The spectral theorem

Let *A* be a self-adjoint operator

 $\langle Ax, y \rangle = \langle x, Ay \rangle$

on a (finite dimensional) inner product space V.

Then V possesses an orthonormal basis of eigenvectors of A with real eigenvalues.

On Euclidean space

A real matrix *A* is self-adjoint with respect to the dot product

 $\vec{x} \bullet \vec{y} = \vec{x}^t \vec{y}$

on \mathbb{R}^n if and only if A is symmetric:

 $A^t = A.$

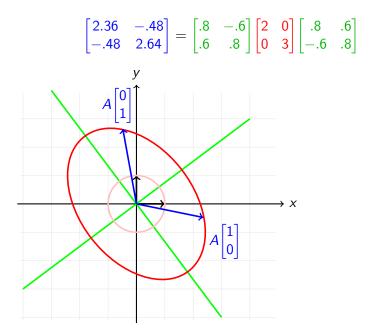
The theorem asserts that then

 $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{U}^t,$

where D is a diagonal matrix, and U is an orthogonal matrix

$$U^t = U^{-1}.$$

Example



How to find U and D

- 1. Find the roots of the characteristic polynomial $det(\lambda I A)$. These are the eigenvalues of A.
- 2. For each eigenvalue λ find the corresponding eigenspace V_{λ} (the null-space of $\lambda I A$).
- 3. For each λ , choose an orthnormal basis of V_{λ} , using Gram-Schmidt, if necessary.
- 4. Assemble them into a basis of \mathbb{R}^n (i.e., choose an order).
- 5. Write the j^{th} basis element into the j^{th} column of U and the corresponding eigenvalue into the (j, j)-entry in D.
- 6. Don't confuse where to put U and where $U^{-1} = U^t$.

Multivariable second derivative test

The Hessian matrix $D^2 f$ of a smooth function

$$f: \mathbb{R}^n \longrightarrow \mathbb{R},$$

is symmetric at every point of \mathbb{R}^n ,

$$(D^2f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} = (D^2f)_{j,i}.$$

To determine whether a critial point is a local maximum, a local minimum or a saddle, compute the signs of the principal curvatures (eigenvalues). The principal directions are the eigenvectors.

Proof of the spectral theorem in finite dimensions The characteristic polymomial satisfies

$$P_{char}\left(\overline{A}^{t}
ight)=\overline{P_{char}(A)}.$$

Hence the eigenvalues of a self-adjoint operator are real.

The orthogonal complement of an A-invariant subspace W is \overline{A}^t -invariant:

$$\langle w, \overline{A}^t v \rangle = \langle Aw, v \rangle = 0,$$

for $v \in W^{\perp}$ and $w \in W$.

Inductively, for $A = \overline{A}^t$ we obtain the decomposition $\mathbb{R}^n = \bigoplus_{\lambda} V_{\lambda}$ (orthogonally). Can you hear the length of a string?

Further reading: 'The sound of symmetry' by Lu and Rowlet

The Laplace operator

$$\Delta(f) = \frac{\partial^2}{\partial x^2} f$$

is self-adjoint with respect to the inner product

$$\langle f,g\rangle = \int_0^a f(x)g(x)dx$$

on the space of smooth real valued functions on the interval [0, a] vanishing at the boundary

$$f(0)=0=f(a).$$

The spectrum of a shape

Laplace equation

 $\Delta(f) = -\lambda f$

The spectrum of a domain (drumhead) or our string is the set of eigenvalues of the Laplace operator under the constraint $f|_{boundary} = 0$.

These are in bijection with the resonant frequencies.

Two dimensional Laplace operator:

$$\Delta = \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial y^2}$$

In one dimension

Motivation for Laplace's equation: The one dimensional wave equation is

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Seperating variables

$$u(x,t) = f(x)g(t)$$

and rescaling the time variable to make c = 1, we get

$$\frac{f''(x)}{f(x)} = \frac{g''(t)}{g(t)} = \text{ constant},$$

hence the Laplace equation. The Solutions are

$$f_k(x) = \sin\left(\frac{k\pi x}{a}\right)$$
 $\lambda_k = \frac{k^2\pi^2}{a^2}.$