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For n ≥ 1, consider the subset S(n) ⊂ O(n), of reflections though n − 1 di-
mensional subspaces of Rn. We have the following fact.

Proposition: The reflections S(n) generate O(n).

Proof: If n = 1, S(n) = O(n), so we are done. For any n, take A ∈ O(n). Fixing
an orthonormal basis (ei)1≤i≤n for Rn, choose σ ∈ S(n) such that σ◦A(e1) = e1.
Then we can view σ ◦ A as an element of O(n − 1), so the proposition follows
by induction. �

Consider the correspondence s : Rn \{0} → S(n), which sends a non-zero vector
v to sv ∈ S(n), which is the reflection through the hyperplane orthogonal to v.
Clearly sv = su iff and only if u = kv, where k ∈ R∗. If follows we can write
each element of O(n) as a string of non-zero vectors, up to some non-zero real
multiple. We want to make this precise, in the exact sense that we want to
construct an exact sequence

{e} → R∗ → Γn → O(n)→ {e}

Where Γ consists somehow of finite strings of non-zero vectors, and our map
ρ : Γn → O(n) restricts to s on Rn \{0}. Γn will be the Clifford group corre-
sponding to certain well chosen Clifford algebras.

Last Time: We defined the Clifford algebra Cl(V ) for a vector space V
equipped with a symmetric bilinear form 〈−,−〉 as the following quotient

Cl(V ) := T (V )/〈v ⊗ v − 〈v, v〉〉

We have a canonical automorphism

α : Cl(V )→ Cl(V )
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Defined on basis elements by e→ −e. We have the anti-automorphism

t : Cl(V )→ Cl(V )opp

Defined on basis elements by e → e. Note that V sits as a subspace of Cl(V )
which is proved in [1].

For Us: V = Rn, and our symmetric bilinear form is the negative of the
standard Euclidean dot product. So for n ≥ 1 define

Cn := T (Rn)/〈v ⊗ v + ||v||2〉

Note that for v ∈ Rn \{0}, we have v2 = −||v||2 ∈ R∗. This is good, because
we intend on sending these vectors to reflections in O(n) via a representation ρ
such that ker ρ = R∗, so we better have v2 ∈ R∗ for all such vectors.

Fixing an orthonormal basis (ei)1≤i≤n, we have the following useful relations

e2
i = −1

eiej = −ejei
We now give an equivalent definition for the Clifford group to that given last
week

Γn := {x ∈ C∗
n : (∃v1, ..., vk ∈ Rn \{0})(x = v1...vk)}

This is a well defined multiplicative subgroup of Cn. Further, we can define the
following representation.

ρ : Γn → GL(Rn)

Where for x ∈ Γn, v ∈ Rn, ρx(v) = α(x)vx−1.

Lemma: ρ is a well defined linear representation of Γn. Further ρ restricts
to s on Rn \{0}. It follows that im ρ = O(n).

Proof: Considering the representation ρ̄ : Γn → GL(Cn), defined in the same
way as ρ, this is certainly well defined, since multiplication by a unit in an
algebra corresponds to a linear isomorphism, and we have for all x, y ∈ Γn,
c ∈ Cn.

ρxy(c) = α(xy)cy−1x−1 = ρxρy(c)

We show that for v ∈ Rn \{0}, ρ̄v restricts to sv on Rn. For v ∈ Rn \{0}, we can
fix an orthonormal basis (ei)1≤i≤n for Rn such that ||v||e1 = v, then however,
we can assume v = e1, since it will act identically to v via ρ. Then we have

ρe1(e1) = −e1

and
ρe1(ei) = ei
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Where i 6= 1. Then however on Rn. ρv = sv. It follows that Rn is Γn-invariant,
and further that ρ is the correseponding subrepresentation. Then the fact that
im ρ = O(n) is clear, since we have for A ∈ O(n), A = sv1 ...svk = ρv1....vk

where
vi ∈ Rn \{0}. Every element in the image is of this form by design, so we are
done. �

We give the following lemma without proof, since it uses to Z/2Z of the Clifford
algebra, which was skipped.

Lemma: ker ρ = R∗

So we have the exact sequence we desired

{e} → R∗ → Γn → O(n)→ {e}

Remember we defined the norm N on a Clifford algebra to be the map x →
xαt(x) = xtα(x). In Cn, for any v ∈ Rn \{0} we have N(v) = ||v||2. The
following claim then follows simply by induction.

Lemma: N |Γn : Γn → R∗ is a well defined homomorphism of groups.

Proof: Observe that for v1, ..., vk ∈ Rn \{0}, we haveN(v1....vk) = v1....vkαt(v1....vk) =
v1....vk−1N(vk)αt(v1....vk−1) = N(v1....vk−1)N(vk), so the proof follows by in-
duction. �

Definition: Define Pin(n) := ker(N |Γn).

Theorem: We have the exact sequence

{e} → Z/2Z→ Pin(n)→ O(n)→ {e}

Proof: Certainly ρ restricted to Pin(n) maps onto O(n), since given A ∈ O(n),
we can write A = se1 ....sek = ρ(e1...ek) where each ei has N(ei) = 1. It
follows by the previous lemma that e1....ek ∈ Pin(n). Further ker ρ|Pin(n) =
ker ρ ∩ Pin(n) = {−1, 1} ∼= Z/2Z

Definition: Define Spin(n) := ρ−1SO(n). We have immediately the exact
sequence

{e} → Z/2Z→ Spin(n)→ O(n)
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