Assignment 1 - Commutative and Multilinear Algebra

1

Show that the symmetric and the exterior powers are exponential in the following sense.
There exist natural isomorphisms.

a)
"Vew) @ sHV)e SH(W)

k+l=n

"Vew)= G ANV)e A (W)

k+l=n

Here V and W are vector spaces over a fixed field, k and the tensor product and direct sum
are taken over k.

a) We wish to that that there exists a natural transformation between the functors

S*"(— @ —) and @y, S¥(—) ® S'(—).

Let k be a field and V., W, X|Y be vector spaces over k with linear maps o : V — X
and §: W — Y.

This means we need to find a family of isomorphisms ¢y and ¢xy that make the fol-
lowing diagrams commute for all V, W, X\ Y, «, 3.

S vew) B @, SHV) e S(W)
i S™(a®B) i SDr+i=n sk (a)@st()

SMX@Y) T P, SHX) ©S(Y)

Let C, D, E, F be ordered sets such that {v.}.cc is an ordered basis for V| {wg}4ep is an
ordered basis for W, {z.}.cp is an ordered basis for X, {ys}rer is an ordered basis for Y.
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We will abuse notation slightly and consider v.,wqg € V & W and z.,yr € X @Y. Then
{{vc}eeo, {watden} is an ordered basis for VW and {{z.}ecr, {ys}rer} is a basis for X @Y.

This means that

Uiy * eee " Vgy, = Wy - onn - Wy

with k+1=mn,i1,....5. € C, J1,...,51 € D with iy < ... <4, and j; < ... < 7; forms a basis
for S™(V @& W). Similarly

with k+1=mn,11,...,09 € E, j1,...,51 € F with i3 < ... <1 and 53 < ... < j; forms a basis
for S" (X @Y).

Now we also have
(Uh L Uik) ® (wjl LR w]'l)

with k +1=n, 11,...,05 € C, J1,....,50 € D with i; < ... <14 and j; < ... < j; forms a basis
for @, S¥(V) ® SHW). Similarly

(xh Tt ‘T’Lk) ® (yjl Tt yjl)

with k+1=mn, 11,...,0 € E, j1,...,51 € F with i; < ... <1 and j; < ... < j; forms a basis
for @,;_, SH(X) ® S(Y).

Define the linear map on the basis vectors as follows

oy S"(VOW) = @ SH(V)eS(W) st

k+l=n
SOV,W(Uil Cee Uy U)jl et ’LUjl) = (Uil et Uik> & (IUjl Cae ’U)jl)
oxy S"(X@Y)— @Sk X))o SH(Y) st
k+l=n

Oxy (Tiy oo Tiy - Yjy e Yiy) = (T e ) @ (Y e Y

We can see that these maps are bijections between the basis vectors and so are isomorphisms
of vector spaces. We now wish to show that these isomorphisms doesn’t depend on the choice
of bases.

Let {r.}e.cc be another ordered basis for V' and {s4}4cp another ordered basis for W. We
will abuse notation slightly and consider r;,s; € V @& W. Then {{r.}cec,{Sa}aen} is an
ordered basis for V@ W.

This means that



with k+1=mn,i,....5. € C, J1,...,751 € D with iy < ... <4 and j; < ... < 7; forms a basis
for S"(V @ W).

Now we also have

(Tiy = oo Ti) @ (Sjy - oo 0 85,)
with k+1=mn, i1,....i € C, j1,...,50 € D with 7; < ... < and j; < ... < j; forms a basis
for @, SH(V) @ S{W).

Define the linear map on the basis vectors as follows

dvw : S"(VaW) = P SHV)e (W) st
k+l=n

¢V,W(T’L'1 et T’ik . Sjl L. Sjl) = (7"@'1 L Tik) & (Sjl L. Sjl)

We can see that this map is a bijection between the basis vectors and so is an isomorphism
of vector spaces. We now wish to show that this isomorphism is the same as our initial
isomorphism @y .

We wish to show vw = QbV,W and Xy = gbx,y.

Let A € GL(V),B € GL(W) be the change of basis matrices such that r; = 3. Aj;v;,
S; = ZjED B”U)J

Consider the difference between the images of the basis vectors.

(;OV,W(sz et T'Z'k . Sj1 et Sjl) — Qbuw(?"il et T'l'k . Sjl et Sjl)

= Pvw (( Z Ai1m1vm1> Tt (Z Aikmkvmk> ) (Z Bjm1wm> Tt (Z Bjmlwnz)>
m1eC mp€eC n1€D n €D

—(’f’il L. /rik) & (sjl et 3]’1)

= E E Ailml"'Aikkajlnl"'Bjmz(sz,W (?}ml e Umy Wyt e U)ml)

mi,...mp€C ny,....n €D
—<7’Z'1 L Tik) ® (Sjl R Sjl)

= E E Ailml“'Aikkalell"'lenl (/Uml Cee Uy, X Wy * vt ’U)ml)

mi,....,mpeC ny,...,ny€D

_(Til Cae Tik) & (Sjl L. Sjl)

= (( Z AhmlUTm) Tt <Z Aikmkvmk> ® (Z Bj1n1wn1> (Z Bjmlwnz>>
mieC mg€eC ni1€D n €D

—<7’Z'1 L. Tik) & (Sjl L. Sjl)
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= (’I“Z‘1 et Tik) & (Sjl et sz) — (Til et Tik) & (Sj1 et Sjl) =0
So for any basis vector 7, - ... -7, - 8, - ... - 55, we have
@V,W(Til et ’T‘Z‘k . Sjl et Sjl) = ¢V,W(T7j1 et Tik . Sjl PP Sjl)
This shows that gy = ¢y as they are both defined to be linear maps and the images of
the basis vectors to the same for each map.

Similarly it can be shown that ¢xy does not depend on the initial choice of bases z; and y;.

This means that we can define ¢y for any V, W without dependence on a choice of a basis
for V,W. So is a candidate for a natural transformation between the functors S™(— @& —)

and @kJrl:n Sk(_) ® Sl(_)-

To show that ¢y and ¢xy are natural we now need to consider the following compo-
sitions
pxy o (S"(a®p))

( P st e S’(B)) o v

k+l=n
Now let a(v;) = 3, p cvijwy and B(wi) = Y- icr BiY;-
Px)y © (Sn(a D 5)) (Uil Cee Vgt Wiyt wjl)

= pxy(afviy) - a(vy) - Bwy,) .- B(1))

= ¥Yxy (( E Oénklﬂf’kl) <§ :aikkkxkk> ) (E :%llle> (E O‘jzllel>>
ki1€E kxeE lieF L EF

= Pxy ( Yo D Qi Bt B (T - Ty le)

ki,...kx€E 11,....,EF

= Z Z ailakl"'aikkkﬁjlll”'ﬁjlll (xkl T Tl QYpy e ylz)

= ((lng%m%) <kZEOézkkk$kk>> & ((lgsajlllxll) <ZZFajlllxll)>
= (a(viy) - - a(vy,) @ (Blwy,) - .- B(1))
= ( @ SHa) ® Sl(ﬁ)) ((Viy e 03) @ (W, - - wy, )
k

+l=n



<@ Sk ®Sl )) ngww(vil Cee s Uy s Wy w]l)

k+l=n
Now we have two linear maps that agree on each basis vector so

oxy o (S"(a < @ Sk(a) @ S'(B )) o v

k+l=n

This shows that ¢ _) is a natural transformation between the functors S"(— @ —) and

Disizn S (=) @ 5(-).

b) We wish to that that there exists a natural transformation between the functors

A (=@ —) and @y, A*(—) @ A'(—).

Let k be a field and V., W, X|Y be vector spaces over k with linear maps o : V — X
and f: W =Y.

This means we need to find a family of isomorphisms ¢y and ¢xy that make the fol-
lowing diagrams commute for all VW, X, Y, «, (.

ANV aW) T @y, AV) @A)
1 Aneen) b @rpimn A @@ @)

AMX@Y) @By, AMX) @ A(Y)

Let C, D, E, F be ordered sets such that {v.}.cc is an ordered basis for V| {wg}4ep is an
ordered basis for W, {z.}.cp is an ordered basis for X, {ys}rer is an ordered basis for Y.
We will abuse notation slightly and consider v.,wg € V & W and z.,ys € X @Y. Then
{{vc}eeo, {wataep} is an ordered basis for VW and {{z,}ecr, {ys}rer} is a basis for X @Y.

This means that
(%A VANPIRIAN (%7 A W, VANPIRIAN wy,

with k+1=mn,i,...,1 € C, j1,....,51 € D with 1; < ... <1 and j; < ... < 7; forms a basis
for A*(V @ W). Similarly
Tig N e Ny, NYj N o N Yy,

with k+1=mn, iy,...,0x € E, j1,....,51 € F with iy < ... < i and j; < ... < 7; forms a basis
for A"(X @Y).

Now we also have
(Viy Ao A ) @ (W), A Awy,)
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with k + 1 = My 11,0y i € C, T, J1 € D with i; < ...

for @,.,_,, A*(V) @ A{(W). Similarly

< it and j; < ... < j; forms a basis

(Tiy N oo ANiy) @ (Yjy A oo AYj,)

with £k 4+ = Ny 11, ey U € E, 1, J1 € F with i, < ...

for @,.,_, A*(X) @ AY(Y).
Define the linear map on the basis vectors as follows

pvw ANV o W) » @AMV

k+l=n

< i and j; < ... < j; forms a basis

Vo A (W) st

oyw (Ui, ANV ANwgy A AN w;) = (v A Avy) @ (Wi AL A wy,)

Yxy : A" XEBY @Ak
k+l=n

YR A(Y) st

Oxy (T N Ay, ANyjy Ao Ayg) = (i Ao A) @ (Y, Ao Ayjy)

We can see that these maps are bijections between the basis vectors and so are isomorphisms
of vector spaces. We now wish to show that these isomorphisms doesn’t depend on the choice

of bases.

Let {r.}ccc be another ordered basis for V' and {s4}4cp another ordered basis for W. We
will abuse notation slightly and consider r;,s; € V@& W. Then {{r.}cec,{Sa}aen} is an

ordered basis for V o W.

This means that

Ty N AT NSj N NS,

with k + 1 =mn, i1, ....ir € C, j1,.... ji € D with i1 < ...

for A"(V @ W).

Now we also have

(riy Ao AT5,) @ (55, A
with k +1 =7, i1,.yin € C, j1, i € D with i) < ...

for @i, AF(V) @ A{W).
Define the linear map on the basis vectors as follows

dvw  A"(VOW) — @Ak

k+l=n

< it and j; < ... < 7; forms a basis

N Sjl)

< it and j; < ... < 7; forms a basis

VYo A (W) st

¢V,W(7°i1 VANPAVAN Ti AN Sy NN sz) = (T’il VANPRAVAN Tik) (9 (8]’1 VANRAVAN Sjl)



We can see that this map is a bijection between the basis vectors and so is an isomorphism
of vector spaces. We now wish to show that this isomorphism is the same as our initial
isomorphism @y, .

We wish to show vw = gbv’W and Xy = gZﬁX,y.

Let A € GL(V),B € GL(W) be the change of basis matrices such that r; = 3. Aj;v;,
si = D_jen Bijw;.

Consider the difference between the images of the basis vectors.

SDV,W(ril VANRTAAN Ty AN Sjy NN Sjl) - QSV,W(ril VARRTIVAN Ty, VAN Sjy VANPAVAN Sjl)

= pvw (( > Ailmlvm) A A <Z Aikmkvmk) A (Z Bjmlwnl) Al A ( Bjmlwm>>
mi1€C mpeC ni1€D n €D

—(7“1'1 N A Tik) X (Sj1 AN sz)

= Z Z Ay Aigmg Bjing - By oviw (Vmy A oo AUy A Wiy A oo A Wyy,)

mi,...mgeCny,...,n€D

_(rh VARRTRVAN ’T‘Z‘k) (%9 (sjl VARRTIVAN Sjl)

= Z Z A’ilml"'A’ikkajlnl"'lenl(vml VANPYVAN Umy, X W, VANPPRIAN wml)

mi,....mpeC ny,...n €D

—(Til VANRTAN Tik) ® (Sjl AN Sjl)

_ (( 5 Amm> - (Z Amm> . (Z Bmwm> - (Z lemwm»
m1€C mp€eC n1€D n €D

—(7"1‘1 VANRTAN Tik) ® (Sjl AN Sjl)
= (rh VARRTRVAN T‘ik) & (Sjl VARRTIVAN sjz) - (Th VARRTIVAN Tik) (%9 (Sjl NN Sjl) =0
So for any basis vector r;, A ... Ar;, As;, A ... As; we have

oy (riy, A ATig ANSj N NS =y (Tiy A AT, A SN A S)

This shows that ¢yw = ¢y as they are both defined linear maps and the images of the
basis vectors to the same for each map.

Similarly it can be shown that ¢xy does not depend on the initial choice of bases z; and y;.

This means that we can define ¢y for any V, W without dependence on the choice of a basis
for V,W. So is a candidate for a natural transformation between the functors A"(— & —)

and @kJrl:n Ak(‘) ® Al(_)-



To show that vy and ¢xy are natural we now need to consider the following compo-

sitions
oxy o (N"(a®B))

(@ A (o) @ AN )) o Yy,w

k+l=n
Now let a(v;) = ZjeE a;jz; and B(w;) = Z]EF BijY;-
Yx,y © (An(& ) 6)) (’Ui1 AN Uy, A Wi, AN wjl)

= oxy(a(vi) Ao Aafuy) A Blws) A A B(3))

S ((Z ) - (Z ) A (Z ) - (Z ))

= SDX,Y < Z Z Qilykl"'&ikkkﬁjlll"'ﬂjlll (xkl AN l’kk A\ Y1, VANPIAN yll)>
k1

ki€eE kxeE LLeF

..... kx€E l1,...,.LeF

= Z Z ai17k1"‘aikkkﬁjlll"'ﬁjlll (l‘kl NN Ly, (%9 Y1, NN ylz)

ki,...kx€El1,....LEF

LeF

= ((Z ailklxm) VANPAN <Z azkkkxkk>> (%9 <<Z Oéjlllxll> VANRVAN (Z Oéjlllxll>>
ki€eE krLeE LEeF lLLEF

= (a(vi) A Aa(vy)) @ (B(wg,) A A BG))

(@ A (o) @ AN )) ((viy Ao Avy) @ (wjy Ao Awyy))

k+l=n

(@ Ak ®Al )) OSDV,W(/Uil/\-"/\vik/\wjl/\-“/\wjl)

k+l=n

Now we have two linear maps that agree on each basis vector so

k+l=n

This shows that ¢ _y is a natural transformation between the functors A™(—

DBirimn A (=) @ AL(—).
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Let R be a Noetherian ring, and let

L = (xla 7xn)

be a sequence of elements in R. Write (e, ..., ;) be the standard basis of the free R-module
R". Let Ko(R,z) be the chain complex

R ANRY &2 N2R & 2 AnRr 0

where the exterior powers are taken over R, and A’R" sits in degree i, and the differentials
are defined, on the basis discussed in class, as

%
Oiejy Nejy Ao Neg) = (=)o e AL NG A Ae,
k=1

a) What is K (R, z) for a sequence z = (x) of length 17

R A'R+—0

With &y : A'R — R the R-linear map such that d;(e;) = .

So that with the canonical identification A' R & R we have 0, corresponding to multiplication
by x.

b) Show that K.(R,z) is indeed a chain complex.

i
51',1 o 5i(ej1 A €y VANPPRVAN 6]'1.> = (51',1 (Z(—l)kJrll'jkejl VANPIVAN e/j\k VANPURIAN eji>
k=1
i

(_1)k+1xjk52'71(€j1 VANRVA e/J\k AN €ji)

1<I<k >

i—1

k<I<i

I
—_
=

+
8
ol

VN

|
=

t
8
o
>
>
)
>
>
aQ
<)
>
>
<



= Y (—DM"rimie AL AG AL NG ANy,
1<k<i<i

Yt
+ E e N NELN L NE N L Ney,
1§k’<l§1

(Note: that when k < [ that e;, is actually the (I — 1)-th position as we removed the k-th
position where we had e;,. This is why we only get the (—1)*"*! instead of the (—1)¥++2))

= Y (=DM"rimien AL AG AL NG NNy,
1<i<k<s

— Y (DM Py mie AL NG AL AE AN,
1<k<i<i

= Y (D" Pmimie AL AG AL AEG NN,
1<l<k<i

= D (D)MPamie AL AG AL ANEG N Aej, =0
1<i<k<i

Where we have simply switched the dummy variables in the second summation.

We have showed that for any ¢ > 1 and any basis vector e;, A...Ae;, that 9;,_100;(ej, A...\ej,) =
0. This shows that 9 = 0 which means that K,(R,z) is indeed a chain complex.

(Note: that if we take Jy = 0 then trivially dy o d; = 0.)

d) Show that
KO(R7£7 g) = KO(R7£> QR KO(Rag)

where ®p is the tensor product of chain complexes.

The definition of the tensor product of chain complexes is given as follows. Let

Oc Oc O
Co — (&5 « OQ ... and Dy (— D, <— D, — .

be chain complexes over R. (i.e C; and D; are R-modules.

Then ) ) )
Cy = O 2 Oy = ...
QR
da, B

Do(—Dl(—D2<—
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Az

k+1=0 k+i=1 k41=2

where

AZ'Z @(Ck KRR Dl) — @ (Ok KRR Dl) s.t

k=i ktl=i—1
for z € Cy and y; € D,

Api(zr @ Y1) = Oy (1) @ Y1 + (—1)*z, @ 04, (w1)

Now we will consider the tensor product of K¢(R,z) ®p Ke(R, 2,41). If we can prove that
Ko(R,z) ®r Ko(R,711) = Ko(R, T, 2,41) then by induction we can see that K,(R,z,y) =
K (R,z) ®r KJ(R,y) for any y = (y1, ..., Ym) DOt just y = 1.

We have the following from the definition of tensor product of chain complexes

D3

Ko(R,2) ®p Ko(R, 2ps1) = R 2= AYR™) @ AY(R) = A*(R") @ AY(R™) @ A'(R) % .,
L EL (MR @ (MTYRY) @ AY(R)) €2 E (AMR™) @ (AMTH(RM) ® AY(R)) «— 0
where for @ € AY(R") and b ® e,41 € A" 1(R") ® A'(R) we have
Di(a+b®eps1) = (9i(a) + (1) ani1b) + (9i-1(0) @ €nt1)

where we have made repeated use of the fact that for A an R-module we have a natural
isomorphism R ®r A = A and that the chain map for K(R, z,1) is simply multiplication
by x,.1 as was discussed in part a).

We want to show that this chain complex is isomorphic to Ke(R, z, Tp11).

We must define isomorphisms ¢; : AY(R") & AY(R") @ AY(R) — AY(R™!) such that
w;_1 0 D; = 0; o g; that is y; such that the following diagram commutes.

Dy

R & A BEYeA(R) £ AR @A (RY R ANR) &
isoo ~L<Pl ¢902
R (8_1 Al (Rn—H) <8_2 AQ(Rn'H) &

S (AR © (AR @ AYR) 0
Len 1
et Am+L(RrHL) — 0
We will use a similar isomorphism we constructed in question 1. Explicitly we consider the
basis of A*(R™) and A" *(R") ® A'(R) given by e, A...Aej, € A'(R™) and e, Ao A, , ®
eny1 € N7HR") ® AY(R) where ji, ..., ji,m1,...,m;_y € {1,...,n} with j; < ... < j; and
myp < ... << m;_q.
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Then define ¢; to be the linear map such that ¢;(e;, A...Aej,) = e;, A...ANej, € A'(R™!) and
Gilmy A e Nem, |, @ eni1) = €my Nooo A€, Nenrr. We can see that this is an isomorphism
as it is induced by a bijective map between the basis vectors of a free R-module.

Now we wish to show that ¢; 1 o D; = 0; o ; on each of the basis vectors.

©;—1© Di(ejl VANPIAN €ji) = gpi_l(éi(ejl VANPIAN eji))

i
= Qi1 (Z(—l)’““xjkej1 A NE A A eji)

k=1

i

(_l)k+lxjk30i—1<ej1 VANPIRAN e/]\k VANPIRVAN €ji)
k=1

(2

k —
(—1) +1.Z’jk€jl AN ejk Ao A ejl.
k=1
= 0i(ej, N ... Nej,) =0 o pilej, Ao Ney,)
We also have
©i—1 0 Di(€my N o N €y, @ €ny1)

= 0 1(0i1(emy A N, ) @ enp1 + (=1 e, Ao Aem, , @(eni1))

i—1
= i1 (Z(—l)kﬂxmkeml A Nemp Ao Ny @ enyr + (1) e Al A emi1>
k=1

(1) ' 2 0im1 (€my A oo ACmp A v Ay @ €ngr) (= 1) 210 (€y Ao Al )

(—1)’”“1:5,,%(:,%1 Ai Nemp A e N ey A enr + (=) a e A Aem,,

B
Il
—

%

(1) @ my A e Aoy Ao A,
k=1

where we denote m; = n + 1.
= 0i(emy N coNem,) =0 0 @i(emy Ao N ey, @ €m,) = 0; 0 Yi(€my Aco A e, | @ €ni1)

So for all basis vectors e;, A... Aej, € AY(R™) and e, A ... Aep, , ®e,q € NHR") @ AY(R)
we have
©Yi—1 0O Di(e]-l VANPYRVAN €ji) = 82 o @i(ejl VANPIAN 6]'2.)

©i10 Di(emy N oo N e, Qeni1) =00 @i(emy Ao A, | @ €ni1)
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As ¢;_1 0 D; and 0; o p; are linear maps we see that ¢; 1 0 D; = 0; o ¢;.

This shows that ¢; is an isomorphism between Ko(R,z,2,11) = Ko(R,2) ®r Ko(R, Tpi1)-
By induction we have Ko(R,z,y) = KJ(R,z) ®r Ko(R,y).
We also get by induction that
K.(R,i) = K.(R, 1‘1) ®R ®R K.(R, [L’n)
Using a) we see that the i-th degree of the RHS is given by

i14...+in=1 . ‘ i+...+in=1 (Z)
P ArMRer..erA"(R)2 P R=R

where we take A°(R) = R. If we let e, ; be the basis vector for the ji, ..., j; term in the
summation. We get the chain map

i

Di(ej,.5) = > _(=Daje; 0

k=1

Note that this means our complex is made of out free R-modules.

c) Assuming that z is an R-regular sequence, show that K.(R,z) is a free resolution of

R/(z).

A sequence (z1,...z,) is R-regular if and only if for i € 1,...,n that x; + (z1,...,2;_1) €
R/(x1, ..., ;) is not a 0 divisor where for i = 1 we mean z; € R is not a zero divisor.

Firstly note that R and AY(R") are both free R-modules (this was made explicit at the
end of d)) and so if we show that

0<— R/(21, ..., 2) < Ko (R, 1, ..., T,)

is exact. Then by definition K¢(R,x1,...,x,) is a free resolution of R/(x1,...,x,). We will
show this by induction. Our base case is given as follows.

0+— R/(z1) ¢ R R+ 0
Our inductive step will be the following. If
04— R/(z) &~ R ANR & AR & 2 AR 0
is exact then
04— R/(z) &2 R & AR (22 \2pnitt Bs Qe gnbipntl

is exact. The result will then follow by induction.
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Base Case: We will prove the base case. Consider

0+ R/(z)) <~ R R«—0

Then notice that ¢, 0 01(r) = qi(z17) = 217 + (21) = 0+ (21).
So 0 +— R/(z1) ¢~ R & R+ 0is indeed as chain complex.

Now note that 0, is injective as for r € R we have 0 = 0y(r) = z;r. We know that
(x1) is an R-regular sequence so in particular x; is not a zero divisor. This means that r =0
which in turn means that 0, is injective.

Now we can also see that ¢, is surjective as it is a quotient map.

This shows that 0 «— R/(z;) <~ R &L R +— 0 is a short exact sequence and there-
fore we have that
04— R/(x1) ¢ K. (R, x1)

is exact and therefore we have that K,(R,z1) is a free resolution of R/(z1).

Inductive Step: Let
04— R/(z) &~ R AR & AR & & NR 0

be an exact chain complex. Consider

0 R/(z,0p1) 5 R AR (2 \2Rn+L (D Gt pndipntl
From question d) we have

0 R/(2,0p1) &5 R 2 AR (2 \2Rntl (D Gt pniipntl g

~ 0+ R/(z,2ps1) &2 R ES ANRY) @ AY(R) 2 A2(RY) @ AY(R™) @ AN(R) &% ...
L EL (MR @ (MTYRY) @ AY(R)) €2 L E (AMR™) @ (AR ® AY(R)) +— 0

There are four cases of interest. Need to prove exactness at R/(z, z,.1), R, A'(R") ® A'(R)
and (AY(R™)) @ (A '(R") ® A'(R)). Cases 1 and 2 and part d) prove that we have a chain
complex.

Case 1: R/(z,xn11)

ker(0) = R/(z,x,+1) and as ¢, is a quotient map and therefore surjective Im(g,+1) =

R/ (2, Tni1).
So ker(0) = Im(gn11)-
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Case 2: R

ker(qni1) = (21, ooy Tng1)-

So I'm(Dy) = {Dl( n+11 rie;)|ri € R} = {Z;”ll riDy(e;)|r; € R} = {Z;Hll rizi|ri € R} =

(X1, ey Ty

So ker(qn+1) = Im(Dy).

Case 3: AY(R") @ AY(R)

We know that D; o Dy = 0 so we see that Im(Ds) C ker(Dy).
We want to show that ker(D;) C Im(Ds).

Let Dy rie) = St e = 0 or in other words Y7 rie; € ker(Dy). We want
to show that 31" rie; € Im(Dy).

Now consider the expression 0 = Dy (3" r;e;) in the following quotient
n+1
0+ (21, ..,x anl (X1, ooy Tn) = 1 Zng1 + (T1, oony Tp)

As xq, ..., xpq1 is R-regular x, 1 is not a zero divisor in R/ (1, ..., Z,) SO Tpy1 + (X1, .y ) =
0+ (x1,...,z,). In other words
Tn41 c (33'1, ,l’n)

This means r,+1 = Y., s;z; for some s; € R. So we get

n+1

n n
E Ti€; = E rie; | + E SiTiln+1
i—1 i=1 i=1

and also

So
81 (Z(’I“l + Si$n+1)€i) =0
i=1
This means by our inductive assumption, ker(d;) = Im(ds), that there exists p € A*(R")
such that

n

0a(p) = ) (ri + sinya)e;

=1
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Consider p + > 7 | sie; @ e,11 € A(R™) & A'(R). Now note that

D, (p + Z $i€; & €n+1> = Oa(p) + 01 (Z Siei) & 6n+1(_1)2+1 Z SiTn416;
i=1

=1 =1

n n n
= E (ri + SiTpi1)e; + E SiTilnt1 — E $iTn+16€4
i—1 i=1 i=1

n n+1
= E ri€; + Tny1€ny1 = E Ti€;
i—1 i=1

where we used the fact that the s; € R were defined such that Z?:l S;x; = py1. This shows
that ker(D;) C Im(D,) and therefore that ker(D;) = Im(Dy).

Case 4: (AY(R™))® (A™H(R™) @ AY(R)) for 2 < i < n (we use d;_; which means that i > 1
so this does not apply to case 3).

We know from b) and d) that D; o D;;; = 0. This means that Im(D;.1) C ker(D;).
So we must know show that I'm(D;1) 2 ker(D;).

Let (a+b®epi1) € (AM(R™)) ® (A1 (R") ® A'(R)) such that D;(a +b® e,,1) = 0. That is
let a +b® e, € ker(D;).
Di(a + b & 6n+1) = (8Z(CL) + (—1)i+1$n+1b) + (81_1(17) & 6n+1) =0
= Oi(a) + (=1)™ 2,010 =0 and 0,_1(b) =0

As we have assumed for our induction that 0 <— R/(21, ..., 2,) <2 K (R, x1, ..., T,) is exact
we have ker(9;_1) = Im(9;) and ker(9;) = Im(0;,1). Therefore there exists ¢ € A*(R™) such
that 0;(q) = b. Therefore

0= 3di(a) + (=) aupib = i(a) + (1) 2,110,(q) = 0i(a+ (1) wp419)
So a+ (—1)"z,11q € ker(9;) = Im(0;41).
So there exists p € A“(R") such that 9;,1(p) = a + (—=1)"z, 119
Consider p+ ¢ ® e,41 € (MTHR")) @ (AY(R") ® A'(R)).
Dis1(p+q®ent1) = 01 (p) + (=1)" 210 + 0i(q) @ enpr
— a+ (=) 1g 4 (=1 2201 + b ensy

=a+t (_1)i+1xn+1q - (—1)i+1$n+1q +b®Rep1 =a+b® ey
This shows that a + b ® e,41 € Im(D;y1). This means that ker(D;) C Im(D;;1).

Therefore ker(D;) = Im(D;1;) forall2 <i<n+1
This covers all cases in the induction and completes the proof.
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3

Let X be a compact Hausdorff space and let C'(X) denote the ring of all real-valued contin-
uous function on X.

Let z € X and m, = {f € C(X)|f(z) = 0}.

We claim that m, is maximal.
We have the following short exact sequence where the first arrow is inclusion and the second
arrow is evaluation at x.

0—-m, —=>C(X)—>R—0

So C'(X)/m, = R. We know if a ring quotient an ideal is a field that the ideal must be
maximal.
Therefore m, is maximal.

Denote Maz(C(X)) by X.

Define p : X — X such that p(z) = m,.
We claim that this is a homeomorphism between X and X.

Injectivity: First to show injectivity we need to use Urysohn’s Lemma noting that X is
compact Hausdorff.

Urysohn’s lemma says for x # y € X there exists f € C(X, [0, 1]) such that f(z) = 1 and
f(y) =0. So f € my, but f ¢ m,. Therefore if x # y then pu(z) =m, # m, = p(y).
Therefore p is injective.

Surjectivity: We will now show that y is surjective.
Let m € X.
Define the following subset

Vim)={zr e X|Vfem f(z)=0}

There are two cases V = () and V' # ().

Suppose that V = (.

Then for each x € X there exists f, € m such that f,(z) # 0.

As f.(x) # 0 and f, is continuous there exists an open neighbourhood = € U, such that
0¢ fo(Us).

Consider the cover |J,. U, = X.

As X is compact there exists a finite subcover.

That is there exists points z, ..., x, € X such that | J;_, U,, = X.

Consider the function f =>"" (f.,)? : X — Rxo.

For x € X we have x € Uy, for some j =1,...,n.

S0 0 < fu,(2)* < 300 (fe) (@) = f(2).
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This means that Vo € X f(x) # 0 which means that % is continuous.

Therefore 1 = % f € m and therefore m = C(X) which contradicts that fact that m is
maximal.

So the only possible case is that V(m) # 0.

Suppose z € V(m).

Then Vf € m we have f(x) = 0.

Som Cm,.

As m and m, are maximal we have m = m,.

This show that if m € X that there exists x € X such that m = m, = u(x).

In other words u is surjective.

Continuous and Open: Again using Urysohn’s lemma we get the following basis for the
topology of X given all f € C(X).

Uy = {z € X|f(x) # 0}
The standard topology on X is given by the following basis given all f € C(X).
Vy={meX|f ¢m}
Consider the following.
u(Us) = u({z € X|f(x) # 0}) = {u(z) € X|z € X and f(x) # 0}
—{m, € X|z € X and f(z) #0} ={m, € X|z € X and f ¢ m,}
—{meX|f¢m}=V;

where we used surjectivity of y in the second last equality.

So u(Uy) = V.

This means that g maps the basis {Us} for the topology of X to the basis {V;} for the
topology of X.

So p is open.

As 1 is a bijection we see that p~*(Vy) = U; and therefore u is continuous by the same
reasoning.

So p is a homeomorphism.

4

Let k be an algebraically closed field.
Consider the polynomial ring in n variables k[t1, ..., t,,].
Let A Cklty, ..., t,].
Define
V(A) ={z€k"Vfe A f(x)=0}
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were we identify f € Kl[ty, ..., t,] as polynomial functions from k™ to k.
V(A) is what we call an affine variety.

Let I(V(A)) = {g € k[t1, ..., t,]|[Vx € V(A) g(a) = 0}.

We call I(V(A)) the ideal of the variety V(A).

(Note: this is a subspace and for f € klty,...,t,] and g € I(V(A)) we see that for z € A we
have (f - g)(z) = f(z)g(z) = f(z)-0=0. So I(V(A)) is in fact an ideal.)

Define the following ring

P(V(A) =kt ....ta]/1(V (A))
We can view P(V(A)) as polynomial functions on V(A) as for f,g € k[ty,...,t,] then
f+I(V(A) = g+ I(V(A)) if and only if f — g+ I(V(A)) = 0+ I(V(A)) if and only
if f—g € I(V(A)) if and only if for x € V(A) we have f(z) — g(z) = 0 and therefore
f(z) = g(x).

We call the &; coordinate functions on V(A).
As a k algebra k[tq, ..., t,] is generated by the set {t1,...,%,}.
So as a k algebra {1, ...,&,} generate P(V(A)) as P(V(A)) is a quotient of k[ty, ..., t,] and

the & are the images of the generators of k[ty, ..., t,] under the quotient map.
Let z € V(A) and define m, = {f € P(V(A))|f(x) = 0}.

(Note: that evaluating f € P(V(A)) on V(A) makes sense as if we have some g € I(V(A))
and consider f + g € f+ I(V(A)) then (f + g)(x) = f(z) + g(x) but by definition for
x € V(A) we have g(z) = 0 and so (f + g)(z) = f(x). So evaluating f doesn’t depend on
the choice of representative of the equivalence class.)

We claim that m, is maximal.
We have that following short exact sequence where the first arrow is inclusion and the second
is evaluation at = € V(A) which we discussed was well defined.

0—m, — P(V(A) »k—0

So P(V(A))/m, = k. We know if a ring quotient an ideal is a field that the ideal must be
maximal.
Therefore m, is maximal.

Let V(A) = Maz(P(V(A))).
Define p: V(A) — V(A) such that pu(z) = m,.
We claim that p is a bijection.
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Injectivity: Let (zq,....,2,) =2 #y = (Y1,...,Yn) € V(A). Then there exists i € {1, ...

such that x; # y;.

Consider the & — z; € I(V(A)).

Then (§ — z)(2) = &G(2) — v =2 —2; = 0.
But (& — 2:)(y) = &(y) — v =yi — 2 # 0.
So &‘—ZL’Z' cmg but fi—yémy.

So m, # m,.

Surjectivity: Let 7 : k[t1,...,t,] = P(V(A)) be the quotient map.
Let m<a P(V(A)) be maximal.

Then consider 7—!(m).

As m is maximal it is prime.

This means that 7—!(m) is prime but not necessarily maximal.
Note that 77(0) = I(V(A)) C 7 H(m).

Consider V(7 ~1(m)).
From Hilbert’s Nullsetellensatz we know that

I(V(r~H(m))) = /7~ (m) = 7" (m)

where the last inequality if gotten noting that 7= (m) is prime.

There are two cases for V(7= (m)) either V(7 !'(m)) =0 or V(7! (m)) # 0.
Note that 1(0) = klty,...,t,] as 1 € I(().

So if V(71 (m)) = 0 then 7= (m) = I(0) = k[ty, ..., t,].

This means that m = 7(7~*(m)) = 7(k[ty, ..., t,]) = P(V(A)).

This contradicts the fact that m is maximal.

So there exists x € V(7 (m)).

Let z € V(= (m)).

Now as I(V(A)) C m~'(m) we can see that Vf € I(V(A)) we have f(z) = 0.
In particular noting that A C I(V(A)) we have Vf € A we have f(x) = 0.
This means that z € V(A).

So Vf € m we have (f + I(V(A)))(z) = f(x) + I(V(A))(x) =0+ 0= 0.
This is well defined as € V(A).

Som C m,.
So as m and m, are maximal we have m = m, = u(x).

So for any m € V(A) there exists an x € V(A) such that m = p(z).
That is p is surjective.

So p is a bijection.
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