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For n > 1, consider the subset S(n) C O(n), of reflections though n — 1 di-
mensional subspaces of R". We have the following fact.

Proposition: The reflections S(n) generate O(n).

Proof: If n =1, S(n) = O(n), so we are done. For any n, take A € O(n). Fixing
an orthonormal basis (e;)1<i<n for R", choose o € S(n) such that coA(e1) = e;.
Then we can view o o A as an element of O(n — 1), so the proposition follows
by induction. O

Consider the correspondence s : R™ \{0} — S(n), which sends a non-zero vector
v to s, € S(n), which is the reflection through the hyperplane orthogonal to v.
Clearly s, = s, iff and only if v = kv, where k € R*. If follows we can write
each element of O(n) as a string of non-zero vectors, up to some non-zero real
multiple. We want to make this precise, in the exact sense that we want to
construct an exact sequence

{e} 2 R* =T, = O(n) — {e}

Where I' consists somehow of finite strings of non-zero vectors, and our map
p: 'y = O(n) restricts to s on R"\{0}. T',, will be the Clifford group corre-
sponding to certain well chosen Clifford algebras.

Last Time: We defined the Clifford algebra CI(V) for a vector space V
equipped with a symmetric bilinear form (—, —) as the following quotient

Cl(V):=T(V)/(v®v—(v,v))
We have a canonical automorphism

a:ClV)— ClV)



Defined on basis elements by e — —e. We have the anti-automorphism
t:ClUV)— ClV)orP

Defined on basis elements by e — e. Note that V sits as a subspace of Cl(V)
which is proved in [1].

For Us: V = R", and our symmetric bilinear form is the negative of the
standard Euclidean dot product. So for n > 1 define

Cn:=T[R")/{v®v+|v]]*)

Note that for v € R™"\{0}, we have v? = —||v||? € R*. This is good, because
we intend on sending these vectors to reflections in O(n) via a representation p
such that ker p = R*, so we better have v? € R* for all such vectors.

Fixing an orthonormal basis (e;)1<i<n, we have the following useful relations
=-1

61'(3]‘ = 76]'61'

We now give an equivalent definition for the Clifford group to that given last
week
L, :={xeC;:(Jv,..,vx € R"\{0})(z = v1...0)}

This is a well defined multiplicative subgroup of C,,. Further, we can define the
following representation.
p: T, = GL(R")

Where for z € T, v € R", p,(v) = ax)vr~L.

Lemma: p is a well defined linear representation of I',,. Further p restricts
to s on R™\{0}. It follows that im p = O(n).

Proof: Considering the representation p : I';, — GL(C},), defined in the same
way as p, this is certainly well defined, since multiplication by a unit in an
algebra corresponds to a linear isomorphism, and we have for all z,y € [,
ceCy.
pay(€) = a(zy)ey ' z™t = pupy(c)

We show that for v € R™ \{0}, p, restricts to s, on R". For v € R"\{0}, we can
fix an orthonormal basis (e;)1<i<n for R™ such that ||v||e; = v, then however,
we can assume v = e1, since it will act identically to v via p. Then we have

Pe,(€1) = —€1

and
e, (€7) = €;



Where 7 # 1. Then however on R". p, = s,. It follows that R" is I',,-invariant,
and further that p is the correseponding subrepresentation. Then the fact that
im p = O(n) is clear, since we have for A € O(n), A = sy, ...S4,, = Po;...v, Where
v; € R"\{0}. Every element in the image is of this form by design, so we are
done. O

We give the following lemma without proof, since it uses to Z/2Z of the Clifford
algebra, which was skipped.

Lemma: kerp = R*
So we have the exact sequence we desired
{e} 2 R* =T, - O(n) = {e}
Remember we defined the norm N on a Clifford algebra to be the map =z —

rat(z) = zta(x). In C,, for any v € R"\{0} we have N(v) = [|v||>. The
following claim then follows simply by induction.

Lemma: N|r, : T, = R" is a well defined homomorphism of groups.

Proof: Observe that for vy, ..., v, € R"\{0}, we have N (v;....v5) = vy...vp0t(vy...

V1. V1 N (v )t (v1....v—1) = N(v1...05-1)N(vg), so the proof follows by in-
duction. O

Definition: Define Pin(n) := ker(N|r, ).
Theorem: We have the exact sequence
{e} = Z/27Z — Pin(n) — O(n) — {e}

Proof: Certainly p restricted to Pin(n) maps onto O(n), since given A € O(n),
we can write A = S,....8, = p(e1...e;) where each e; has N(e;) = 1. It
follows by the previous lemma that e;....ex € Pin(n). Further ker p|pin(n) =
ker pNPin(n) = {-1,1} X Z/2Z

Definition: Define Spin(n) := p~1SO(n). We have immediately the exact
sequence
{e} = Z/27 — Spin(n) — O(n)
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