
The spectral theorem

Let A be a self-adjoint operator

〈Ax , y〉 = 〈x ,Ay〉
on a (finite dimensional) inner

product space V .

Then V possesses an orthonormal
basis of eigenvectors of A with
real eigenvalues.



On Euclidean space

A real matrix A is self-adjoint with respect to the
dot product

~x • ~y = ~x t ~y

on Rn if and only if A is symmetric:

At = A.

The theorem asserts that then

A = UDU t ,

where D is a diagonal matrix, and U is an
orthogonal matrix

U t = U−1.
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How to find U and D

1. Find the roots of the characteristic polynomial
det(λI − A). These are the eigenvalues of A.

2. For each eigenvalue λ find the corresponding eigenspace
Vλ (the null-space of λI − A).

3. For each λ, choose an orthnormal basis of Vλ, using
Gram-Schmidt, if necessary.

4. Assemble them into a basis of Rn (i.e., choose an order).

5. Write the j th basis element into the j th column of U and
the corresponding eigenvalue into the (j , j)-entry in D.

6. Don’t confuse where to put U and where U−1 = U t .



Multivariable second derivative test

The Hessian matrix D2f of a smooth function

f : Rn −→ R,

is symmetric at every point of Rn,

(D2f )i ,j =
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
= (D2f )j ,i .

To determine whether a critial point is a local
maximum, a local minimum or a saddle, compute
the signs of the principal curvatures (eigenvalues).

The principal directions are the eigenvectors.



Proof of the spectral theorem in finite dimensions

The characteristic polymomial satisfies

Pchar

(
A
t
)

= Pchar(A).

Hence the eigenvalues of a self-adjoint operator are
real.

The orthogonal complement of an A-invariant
subspace W is A

t
-invariant:

〈w ,At
v〉 = 〈Aw , v〉 = 0,

for v ∈ W⊥ and w ∈ W .

Inductively, for A = A
t

we obtain the decomposition

Rn =
⊕
λ

Vλ (orthogonally).



Can you hear the length of a string?
Further reading: ‘The sound of symmetry’ by Lu and Rowlet

The Laplace operator

∆(f ) =
∂2

∂x2
f

is self-adjoint with respect to the inner product

〈f , g〉 =

∫ a

0

f (x)g(x)dx

on the space of smooth real valued functions on
the interval [0, a] vanishing at the boundary

f (0) = 0 = f (a).



The spectrum of a shape

Laplace equation

∆(f ) = −λf

The spectrum of a domain (drumhead) or our
string is the set of eigenvalues of the Laplace
operator under the constraint f |boundary = 0.

These are in bijection with the resonant frequencies.

Two dimensional Laplace operator:

∆ =
∂2

∂y2
+

∂2

∂y2



In one dimension

Motivation for Laplace’s equation: The one dimensional wave
equation is

∂2u

∂t2
= c2

∂2u

∂x2

Seperating variables

u(x , t) = f (x)g(t)

and rescaling the time variable to make c = 1, we get

f ′′(x)

f (x)
=

g ′′(t)

g(t)
= constant,

hence the Laplace equation. The Solutions are

fk(x) = sin

(
kπx

a

)
λk =

k2π2

a2
.


