuous.

Therefore 1 = 1
f
f ∈ m and therefore m = C(X) which contradicts that fact that m is

maximal.
So the only possible case is that V (m) 6= ∅.
Suppose x ∈ V (m).
Then ∀f ∈ m we have f(x) = 0.
So m ⊆ mx.
As m and mx are maximal we have m = mx.
This show that if m ∈ X̃ that there exists x ∈ X such that m = mx = µ(x).
In other words µ is surjective.

Continuous and Open: Again using Urysohn’s lemma we get the following basis for the
topology of X given all f ∈ C(X).

Uf = {x ∈ X|f(x) 6= 0}

The standard topology on X̃ is given by the following basis given all f ∈ C(X).

Vf = {m ∈ X̃|f /∈ m}

Consider the following.

µ(Uf ) = µ({x ∈ X|f(x) 6= 0}) = {µ(x) ∈ X̃|x ∈ X and f(x) 6= 0}

= {mx ∈ X̃|x ∈ X and f(x) 6= 0} = {mx ∈ X̃|x ∈ X and f /∈ mx}

= {m ∈ X̃|f /∈ m} = Vf

where we used surjectivity of µ in the second last equality.
So µ(Uf ) = Vf .
This means that µ maps the basis {Uf} for the topology of X to the basis {Vf} for the

topology of X̃.
So µ is open.
As µ is a bijection we see that µ−1(Vf ) = Uf and therefore µ is continuous by the same
reasoning.

So µ is a homeomorphism.

4

Let k be an algebraically closed field.
Consider the polynomial ring in n variables k[t1, ..., tn].
Let A ⊆ k[t1, ..., tn].
Define

V (A) = {x ∈ kn|∀f ∈ A f(x) = 0}
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were we identify f ∈ k[t1, ..., tn] as polynomial functions from kn to k.
V (A) is what we call an affine variety.

Let I(V (A)) = {g ∈ k[t1, ..., tn]|∀x ∈ V (A) g(a) = 0}.
We call I(V (A)) the ideal of the variety V (A).
(Note: this is a subspace and for f ∈ k[t1, ..., tn] and g ∈ I(V (A)) we see that for x ∈ A we
have (f · g)(x) = f(x)g(x) = f(x) · 0 = 0. So I(V (A)) is in fact an ideal.)

Define the following ring
P (V (A)) = k[t1, ..., tn]/I(V (A))

We can view P (V (A)) as polynomial functions on V (A) as for f, g ∈ k[t1, ..., tn] then
f + I(V (A)) = g + I(V (A)) if and only if f − g + I(V (A)) = 0 + I(V (A)) if and only
if f − g ∈ I(V (A)) if and only if for x ∈ V (A) we have f(x) − g(x) = 0 and therefore
f(x) = g(x).

Let ξi = ti + I(V (A)) ∈ P (V (A)).
We call the ξi coordinate functions on V (A).
As a k algebra k[t1, ..., tn] is generated by the set {t1, ..., tn}.
So as a k algebra {ξ1, ..., ξn} generate P (V (A)) as P (V (A)) is a quotient of k[t1, ..., tn] and
the ξi are the images of the generators of k[t1, ..., tn] under the quotient map.

Let x ∈ V (A) and define mx = {f ∈ P (V (A))|f(x) = 0}.

(Note: that evaluating f ∈ P (V (A)) on V (A) makes sense as if we have some g ∈ I(V (A))
and consider f + g ∈ f + I(V (A)) then (f + g)(x) = f(x) + g(x) but by definition for
x ∈ V (A) we have g(x) = 0 and so (f + g)(x) = f(x). So evaluating f doesn’t depend on
the choice of representative of the equivalence class.)

We claim that mx is maximal.
We have that following short exact sequence where the first arrow is inclusion and the second
is evaluation at x ∈ V (A) which we discussed was well defined.

0→ mx ↪→ P (V (A)) � k→ 0

So P (V (A))/mx
∼= k. We know if a ring quotient an ideal is a field that the ideal must be

maximal.
Therefore mx is maximal.

Let Ṽ (A) = Max(P (V (A))).

Define µ : V (A)→ Ṽ (A) such that µ(x) = mx.
We claim that µ is a bijection.
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Injectivity: Let (x1, ..., xn) = x 6= y = (y1, ..., yn) ∈ V (A). Then there exists i ∈ {1, ..., n}
such that xi 6= yi.
Consider the ξi − xi ∈ I(V (A)).
Then (ξi − xi)(x) = ξi(x)− xi = xi − xi = 0.
But (ξi − xi)(y) = ξi(y)− xi = yi − xi 6= 0.
So ξi − xi ∈ mx but ξi − y /∈ my.
So mx 6= my.

Surjectivity: Let π : k[t1, ..., tn]→ P (V (A)) be the quotient map.
Let m / P (V (A)) be maximal.
Then consider π−1(m).
As m is maximal it is prime.
This means that π−1(m) is prime but not necessarily maximal.
Note that π−1(0) = I(V (A)) ⊆ π−1(m).

Consider V (π−1(m)).
From Hilbert’s Nullsetellensatz we know that

I(V (π−1(m))) =
√
π−1(m) = π−1(m)

where the last inequality if gotten noting that π−1(m) is prime.

There are two cases for V (π−1(m)) either V (π−1(m)) = ∅ or V (π−1(m)) 6= ∅.
Note that I(∅) = k[t1, ..., tn] as 1 ∈ I(∅).
So if V (π−1(m)) = ∅ then π−1(m) = I(∅) = k[t1, ..., tn].
This means that m = π(π−1(m)) = π(k[t1, ..., tn]) = P (V (A)).
This contradicts the fact that m is maximal.
So there exists x ∈ V (π−1(m)).

Let x ∈ V (π−1(m)).
Now as I(V (A)) ⊆ π−1(m) we can see that ∀f ∈ I(V (A)) we have f(x) = 0.
In particular noting that A ⊆ I(V (A)) we have ∀f ∈ A we have f(x) = 0.
This means that x ∈ V (A).

So ∀f ∈ m we have (f + I(V (A)))(x) = f(x) + I(V (A))(x) = 0 + 0 = 0.
This is well defined as x ∈ V (A).

So m ⊆ mx.
So as m and mx are maximal we have m = mx = µ(x).

So for any m ∈ Ṽ (A) there exists an x ∈ V (A) such that m = µ(x).
That is µ is surjective.

So µ is a bijection.
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