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1 Recap and Outline

From Brendan and Brae’s talks, we learned the following:

• SU(2) has Lie algebra su(2) which is also the Lie algebra of SO(3). For each n ∈ N, SU(2) has
a unique n-dimensional irreducible representation given by an action on bivariate nth order
homogeneous polynomials. Since SU(2) is simply connected, each of these representations
corresponds to a representation of su(2) which is generated by symbols σi with commutation
relations

[σi, σj ] = 2iεijkσk.

In the 2-dimensional case (i.e. spin-1/2), the symbols are called the Pauli matrices,

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]

• If we complexify, we can take complex linear combinations to define generators for su(2)C,

H = σ3, X = 1
2 (σ1 + iσ2) , Y = 1

2 (σ1 − iσ2)

which have the nicer commutation relations

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

These are nicer because we can use the eigenvectors of H as a basis for our representation
space, and think of the X and Y as raising and lowering operators.

• We saw a similar story with the Lie algebra of SO+(1, 3), so(1, 3) (which is also the Lie
algebra of Spin(1, 3)); the real Lie algebra had 6 generators: Three rotations Ji and 3 boosts
Ki with relations,

[Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk,

while the complexification so(1, 3)C had generators M±
i := 1

2(Ji ± iKi) with the M+
i com-

muting with the M−
i and each of them satisfying the same commutation relations as the

generators σi of su(2). Thus, so(1, 3)C ' su(2)C⊕ su(2)C and each representation of so(1, 3)C
is labelled by a pair of half-integers (m,n). Brae investigated the (0, 0) representation which
corresponds to scalar fields, and today we’re going to explore the next-simplest.
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• Upshot is that we’re going to derive the Dirac spinor via an alternate route to what we saw
last week. In Jackson’s talk, we decided to look at the unique irreducible representation of
the Dirac algebra as it coincided with a special representation of Spin(1, 3). We called this
the (1/2, 0)⊕ (0, 1/2) bispinor.

2 The Spinors

• So, we know that so(1, 3)C ' su(2)C ⊕ su(2)C, but we actually want to remember that we’re
thinking of the left su(2)C as being generated by M+

i and the right one being generated by
M−
i . This has non-trivial implications for our Ji and Ki operators.

• For the (1/2, 0) representation, we need the M+
i to be 2 × 2 matrices that satisfy the su(2)

commutation relations, since our representation space is 2-dimensional. Thus, the correct
choice is M+

i = σi. On the other hand, we need the M−
i to be 1 × 1 matrices that satisfy

the necessary commutation relations of su(2), so we need M−
i = 0 exactly. This means that

Ji = iKi, and this is why it’s important to assign M+
i to the left slot and M−

i to the right
slot, respectively! Substituting this into the definition of M+

i = σi, we get that Ji = σi and
Ki = −iσi.

• If we repeat this for the (0, 1/2) representation, we have M+
i = 0 =⇒ Ji = −iKi and that

again Ji = σi and Ki = iσi. Thus, the difference in these representations is how they behave
under Lorentz boosts.

• Recalling that for these representations, the σi are actually the 2× 2 Pauli matrices, we can
now construct the (1/2, 0) ⊕ (0, 1/2) representation by using block-diagonal matrices, and
compare with the Sµν defined in Jackson’s talk.

• An element of the (1/2, 0) representation is called a left Weyl spinor and vice versa for the
right Weyl spinor. One way to tell them apart is to see whether Ki acts on them like iσi or
−iσi. The terminology left and right has to do with handedness a.k.a. chirality. Chirality is
a little difficult to explain (it essentially boils down to which representation of the Poincaré
group the particle is an element of), but it coincides to the intuitive concept of helicity in
special cases:

The helicity of a particle is the projection of its spin onto its momentum; if the projection
is positive, it’s right-handed and vice versa for left-handed particles. This only really makes
sense for particles with non-zero momentum, like photons (which are massless). To deal with
particles with possibly-zero momentum, we extend the idea of helicity to chirality, which is
conserved when momentum changes signs.

• Another way to see that the (1/2, 0) and (0, 1/2) representations are non-isomorphic is to
compare (1/2, 0)⊗(1/2, 0) with (1/2, 0)⊗(0, 1/2) by looking at the eigenvalues of the respective
operators.

• We would like our Lorentz invariant theory to abide by CPT-symmetry. That is, we want
the physics to be the same if we replace all charges (e.g. electric charge, or any of the
conserved charges produced from Noether’s theorem) with their negatives, or apply a parity
transformation ((x, y, z)→ (−x,−y,−z)), or apply a time reversal transformation (t→ −t).
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It turns out that parity and time reversal transformations map Ji → Ji, Ki → −Ki (we can
understand this by drawing e.g. J1 as an infinitesimal vector tangent to the unit circle on the
y − z plane and then replacing both axes with their negatives; for the boost K1, we would
draw an infinitesimal tangent to a hyperbola on the t− x plane) and thus M+

i ↔M−
i . This

means that a left-Weyl spinor (an element of the (1/2, 0) representation) becomes a right-Weyl
spinor under parity and time reversal transformations. Thus, a particle cannot be described
by a left-Weyl spinor without having to deal with right-Weyl spinors simultaneously. This is
why we want to discuss both by constructing a Dirac spinor as

ψ =

[
χL
ξR

]
,

where χL is some left-Weyl spinor and ξR is some right-Weyl spinor.

• If we substitute this expression into the Dirac equation (iγµ∂µ−m)ψ = 0, we obtain equations
that relate χL and ξR to each other. This is another way of seeing that you can’t treat a
particle as a left-Weyl spinor without taking into account right-Weyl spinors. That is, unless
m = 0, in which case the aforementioned equations decouple. Physically speaking, if an
elementary particle is a Weyl spinor, it must be massless.

• We haven’t really talked about charge symmetry yet. The charge conjugate of a left-Weyl
spinor χL is χCL := εχ∗

L where ( · )∗ is complex conjugation and

ε =

[
0 1
−1 0

]
.

It turns out that χCL is a right-Weyl spinor, so we call it χR. Likewise, the charge conjugate
of a right-Weyl spinor ξR is ξCR = −εξ∗R, which we call ξL. Of course, (χCL )C = χL and
(ξCR)C = ξR. This formula is motivated by physics and can’t be explained much further here.
However, it is interesting to note that a particle’s anti-particle partner is its charge conjugate.
Charge conjugation does not follow through to the Dirac spinor in a straightforward manner.
Instead, [

χL
ξR

]C
=

[
ξL
χR

]
.

• Finally, it may so happen that a Dirac spinor is of the form[
χL
χR

]
so that the second component completely depends on the first. Then, its dimension reduces
to 2 and we call it a Majorana spinor. Note that it is its own antiparticle.

• In the standard model, all known elementary fermions are spin 1/2 Dirac spinors, except the
neutrino. We do not yet know if the neutrino is a Dirac spinor or a Majorana spinor.
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