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ABSTRACT

For every prime p and integer n > 3 we explicitly construct an abelian variety A/Fyn
of dimension n such that for a suitable prime [ the group of quasi-isogenies of A/F,» of
[-power degree is canonically a dense subgroup of the n-th Morava stabilizer group at p.
We also give a variant of this result taking into account a polarization. This is motivated
by the recent construction of topological automorphic forms which generalizes topological
modular forms [BL1].

For this, we prove some arithmetic results of independent interest: A structure Theorem
for torsors under smooth, generically semi-simple group-schemes over integer-rings and
a result about approximation of local units in maximal orders of global skew-fields. The
latter result also gives a precise solution to the problem of extending automorphisms of
the p-divisible group of a simple abelian variety over a finite field to quasi-isogenies of the
abelian variety of degree divisible by as few primes as possible.

1. Introduction

One of the most fruitful ways of studying the stable homotopy category is the chromatic approach:
After localizing, in the sense of Bousfield, at a prime p, one is left with an infinite hierarchy of primes
corresponding to the Morava K-theories K (n), n > 0, see [R2]. The successive layers in the resulting
filtration are the K (n)-local categories [HS| the structure of which is governed to a large extend by
(the continuous cohomology of) the n-th Morava stabilizer group S,, i.e. the automorphism group
of the one-dimensional commutative formal group of height n over F,. A fundamental problem in
this context is to generalize the fibration

LS’ — EYf — EpF,

c.f. the introduction of [GHMR], to a resolution of the K (n)-local sphere for n > 2. Substantial
progress on this problem for n = 2 and in many other cases as well has been achieved by clever use
of homological algebra for S,,-modules [GHMR],[H]. Recently, pursuing a question of M. Mahowald
and C. Rezk, M. Behrens was able to give a modular interpretation of one such resolution in the
case n = 2 [B]:

A basic observation is that S, is the automorphism group of the p-divisible group of a super-singular
elliptic curve E over a finite field k. Hence it seemed plausible, and was established in loc. cit., that
the morphisms in a resolution of a spectrum closely related to L K(2)50 should have a description in
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terms of suitable endomorphisms of E. A key result for seeing this was to observe that for suitable
primes [

) (Enaw(e) m) c s,

is a dense subgroup [BL2, Theorem 0.1].

One of our main results, Theorem 28, is the direct generalization of (1) to arbitrary chromatic level
n > 3 in which F is replaced by an abelian variety of dimension n which is known to be the minimal
dimension possible.

In Corollary 24 we give a variant of the arithmetic result underlying Theorem 28 in which on the
left-hand-side of (1) we only allow endomorphisms which are unitary with respect to a given Rosati-
involution. The motivation for this stems from recent work of M. Behrens and T. Lawson [BL1]
bringing the arithmetic of suitable (derived) Shimura varieties to bear on homotopy theoretic prob-
lems of arbitrary chromatic level, generalizing the role of topological modular forms for problems
of chromatic level at most two.

Even though the initial motivation for the present results were the topological applications explained
above, the main work is done in the arithmetic of algebraic groups as we hope to explain now giving
a more detailed account of the organization of this paper.

In subsection 2.1, Theorem 1 we will show that torsors under suitable smooth group-schemes over
integer-rings are determined by their generic fiber. While this is well-known for semi-simple groups,
we allow groups which are only generically semi-simple but may otherwise have rather arbitrary
degenerations. Our motivation for this is explained in subsection 2.2 where we consider certain
naturally occurring integral models for forms of Sl; and show that our results on torsors applies to
these, see Theorems 5 and 10.

As a first application, in section 3, we consider the problem of approximating local units of maximal
orders in finite-dimensional skew-fields over Q (carrying a positive involution of the second kind)
by global (unitary) units with as few denominators as possible. This is naturally an approximation
problem for specific integral models of the general linear (certain unitary) group(s) and will be
reduced to a similar problem for G,, (a specific integral model T’ of a one-dimensional anisotropic
torus) in Theorems 12 and 17.

In section 4 we can solve the approximation problem for G,, using class field theory and settle a
special case for T’, see Theorems 20 and 22.

In subsection 5.1 we explain the application of the results obtained so far to the following problem:
Given a simple abelian variety A over a finite field & one would like to extend an automorphism of
the p-divisible group A[p™>] of A to a quasi-isogeny of A the degree of which should be divisible by
as few primes as possible. Subsection 5.2 contains the proof of Theorem 28 reviewed above.
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TORSORS UNDER SMOOTH GROUP-SCHEMES AND MORAVA STABILIZER GROUPS

2. Arithmetic

2.1 Torsors under smooth group-schemes over integer-rings

THEOREM 1. Let k be a number-field with ring of integers Ok, U C Spec(Oy) a non-empty open
subscheme and G /U an affine smooth group-scheme of finite type. Assume that:

i) The generic fiber Gy := G xy Spec(k) of G is semi-simple and simply connected.

ii) G/U has connected fibers.

iii) There is a place of k outside U (for example, an archimedean place) at which G}, is isotropic.
Then restriction induces a bijection

(2) HY(U,G) = H'(Spec(k),G).

REMARK 2. 1) Here, H' denotes flat (equivalently by the smoothness of G /U, étale) cohomology.
2) Dropping assumptions ii) and iii) in Theorem 1, the map (2) is still surjective and its fibers can
be described using Proposition 3 below. We leave the details of this generalization to the reader.
3) If G/U is semi-simple, Theorem 1 is well-known. We will demonstrate the usefulness of the present
generalization by showing in subsection 2.2 that naturally occuring groups satisfy the assumptions
of Theorem 1 without being semi-simple.

4) The set H!(Spec(k), G) should be considered known by the Hasse principle [PR, Theorem 6.6].

For a prime 0 # p C O;, we denote by Oy, , the completion of Oy, at p and by kj, the field of fractions
of Oy . The following result is the key to proving Theorem 1.

PROPOSITION 3. Let ) # V C Spec(Oy) be an open subscheme, G/V an affine smooth group-
scheme of finite type, 0 # p € V and put V' :=V — {p}.
Then the canonical map of pointed sets

(3) r:HY(V,G) — H'(V', G) Xmi (spec(i,).c) H' (Spec(Ok p), G)

is surjective and every one of its fibers is in non-canonical bijection with G(V')\ G(kp)/G(Ok,p)-

Proof. We write X for the algebraic stack over V classifying G-torsors, c.f. [L-MB, 4.6.1 and 9.6].
Applying [M-B, Corollaire 6.5.1 (e)] with S =V, S’ = Spec(Ok ) and Y = Spec(O /pOyp), using

the notation of loc. cit. 0.2, shows that the canonical functor

X(V) - X(V/) X X (Spec(kp)) X(SPGC(Ok,p))

is an equivalence. Passing to isomorphism classes gives the result as follows:

An element « of the right-hand-side of (3) can be represented by a tuple (X,Y,0) consisting of
a Gyr-torsor X, a Ggpec(0,,)-torsor Y and an isomorphism o : Xlspec(ky) — Y|Spec(kp) of G,-
torsors. Hence (X, Y, o) is an object of X (V') X x(spec(k,)) X (Spec(Okp)) = X (V) the isomorphism
class of which maps to a under r. To see the description of the fibers of r, fix some a € H'(V, G)
and choose a Gy-torsor X representing it. Then, using that Aut x(spec(k,)) (X Ispec(k,)) = G(ky), we
have a map
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G(V)\ G(kyp)/G(Okp) rH(r(a)

G(V')oG(Oyp) —— [(X|vr; Xlspec(0y.,) )]
which is bijective. O

Proof of Theorem 1. First observe that for every proper open subset ) # V' C U and p € U — V/,
writing V := V' U {p}, the canonical map

HY(V,G) — HY(V', Q)

is bijective. By Proposition 3, this follows from a) H!(Spec(ky), G) = 0, b) H!(Spec(Of ), G) = 0
and c) |G(V') \ G(ky)/G(Okyp)| = 1. Now, using condition i) in Theorem 1, assertion a) is [PR,
Theorem 6.4], b) follows from Lang’s theorem [PR, Theorem 6.1] using condition ii) and the fact
that Oy, is Henselian and c) is a consequence of strong approximation and condition iii), c.f. the
proof of Proposition 14 for an almost identical application of strong approximation.

To see that (2) is surjective, let X/Spec(k) be a Gj-torsor representing a given o € H!(Spec(k), G).
Then X extends to a G- torsor for some non-empty open U’ C U [L-MB, Proposition 4.15,i)] and
using the above observation and induction on |U — U’| shows that « is contained in the image of
(2).

To see that (2) is injective, let o, 3 € H!(U,G) have the same image under (2). Representing a
and 3 by Gy- torsors X and Y we have X ~ Y; as G- torsors by assumption. This isomorphism
extends, i.e. there is a non-empty open sub-scheme U’ C U such that o and 3 have the same image
under the map H' (U, G) — H'(U’, G). The latter map is bijective by the initial observation, hence
a=p. |

REMARK 4. With the notations and under the assumptions of the proof of Theorem 1, the functor
X(V)— X(V)

induces a bijection of isomorphism-classes but is not an equivalence since it is not full.

2.2 The geometry of some groups

In this subsection we demonstrate the range of applicability of Theorem 1 by considering forms
of Sl;. These can be described in terms of skew-fields (with involution). The choice of a maximal
order in the skew-field determines an integral model of the algebraic group and we will show that
the group-schemes thus obtained often satisfy the conditions of Theorem 1, while they are rarely
semi-simple.

2.2.1 Type Ag_1

Let D be a finite dimensional skew-field over Q and @ C D a maximal order [D, Kapitel VI]. The
center of D, denoted k, is a number field and we denote by d the reduced dimension of D, i.e.
dimy, D = d%. We denote by O}, C k the ring of integers and note that kN O = O, as an immediate
consequence of [D, Kapitel VI,§11, Satz 7].

Recall that D is determined by its local invariants as follows [PR, Section 1.5.1]. Writing ¥, for
the set of places of k, for every v € %y there is a local invariant inv,(D) € 1Z/Z C Q/Z and
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inv, (D) = 0 for almost all v. For a given place v, we denote by k, the completion of k£ with respect
to v. Then D, := D ®y, k, is a central simple k,-algebra which determines a class [D,] € Br(k,) in
the Brauer group of k,. There are specific isomorphisms

Q/Z , w finite
Ty : Br(ky) — { 1ZJ/Z , v real
0 , v complex

such that inv, (D) = 7,([D,]). Note that for every v € ¥, D, is a skew-field if and only if the order
of inv, (D) is d.
The group-valued functor G on Op-algebras R

G(R) := (O ®o, R)"

is representable by an affine group scheme of finite type G/Spec(Oy). The reduced norm induces a
morphism of group-schemes N : G — G, over Spec(Oy) and writing G’ := ker(N) gives an exact
sequence of representable fppf-sheaves on Spec(Oy)

(4) 1— G — G056, — 1.

To see that N is fpp f-surjective, note that the inclusion R* C (O®op, R)* defines a closed immersion
1 : G,, — G such that N o4 is multiplication by d as can be checked on the generic fiber.

THEOREM 5. The groups G and G’ are smooth with connected fibers over Spec(Oy).

For the proof, we will need the following.

PROPOSITION 6. Let S be a scheme, G, H/S group-schemes of finite presentation with affine fibers
and G/S flat and let ¢ : G — H be a morphism of S-group-schemes. Then the following are
equivalent and imply that H/S is flat:

i) ¢ is faithfully flat.

ii) ¢ is an epimorphism of fppf-sheaves.

iii) For every geometric point Spec(2) — S, ¢q is an epimorphism of fppf-sheaves.

Proof. Since ¢ is of finite presentation, the implications i)=-ii)=-iii) are trivial, so assume that
iii) holds true. Then, for every geometric point Spec(f2) — S, the morphism of Q-Hopf algebras
corresponding to ¢q is injective, this follows from the existence of a fppf-local section of ¢q, and
thus faithfully flat [Wa2, Theorem 4.1]. This shows that ¢ is surjective and [EGA IV3, Corollaire
11.3.11, a) = b)] implies that ¢ and H/S are flat. O

Proof of Theorem 5. To see that G/Spec(Oy) is smooth we use the lifting criterion [EGA IVy,
Remarques 17.1.2,i) et 17.5.4]: If A — A/I is the quotient of an Artinian Ok-algebra A by an ideal
I C A of square zero, the surjectivity of G(A) — G(A/I) is clear from the definition of G, hence
G/Spec(Oy) is smooth. By Proposition 6, ii)=i), N : G — G, is (faithfully) flat, hence so is its
base change G’/Spec(Oy).

We shall now show that all geometric fibers of G (resp. G’) are smooth and connected of dimension d?
(resp. d® —1). This will also imply that G’/Spec(Oy) is smooth by the fiber-wise criterion [EGA TV,

5
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Théoreme 17.5.1] and thus conclude the proof.

Geometric fibers of G (resp. G') in characteristic zero are isomorphic to Glg (resp. Sly). Let 0 #
p C O be a prime, k := O/p and R be an algebraic closure of k. We have D, ~ M, (D) for a
central skew-field D over k,. Denoting by r the reduced dimension of D, we have d = nr. Since
O ®0, Okp C Dy is a maximal order [Re, Corollary 11.2], we have O ®0, Ok ~ M,,(Op) as Oy, p-
algebras by [Re, Theorem 17.3] where Op C D is the unique maximal order [Re, Theorem 12.8].
Let IT € Op and 7 € Oy be uniformizers. Then A= (Op/mOp) ® F is a K- algebra with radical
R = (IOp/7O0p) ®, K and maximal semi-simple quotient A/R ~ &". Since Gz = Gl,(A), we have
an extension

1 U Gx (Glg)" —1

where U is a unipotent group of dimension n?(r—1)r (recall that 1Op = II"Op and (II'Op /I Op)®,
%~ K"). So G is connected and smooth of dimension n%r 4+ n?(r — 1)r = d2.

Since the reduced norm Ng : Gg — G, & is trivial on U it factors over some « : (Gl 5)" — Gy, 5.
We have a(g1,...,9r) = [[i—; det(g;) as an immediate consequence of [K, Lemma 3.8]. This ex-
hibits G as an extension of V' := ker(a) by U. We can factor a = g o with v : (Gl,z)" — Gy, ,
Y(g1,--.,9r) == (det(gi))i and B : G], = — Gz, B(x1,...,2,) := x1...2, and thus obtain

m,R

r

1—Sh % 1% T 1

L

1—Sl x —— Gl ¢ il G = 1
x 5
Gm,n
1

with 7" := ker(3). Looking at character groups for example, one sees that T" ~ G;;% and hence V is

connected and smooth of dimension dim(7") + dim(SI},) = n?r — 1 and GZ is connected and smooth
of dimension dim(V') + dim(U) = d? — 1.

|

REMARK 7. In relation with Remark 2,3) note that the maximal locus inside Spec(Oy,) over which
G (resp. G') is reductive (resp. semi-simple) is obtained by inverting the discriminant of D, i.e. by
removing all p € Spec(Oy) such that invy(D) # 0.

2.2.2 Type >Aq_q

Let D be a finite-dimensional skew-field of reduced dimension d over QQ carrying a positive involution
of the second kind x, i.e. for all x € D* we have trg (*zz) > 0 (positivity) and * restricted to the
center L of D is non-trivial. Then L is a CM-field with k := {x € L |z =" 2} C L as its maximal

6
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real subfield [Mu, page 194]. Note that * is k-linear. We assume that @ C D is a maximal order
which is invariant under . Then ON L = O and O Nk = Oy, are the rings of integers of L and k.
We consider the affine group-schemes of finite type U and T over Spec(Qf) whose groups of points
are given for every Og-algebra R by

U(R) ={g9 € (O®0, R)*|"gg =1} and
T(R) = {g € (O, ®o, R)* |NE(g) = 1}.

There is a homomorphism N : U — T over Spec(Oy) given on points by the reduced norm of D
and we put SU := ker(N). Over Spec(k) we have an exact sequence

1—— SUl(D, 1) =SU XSpec(Oy) Spec(k) —— Ul(D, 1) =U XSpec(Oy) Spec(k:) &) RGS£(Gm’L)(1) —1,

where 717 denotes the standard rank one Hermitian form on D and

L
Resé(Gm,L)(l) = ker(Resé(Gm,L) i Gmk)

is a one-dimensional anisotropic torus over k; c.f. [PR, Section 2.3] for notation and general back-
ground on unitary groups.

We first study the integral model T/Spec(Oy) of Resk (G, 1)V). We define the open subscheme
U™ C Spec(Oy) by

U™ := Spec(Of) — {0 # p C O is a prime of residue characteristic 2 and ramified in L/k}.

PROPOSITION 8. T/Spec(Oy) is an affine flat group-scheme such that Ty, ~ Resk(G,, )V). For a
prime 0 # p C Oy, we have

Gmr(p) , if p splits in L/k.
K(p)2 cp e .
Th(p) = Resﬁgzg (Gmﬁ(p)@))(l) , if p is inert in L/k.
Ga,n(p) X 2, (p) , ifp is ramified in L/k.

In particular, the maximal locus inside Spec(QOy,) over which T is smooth equals U™".
Here, k(p) := O /p and r(p)? is the unique quadratic extension of r(p).

Proof. We know that Resgi (Gm,0,,)/Spec(Oy) is an affine and smooth group-scheme from [BLR,
7.6, proof of Theorem 4 and Proposition 5,h)]. There is an obvious subgroup i : G, 0, — Resgi (Gm,0,)
such that Nﬁoi is multiplication by 2, hence Né : Resgi (Gm,0,) — G0, is an fppf-epimorphism
and the first assertion follows from Proposition 6 since by definition T = ker(N£). Since restriction
commutes with base change, for every Oy-algebra R we have

TR = ker(ResgL@)OkR(Gm,R) B Gm,R)

which makes the assertions concerning the generic fiber and the fibers over split and inert primes
obvious.
For ramified p we have O, ®0, k(p) ~ Or4/q4*OL q for q the unique prime of Oy, lying above p. There

7
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exists a € Op 4 with Of, g = O p[a] and « satisfies an Eisenstein polynomial 22 — az + b € O p[x].
Since a € pOyp C q20L7q, the non trivial automorphism o of Op, 4 over O ,, satisfies

ola)=a—a=—ain 0r4/q?0L,.

As Oy, /9?01 4 ~ k(p)[a]/(a?) we conclude that for every r(p)-algebra R

Typ)(R) = {z +ya € (Ra]/(0*)*|1 = (z + ya)o(z + ya) = (z + ya)(z — ya) = 2%}

and we have an exact sequence
1—— Gaﬁ(p)(R) E— Tn(p)(R) e ugﬁ(p) (R) —1.

T+ yar——

which is split by « — z + Oa.

We will need the following.

PropoOSITION 9. Let k be a commutative ring, By and Bs k-algebras and T an involution on
B := Bj x By such that 7(x,y) = (y,z) for all x,y € k. Then there is an isomorphism of k-algebras
with involution

(B,7) =~ (B1 x B, (2,y) = (y, ).
Proof. The proof of [KMRT, Proposition 2.14] carries over without any change. O

Now let C be the set of non-zero primes p € U™ such that U@
group. We will see during the proof of Theorem 10 that this set only contains primes which are
ramified in L/k. Let T/ C T be the open subscheme obtained by removing from T the non-identity

component of T, for all p € C', c.f. Proposition 8. Clearly, T’ C T is a subgroup-scheme.

is an extension of a symplectic

THEOREM 10. i) The morphism Nynr : Uynr — Tynr factors through T, C Tynr and the

resulting sequence of fppf-sheaves on U™"
1 — SUpynr — Upynr NU—”T /U”T — 1

is exact.
ii) The group U/U™ (resp. SU/U™ ) is smooth (resp. smooth with connected fibers).

See Remark 11 for what happens at fibers over ramified primes of residue characteristic 2.

Proof. Fix p € U™. We will study the local groups
Uy := U Xgpec(0,,) Spec(O,p) and
8
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SUp := SU Xgpec(0y,) Spec(Okp)
over Spec(Oj, p). For this, we need to understand the Oy, ,-algebra with involution

We distinguish three cases:

1) p is inert in L/k:
For the unique prime q C Oy, lying above p we have invq(D) = 0 [Mu, (B) on page 199] and
Op g Op ®Ok,p k;p ~ _D ®L Lq ~ Md(Lq)

is a maximal order, hence Oy ~ M4(Op 4) as Oy p-algebras. Denote by ¢ the non-trivial automor-
phism of O, 4 over Ok . We obtain for every Oy, g-algebra R:

(Up Xspec(0y,,) SPec(OL,q))(R) = Up(R) = {g € Ma(OLq @0y, R)|"99 = 1},

Since p is unramified we have Of, ¢ ®0, , OLq =~ OL 4 X OL 4 and under this isomorphism (o ® 1)
switches the factors. Since by Proposition 9 we have an isomorphism of Oy, 4-algebras with involution

(Ma(OL.q) ®0,, OL,q:*) = (Mg(OL.q) x Ma(OL g)?, (z,y) — (‘y." z)),

where ! denotes the transpose of a matrix, we find that

Up(R) =~ {(z,y) € Mg(R x R) ~ My(R) x Mg(R) | (*y," 2)(z,y) = 1} ~ Glg(R).

We have thus shown that Up Xgpec(o,,) Spec(Opq) ~ Glgo, .- By decent, we conclude that
Uy/Spec(Oy,p) is smooth. Furthermore, the special fiber Uy ) = Up Xspec(o, ) SPec(k(p)) is a

k(p)/k(p)- form of Glg () and since H!(Spec(x(p)), PGLy) = 1 we have Us(p) = Glg (p)-

2) p splits in L/k:
In this case we have

Op ~ Oq X Oq/
where q and ¢’ are the primes of Of, lying above p and Oy := O ®0, O 4 and similarly for q’. By
Proposition 9 we have an isomorphism of O y-algebras with involution

(Opv *) = (Oq X ngp’ (ZL‘,y) = (%w))

and thus Up ~ Gl;(O4) and this group is trivially smooth over Spec(Oy ;).

3) p is ramified in L/k: As in case 1) we have
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as O p-algebras with ¢ € O the unique prime lying above p. We check the smoothness of
Uy/Spec(Ofp) using the lifting criterion: Let A be an Artinian Oy, y-algebra and I C A an ideal
with I? = 0. Given

z € Up(A/I) = {g € (Op @0y, A/I)"["99 =1}

there is some y € Oy ®0, , A lifting 2 and we have

"yy =1+ 2 for some z € Oy R0, , [ = Opl =10, C Oy R0, , A

with *z = z because *(*yy) =" yy. As p € U™ we have 2 € A* and can define

1
y =yl — 52) € Op®o,, A

which still lifts x and satisfies

*x |/ 1 1 1 1 (12:07_*212) 1

Yy = (=5 2 gyl - 52) = (1= 3"+ 2)(1 - 52)

Hence we have found y' € Up(A) lifting .

At this point we have established that U/U™ is smooth and now proceed to study SU/U™". We
first consider the geometric fibers showing in particular that they are all connected and smooth.
Let Spec(§2) — U™ be a geometric point. If the characteristic of €2 is zero, we have SUgq ~ Sl q,

hence we can assume that {2 = k(p) for some p € U™". We again have to distinguish three cases as
above:

1’) p is inert in L/k: From 1) above we have Uy ~ Gl and from Proposition 8 we know that
Tq ~ Gy, 0. Under these isomorphisms, N is identified with the determinant, hence SUq ~ Slg .

2’) p splits in L/k: From 2) above and Proposition 8 we know that Ug ~ Gl;(A) and Tq ~ G, q for
the Q-algebra A := O, ®oy,, § where g C O is a prime lying above p. This is the situation studied
in Theorem 5 from which we read off that SUq/Spec(f?) is connected and smooth (and, in fact, also
the dimensions of the semi-simple, toric and unipotent parts of SUq in terms of the order of inv4(D)).

3’) p is ramified in L/k: Recall from 3) above that Op ~ My(Or, 4). We have to study the involution
induced by * on

Op ®0,, = Ma(Q(e)).
10
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Recall that Q(¢) := Q[e]/(¢?) and that the involution % on My(Q(¢)) satisfies *e¢ = —e as established
during the proof of Proposition 8. Denoting by ¢ € Autg_q4(€2(€)) the element determined by
o(e) = —e and by + the involution on My(£2(€)) defined by

T(@ig) = (o)),

the Theorem of Skolem-Noether [Mi, Chapter IV, Proposition 1.4] shows that there exists a g €
Gl1i(92(€)) such that

(5) *r = gTag™! for all z € Mg(Q(e)).

From **x = x one sees that

(6) g=a'y

for some « € Q(e)*. This gives Tg = o(a)g and by multiplying we obtain g*g = ao(a)™gg which
using (6) implies that ao(a) = 1.
Writing o = = + ye with z,y € Q we get

2 2

l=ao(a)=2? -y’ ==z

hence

(7) a = +1 + ye for some y € .

Replacing g by Bg for g :=1F %ye € Q(e)* (the sign opposite to the one occuring in (7)) does not
affect (5) and replaces o by

afr(B) L (1 4y (1 Jy)(1 + 5y = (1451 F Sye)’ =

~

(£1 4+ ye)(1 F ye) = £1.

Hence we can assume that

(8) a==+l1.
To further simplify the involution, note that for every h € Gly(2(¢€)), (Mg(£2(€)), *) is isomorphic,
via conjugation with A, to (Mg(£2(¢)), 7) with

Tz =h*(h tzh)h ™! = hgt (W tzh)g  h™! = hgThtz(hgTh) L,

i.e.

11
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9) For every h € Gly(2(¢)) we can replace g in (5) by hg™'h.
We now distinguish two cases according to (8):

3’.1) Assume that o = 1. Writing g = A + Be with A € Gl4(2), B € My(f2) we have

A4 Be=g @27V 4yt 4 _tp

hence A =! A, B = —!'B and there exists some S € Glg(Q) with A = S'S. Using (9) with h = S~1
we can replace g by

hg™h =S YA+ Be)!S™ =14+ 57!BtS e

Put 7' := S~'B!S~! and note that B = —'B implies that 'T = —T. Using (9) again with h = 1— 3T
replaces g by

1 1
hgth=(1- 5Te)(1 +Te)(1+ 3 'Te) =1,

i.e. we can assume that *z =% z for all z € My(Q(€)). For every Q-algebra R we thus obtain

Ug(R)~{z=X+YecMy(R(e) |1 =" 2z =(*X ~'Ye)(X + Ye) =

XX + ('YX +F XY)e}

and hence an exact sequence

1——=F(R):= {1+ Yee My(Qe) |V = Y} —= Ug(R) —= O4(R) —=1,

X+Ye—X

1
Oy denoting the orthogonal group, which is split by X +— X + 0 - €. Evidently, F' ~ G2 ‘Z)(dﬂ). We

have the following diagram with exact rows and columns:

12
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(10) 1 1 1
1 F! SUg —=S040 —1
1 F——=TUq (OFR 1
tr Nq det
1—=Gg0 Tog ——= H2,0 1
1 1 1

This is obtained as follows: The lower row is taken from Proposition 8. The reduced norm in-
duces the determinant on My(£2(€)). This shows that 7Nqe is trivial and Nq¢ factors through some
F — Gg. As det(14+Ye) =1+ tr(Y)e, the map FF — G, is in fact the trace and F’ := ker(tr).
This also shows that the map O4 0 — p2 induced by Ngq is the determinant which is visibly fppf-

surjective, in fact, it is surjective as a morphism of pre-sheaves as is the trace tr. It is also clear that
La@d+1)-1 s .
F'~ G (d+1) . Now the fppf-surjectivity of a and Ng follows from a 5-lemma argument (which

does not use commutativity). In particular, SUgq is connected and smooth.

37.2) Assume that o = —1. Writing g = A + Be with A € Gly(Q2), B € My(Q2) we have

((6),a=-1)

A+ Be=g = —FTg=—'A+" Be,
iie. A = —'A and B =! B. The conditions on A force d to be even, say d = 2m. Let J :=
( (1) 16” > € Gli(92) be the standard alternating matrix. Then there exist a S € Glg(€2) such
—im

that SA!S = J. Using (9) with h = S we can replace g by

hgth = S(A + Be)'S = J + SB"Se.
Put T := SB'S and note that B =! B implies that T'=! T. Using (9) again with h = 1 + %TJe
replaces g by
+ 1 Ly ot Lo Loy
hgTh = (1+§TJ€)(J+T€)(1—§ J'Te) :J+(§TJ +T— §J J'T)e =

Ly
=T
5 1)

(*T=T)

1
J+(CT(=1)+T— J,

2

i.e. we can assume that g = J.
For every Q-algebra R we thus obtain, using ‘.J = J~1,

13
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Ug(R) = {z=X+Yeec Mg(Qe)) |1 ="z =J (X +Ye)'J(X +Ye) =
JEX 'Yl J(X +Ye) = J' X' IX + (=JYVIIX + T X' TY)e }.

Note that 1 = J!X!JX if and only if X JX = J, hence we get an exact sequence
| —— F(R) == {1 + Ye € My((e)) |Y = JY'J} —= Ug(R) —= Spoy, (R) —= 1,

X+Ye——X

where Sp,,,, denotes the symplectic group, which is split by X — X + Oe. Writing ¥ = < CCL b )
with a, b, c,d € M,,,(€2) one obtains

F(R): {< CCL Z) EMzm(RHta:d’tb:_b’tcz_c}’

hence F' ~ G?L’”Lm. The analogue of diagram (10) in this case reads as follows.

(11) 1 1 1
1 F/ SUQ @ szm 1
1 F Uq SPam 1
tr : Nq det(El)
L
1—=Ggu0 Tq H2,0 1
1

Note that since the determinant of every symplectic matrix equals 1, Nq factors as indicated in dia-
gram (11). In particular, Ng : Ug — Tgq is not an fppf-epimorphism but has image the connected
component G, o ~ T?2 C Tgq. Since F’ ~ Ggmkm*l we conclude that SUq is connected and smooth.

We now establish the exactness of the sequence

1 — SUUm' — UUm" NU—n: T/ nr — 1

over U™. Since T/ C T is an open subscheme, the fact that Ny»- factors through T}.. can be
checked on fibers where it follows from what has been shown above: Since the determinant is trivial
on Sp,,, in diagram (11), Nq factors through G,o = T C Tgo. We now need to see that the

14
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resulting morphism Nynr : Upgnr — Ty, is an fppf-epimorphism and we will show that it is in
fact faithfully flat: By Proposition 6, it is enough to see that Ug — T¢, is an fppf-epimorphism
for every geometric point Spec(2) — U™ which follows again from what has been proved above.
The flatness of Uynr — T, implies that SU/U™ is flat, hence smooth by the fiber-wise criterion.

O

REMARK 11. 1) Using the above kind of argument one can check that for a geometric point
Spec(2) — Spec(Oy) supported outside U™ (i.e. at a closed point of residue characteristic 2 which
ramifies in L/k) the geometric fibers are Ug ~ Lie(O4,0)<0q.0 and SUq ~ Lie(SO4,0)<SOq n where
the semi-direct products are formed with respect to the adjoint representation. Hence for d > 1,
U™ C Spec(Oy) is the maximal locus over which U and SU are smooth.

2) It is easy to give examples of the situation in Theorem 10 in which C # (), i.e. T" # T. From case
3'.2) in the above proof it is however clear that C' = () if d is odd.

3. Approximation of local units

In this section we study the problem of p-adically approximating local units of a maximal order (with
involution) by global (unitary) units of bounded denominators. Using the results of subsection 2.1
and 2.2.1 (2.2.2) this problem will be reduced in subsection 3.1 (3.2) to an approximation problem
for tori which will be solved in subsection 4.1 (solved in a special case in subsection 4.2).

3.1 Type A4

In this subsection we consider the problem of p-adically approximating local units of a maximal
order O C D where D is a finite dimensional skew-field over Q. We denote by k the center of D and
by d its reduced dimension. We fix a prime 0 # p C Oy at which we wish to approximate. There is a
unique prime P C O lying above p [D, VI, §12, Satz 1] and we denote by Og the B-adic completion
of O, c.f. [D, Kapitel VI, §11].

To describe the denominators we allow the approximating global units to have, we fix a finite set
of places S of k such that

p ¢ S and there exists a place vy € S such that D, is not a skew-field.

We write S/ for the set of finite places contained in S and consider the ring O, gtin Of Stin_integers

Ok C O gin :={x € k|v(x) > 0 for all finite v ¢ S} C k.

Since p ¢ S we have O, gan C Ok . Thus
1
(12) X = {2z € O gsn | v infinite and inv, (D) = 5 imply v(z) > 0} C Oy, and

(0 @0, Opgim)* € O

Recall that N denote the reduced norm of D.
THEOREM 12. The closure of (O ®o, Oy gin)* inside Oy equals
{r € O |Ny(z) € O, lies in the closure of X }.

15
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EXAMPLE 13. 1) For k = Q and D a definite quaternion algebra, i.e. d = 2 and inv,(D) = % for
the unique infinite place v of Q, we can choose S = {l} for any prime | # p at which D splits, i.e.
inv)(D) = 0. Then O} ¢z, = {£1} X 12 and X =12 C O p = Zy. For p # 2 we can choose [ as
above such that in addition X C Zj is dense and conclude that in this case O[* C Oy is dense.
For p = 2 we can choose | such that the closure of X equals 1 + 4Zo and conclude that the closure

of O[}]* inside Oy equals

ker(Of —o Z§ — Z5 /(1 + 4Zy) ~ {£1}),

c.f. Remark 27. In the special case in which D is the endomorphism algebra of a super-singular
elliptic curve in characteristic p, i.e. inv,(D) = 0 for all v # p, oo, this result has been established
by different means in [BL2, Theorem 0.1].

2) See Theorem 20 in subsection 4.1 for a further discussion of the closure of X C O p-

The rest of this subsection is devoted to the proof of Theorem 12.
Remember the groups G, G’ /Spec(Oy,) defined by G(R) = (O®p, R)* and G'(R) = {g € G(R)|N(g) =
1}.

PROPOSITION 14. The subgroup G'(Oy gin) € G'(Oy,p) is dense.

Proof. First note that G’ /Spec(Oy) is representable by an affine group scheme, hence the injectivity
of the homomorphism G'(Oj, gfin) — G'(O,p) follows from the injectivity of Oy gan — Okp. Sec-
ondly, G'(Oyp) is canonically a topological group [We, Chapter I} and we claim density with respect
to this topology. We have that G, := G’ Xgpec(0,)Spec(k) = Sli (D) [PR, Section 2.3] is an inner form
of Slg % and thus is semi-simple and simply connected. Furthermore, G, Xgpec(k) Spec(ky,) = Sl (D)
for some central skew-field D over k,, and some n > 1. Since D, is not a skew-field by assumption,
we have n > 2 and rky, (G}, Xspec(r) Spec(ky,)) = n —1 > 1 [PR, Proposition 2.12], i.e. G} is
isotropic at vg. From strong approximation [S, Theorem 5.1.8] we conclude that

(13) G'(k) - G'(ky,) C G'(Ay) is dense,

where Ay denotes the adele-ring of k. Fix z € G'(O,p) and an open subgroup U, C G'(Oy, ). Denote
by & € G'(Ay) the adéle having p-component x and all other components equal to 1. Then

U=Uyx [] GOro)x [[ Gk) <G (AR)

'U;ép finite vV infinite

is an open subgroup and by (13) there exist v € G'(k) and 6 € G'(k,,) such that v§ € ZU. Since
p # vo this implies that v, € 2,U, = 22U, where 7, is the p-component of the principal adeéle -,
equivalently, the image of v under the inclusion G’'(k) C G'(kp). Since z and U, are arbitrary, we
will be done if we can show that v € G'(Oy gan) C G'(k), i.e. that for every finite place v € S we
have v, € G'(Ok,). For v = p this is clear since U, C G'(Oy ) whereas for v # p we have, using
that 4, = 1 since v # vy € S,

(75)11 =M € (i‘U)v =Ty - G,(Ok,v) = G,(Ok,v)-

16
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To proceed, we apply (4) to the inclusion Oy gin — Oj; p to obtain a commutative diagram

(14) 1 R G/(Ok),shn) —_— G(Ok,Sﬁ“) L O;:.’Sﬁn

b

1—— G/(Ok,p) G(th) $- Ol:,p‘

By definition, G(Oj gin) = (O ®0, O gin)* and G(Okp) = (O @0, Okp)* = O% [D, Kapitel VI,
§11, Satz 6], so Theorem 12 is concerned with the closure of the image of ¢. Recall the subgroup
X C O g from (12).

PROPOSITION 15. In (14) we have im(N) = X C O} gsn-

Proof. Eichler’s norm theorem [PR, Theorem 1.13] states that

(15) im(Ng : G(k) — k) = {a € k™ | v € ¥}, infinite and inv, (D) # 0 imply v(«) > 0},

and the inclusion im(N) C X is trivial by the definition of X.
From the cohomology sequence associated with (4) we have

G(Ok,sﬁ“) L) O;;Sﬁn ——H! (Ok,Sﬁ“? GI)

L] |

G(k) E* H!(Spec(k), G").

Now, G'/Spec(Oy) is smooth with connected fibers by Theorem 5, the generic fiber G}, is an inner
form of Sl; and is thus semi-simple and simply connected. Finally, the place vy is outside U :=
Spec(Oj gin) and since Dy, is not a skew-field, G}, is isotropic at vg [PR, Proposition 2.12]. We can
thus apply Theorem 1 to G’ /U and conclude that ¢ is bijective which, jointly with (15) implies that
X Cim(N). O

We know that H'(Spec(Oyp), G') = 0 from the fact that G’ Xgyec(0,) SPec(Ok p)/Spec(Oyp) is
smooth with connected fibers and Lang’s Theorem. Hence, in (14), N, is surjective and we can,
using Proposition 15, rewrite (14) as

(16) 1—— G/(Ok,sﬁ“) —— (O Koy Ok,Sﬁn)* N X 1
/ j [ Ny £
1——G'(Okp) Oq:x Opp —1.

Since the image of « is dense by Proposition 14 and (92% is compact, all that remains to be done to
conclude the proof of Theorem 12 is to apply Proposition 16 below to (16).

For a subset Y of a topological space X we denote by VY the closure of Y in X.
17
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PROPOSITION 16. Let

H H—2> g 1
1 el G——=@q" 1

be a commutative diagram of first countable topological groups with exact rows, G compact, and

such that H' C G' is dense. Then
G —el

H =7x"YH"™).
Proof. Assume that g € HY. Then g = lim h,, for suitable h,, € H and n(g) = limn(h,) € 7.
n n
Conversely, given g € G with 7(g) = lim h!! for suitable h!! € H”, choose h,, € H with p(h,,) = hl..
n
The sequence (h,g~ 1), in G has a convergent subsequence, j := lim h,,,g! € G. Then 7(g) = 1,
1

i.e. § € G’ and we have § = lim / for suitable h, € H’'. The sequence ((h})~'hy,); in H satisfies
7

lim(h;) " hy, = G759 = g, hence g € HE.
K3

3.2 Type 24,41

Let D be a finite-dimensional skew-field of reduced dimension d > 1 over Q carrying a positive
involution of the second kind * and assume that @ C D is a maximal order which is stable under
*. In subsection 2.2.2 we associated with these data algebraic groups SU C U and T' C T over
Spec(Oy) and an open subscheme U™ C Spec(Oy).

To formulate our approximation problem, we fix a prime 0 # p C O, and a finite set of finite places
S of k such that

p €S, S contains all primes of residue characteristic 2 ramified in L/k and

S contains a place vy split in L/k such that for wg|vg Dy, is not a skew-field.

This implies in particular that Spec(Ojg) C U™". Note that we do not really restrict generality by
insisting that S consists of finite place because, unlike the case treated in subsection 3.1, the group
SU is anisotropic at every infinite place of k.

THEOREM 17. The closure of U(Oyg) C U(Ok ) equals
{9 € U(Okp) | Np(g) lies in the closure of T'(Okgs) € T'(Ok )}

See Corollary 23 for the computation of the closure of T'(Og) C T'(O}p) in a special case.
Note that

U(Oks) ={g € (O®0, Oks)" |99 =1}
by definition but the structure of U(O} ) depends on the splitting behavior of p in L, c.f. the proof
of Theorem 10. In particular, if p splits in L/k then

G(Ok,p) = Op, =~ (’)Eq,

where q and ¢’ are the primes of L lying above k.
In the rest of this subsection we give the proof of Theorem 17.

18
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PROPOSITION 18. SU(Oys) € SU(Oyp) is a dense subgroup.

Proof. Since SUy := SU Xgpec(0,) Spec(k) is an outer form of Slgy, it is semi-simple and simply
connected. In the proof of Theorem 10 we saw that SUy, = Sli(Dy,) and since Dy, is not a
skew-field by assumption, SUj is isotropic at vg. Now one proceeds as in the proof of Proposition
14. O

Recall from Theorem 10 that we have an exact sequence

(17) 1 — SUUTLT‘ — UUM' NU—n: T[,]nr — 1

over U™ D Spec(O.g).

PROPOSITION 19. The diagram obtained by applying (17) to Oy s — Oy

(18) 1 —> SU(Ors) —> U(Ops) —> T (Or5) —> 1

Lo,

N
1 —= SU(Opp) —= U(Opp) —= T'(Op p) — 1
fulfills the assumptions of Proposition 16.

This finishes the proof of Theorem 17 by applying Proposition 16 to (18).

Proof of Proposition 19. Clearly, diagram (18) is made up of first-countable groups and is com-
mutative, SU(Oyg) C SU(Oyp) is dense by Proposition 18 and U(Oy ;) is compact. It remains to
prove the exactness of the rows, i.e. the surjectivity of N and N. Since SU,/Spec(Oy, ) is smooth
with connected fibers by Theorem 10, Lang’s Theorem implies that H!(Spec(Oy ), SU,) = 0 and
thus Ny, is surjective. We now show that Ny : U(k) — T/(k) is surjective: We have a commutative
diagram with exact rows

Ny

U(k) T'(k) H!(Spec(k), SU)

| | -

[[ U(k,) 1INy T T'(ky) __ [] H'(Spec(k,),SU).

veX veX® veLye

Here, 377 denotes the set of infinite places of k and the right-most vertical arrow is an isomorphism
by the Hasse-principle for SU xgpec(0,) Spec(k) [PR, Theorem 6.6]. Hence the surjectivity of Ny will
follow from the surjectivity of N, for all v € X7° which is easy to see:

For v € ¥3° we have, using [Mu, Step IV on page 199,

ky)

|

U(
{(2i)) € GL(C) | @ij)(z)0) = 1} 2 {a € C* |am = 1},
19
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where a bar denotes complex conjugation, and the lower horizontal arrow is surjective since it is
split by a +— diag(a, 1,...,1). Next we look at the commutative diagram with exact rows

U(Oks) —>T'(O).5) — H!(Spec(Oy5), SU)

L ]

U(k) T/ (k) H! (Spec(k), SU).

We need to see that ¢ has trivial kernel for then the desired surjectivity of N will follow from the
already proved surjectivity of Ng. In fact, we claim that Theorem 1 implies that ¢ is bijective:

Since Spec(Of.s) € U™ we know that SU/Spec(Oj, ) is smooth with connected fibers from Theorem
10, SUy, is semi-simple and simply connected and the place vy lies outside Spec(Oy g) and SUy, is
isotropic at vg as explained in the proof of Proposition 18. O

4. The commutative case

4.1 Type Ag_1

In subsection 3.1 the problem of approximating a local unit in a maximal order was reduced to a
similar problem involving solely numberfields:
Let k be a numberfield, 0 # p C O a prime dividing the rational prime p and > a possibly empty
set of real places of k. For a finite set of finite places S of k£ not containing p we consider

XS_{erkS’U< >0f0rallv€E}COkS
and wish to understand when Xg C Ok,p =: Uy is a dense subgroup. The principal units

U =14 pOy, C U,

are canonically a finitely generated Zy-module and U,/ Uél)p is a finite abelian group.
It follows from Nakayama’s lemma that a subgroup Y C U, is dense if and only if the composition
Y —~U, — Up/Uél)p is surjective: Since Uy is pro-finite, Y C Uy is dense if and only if it surjects
onto every finite quotient of U,. Assume that Y does surject onto U,/ Uél)p and V' C U, is arbitrary
of finite index. In order to see that Y surjects onto U,/V we can assume that V' C Uél)p. Then
the image of Y in U,/V = pg—1 X Uél)/V surjects onto jg—; and U,gl)/V is a finitely generated
Zyp-module which modulo p is generated by the image of Y. By Nakayama’s lemma, Y surjects onto
Up/V.
We denote by
di
ET = ker(O, = @k* —>@k* [kt
veEY veEY
the group of global units of & which are positive at all places in 3. For an infinite place v of k we
write k't for the connected component of 1 inside k: ie. Ky TR (resp. kot ~ C*) if v is real
(resp. complex). We write

¢E+QOZ(—>UP

for the inclusion. Then U,/ Qb(E*)U,gl)p is a finite abelian group the minimal number of generators
of which we denote by g(p,X).

20
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THEOREM 20. In the above situation:
i) If Xg C U, is dense then [S| > g(p, X).
ii) Given a set T of places of k of density 1, there exists S as above such that Xg C U, is dense,
S| =¢g(p,X) and S C T.
iii)
[kp : Qp] 5 if ppeo (kp) = {1},
o< 5 i 7y

REMARK 21. 1) In general, the inequalities in iii) are strict: For k = Q(v/2), p dividing 7 and ¥ = ()
one can check that g(p,¥) =0, i.e. O} C Uy is dense.

2) The proof of Theorem 20,ii) is rather constructive: One has to find principal prime ideals (\) of
Oy with X positive at all places in ¥ (this corresponds to being trivial in Gal(M/k) in the notation

of the proof) and determine the image of \ in Up/¢(E+)Uél)p.

Proof. We consider the following subgroups of I, the ideles of k:

H U><U ka*+>< H kX,

vtoo,v£p vEY v]oo,vgY
Uy = [[Usx [[ks"x J[ & and
vfoo vEY v]oo,vgY
Up = []0s x [] Rt
vfoo v]oo

Then U C Ups and k*Ug C I is of finite index. Class field theory, e.g. [Ne, Chapter VI], yields finite
abelian extensions k C M C K and the upper part of diagram (19) below. The field corresponding
to k*U, is the big Hilbert class field of & which we denote by H'. Since k*Uy - k*Uy = k*Ups we
have H™ N K = M and we put L := HT K. We have the following diagram of fields

/\
\/
e

k

and some of the occurring Galois groups are identified as follows:
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(19) 1 Gal(K/M) —*— Gal(K/k) —= Gal(M/k) — 1
QT: T: T:
1*>k:*UM/k:*UK Ik/k*UKHIk/k*UMﬁl
U/ (E+) U

The isomorphism « is induced by the inclusion Uy, < k*Ujps: One has k*Up = k*UpUk, hence
EUm/k*Ukg = E*UpUk [k*Uk = Up/(Up NE*Uk)

and Uy N k*Ux = k*Up N Uk = p(ED)US.

To prove i), assume that Xg C U, is dense. Then Xg C U, — Up/Uél)p is surjective, hence so is
Xs/ET — Up/qj}(E“‘)Uél)p. The group Xg/E™ is easily seen to be torsion-free and Dirichlet’s unit
Theorem determines its rank, hence Xg/E+T ~ ZISl and [S| > ¢(p, %).

To prove ii), fix generators z; € Up/@b(E*)U,gl)p (1<i<g(p,X)). Let 0, € Gal(L/M) C Gal(L/k)
be the unique element such that o;|g+ = id and 0|k = (Ba)(zi). Note that (:Ba)(zi)|m =
(mfa)(z;) = id by (19). By Chebotarev’s density Theorem [Ne, Chapter VII, Theorem 13.4], there
is a finite place v; € T, unramified in L/k such that o; = Frob;il, where Frob,,, denotes the Frobenius
at the place v;, in Gal(L/k). Then (tfa)(x;) = Frob;i1 in Gal(K/k). Since Frob,, |+ = o} ! g+ = id,
the prime ideal p; C Oy corresponding to v; is principal, generated by a totally positive element
mi € O [Ne, Chapter VI, Theorem 7.3]. We claim that the image of 7; in Up/@D(E*)Uél)p equals z;:
To see this, we apply the Artin-map (—, K/k) : I, — Gal(K/k) to the identity m; = m; - (T:Zp) in
Ij,, where m; , denotes the idele having 7; as its p-component and all other components equal to 1.
By Artin-reciprocity we obtain 1 = (7rl-7p,K//~c)(£;,K//~c). Denoting y := % we have (y, K/k) =
[1(yw, Ky/ky) [Ne, Chapter VI, Theorem 5.6] and evaluate the local terms (y,, K, /k,) as follows:

v
For v = p we obtain 1 since y, = 1; for v # p,v; finite we obtain 1 since y, € Oy, and v is

unramified in K/k; for v = v; we obtain Frob,, since K/k is unramified at v; and y,, € O, is a
local uniformizer; finally, for v|oo we obtain 1 since ¥, > 0 because 7; is totally positive.

Hence (m;p, K/k) = Frob,' = (18a)(z;) in Gal(K/k). Denoting by 7 : U, — Up/w(E+)Uél)p the
projection we have (7, K/k) = (1fat)(m;,p) by construction, hence x; = 7(m; p) by the injectivity
of tBa. This establishes the above claim saying that the global elements m; € Oy have the prescribed
image z; in Up/w(EﬂU,gl)p. To conclude the proof of ii), put S := {v; |1 < i < g(p,X)} and note
that m; € Xg with this choice of S, hence Xg — Up/q/J(EJ“)Uél)p is surjective and since ET C Xg,
so is Xg — U;,/Uél)p, i.e. Xg C Uy is dense and by construction we have S C T and [S| = g(p, X).
To see iii) we use

(1)

Up = Hg—1 X Upl Z[kp:(@p],

~ pg—1 X ppee (Kp) X Zp

where ¢ = |Of /PO p| [Ne, Chapter II, Theorem 5.7, i)] which implies that the upper bound

claimed in iii) is in fact the minimal number of generators of U,/ Uél)p which obviously is greater

than or equal to the minimal number of generators of Up/w(E+)U'§1)p, ie. g(p,X). O
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4.2 Type 2441

In Theorem 17 we reduced the problem of approximating a local unit of a maximal order carrying
a positive involution of the second kind by global unitary units to an approximation problem for
a specific integral model T’ of a one-dimensional anisotropic torus over a totally real number-field.
This approximation problem seems to be substantially harder than the problem settled in Theorem
20 and we only treat the following special case here:

Let k£ be an imaginary quadratic field in which the rational prime p splits, pOy = pp, and put

k

. Oy, Ng
T := ker(Res, " (Gm,0,) — Gnz)-
THEOREM 22. In the above situation, there exist infinitely many rational primes | # p which split
in k/Q and are such that T(Z[1/l]) C T(Z,) is a dense subgroup.

Proof. Note that for every rational prime [ # p

(20) T(Z[1/1)) = {a € OL[1/1]* |a@ = 1} C T(Z,) = U, = 75,

the local units of k at p, the final equalities following from the fact that p splits in k. Here, —
denotes complex conjugation. The following proof is similar to the argument of Theorem 20,ii) but
extra care is needed to deal with the norm condition aax = 1.

Consider the following subgroups of the ideles of k:

Uk = H U, x Uél)p X Uﬁ(l)p X H k;, and
VFP,P finite ’U|OO
U= [[ Uox]]%:-
U finite UIOO

We have a corresponding tower of abelian extensions k¥ C H C K and since Uk is stable under
Gal(k/Q), the extension K/Q is Galois, though rarely abelian. We have an isomorphism

1)P 1)P
U/ U x U/ UV
O

¢ UpUs /Uy U OF ~ =, Gal(K/H)

induced by the Artin-map, where Oy is embedded diagonally. Since p splits in k we have Uy, ~ Z,

Up/ Uél)p Oy, is cyclic and we fix a generator z of this group. By Chebotarev’s Theorem applied to
K/Q there exist infinitely many rational primes [ # p, unramified in K/Q and such that for a
suitable prime A of K lying above [ we have

Froby, = ¢([(z,1)]) in Gal(K/H) C Gal(K/Q).

We claim that every such [ satisfies the conclusion of Theorem 22:
Put A := Alg. Since (Frobyy)|m = id, [ is split in k/Q and A is a principal ideal of Oy a generator
of which we denote by m. Then
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Bi=— efae Opll/l]" |oa =1} = T(Z[1/1]),

A=

and we claim that § goes to x under the map induced by (20): As in the proof of Theorem 20,ii)
one sees that

(mp, m5) = [(2,1)] and similarly

Up/ U x U5/ U
o; !

((T)p, (T)p) = [(1,2)] in

hence indeed

(Bp, B5) = [(z,27")]

and a fortiori f, = x in Up/Uél)pO;;. Since we have O; C T(Z[1/1]) because O; consists of roots of
unity which have norm 1, we are done.

O]

To use Theorem 17 we must study approximation for the open subgroup-scheme T” C T obtained
from T by removing the non-identity components of finitely many special fibers of T, c.f. subsection
2.2.2. Let p C O;, denote the group of roots of unity. While we have p C T(Z), and this was used
at the end of the proof of Theorem 22, in general we also have —1 ¢ T'(Z[1/1]).

COROLLARY 23. In the above situation there exist infinitely many rational primes | # p which split
in k/Q and are such that the closure of T'(Z[}]) C T'(Z,) = T(Z,) has index at most |p|.

Proof. We have T’ Xgpecz Spec(Zy) =T X Specz, Spec(Zy) by the construction of T’ and the fact
that p if unramified (in fact, split) in k/Q. Now observe that the element 3 € T(Z[1/]) constructed
in the proof of Theorem 22 satisfies 5 € T'(Z[1/1]). O

COROLLARY 24. Let D be a finite-dimensional skew-field over Q of reduced dimension d > 1 with a
positive involution of the second kind * and O C D a maximal order, stable under *. Assume that
the center of D is an imaginary quadratic field k and let p # 2 be a rational prime which splits in k
and P C O a prime lying above p. Then there exists a rational prime | # p such that the closure of

1
— * = C x
{96(9{%] | *gg 1}_(933

has index at most |pu|.

Proof. From the data (D,x) and O C D we construct group-schemes SU C U and T/ C T over
Spec(Z) as in subsection 2.2.2. Using Corollary 23 we choose a prime [ # 2, p which splits in k£/Q
such that the closure of T'(Z[1/1]) C T'(Z,) has index at most |u| and such that for every place A
of k lying above [ we have invy (D) = 0. We apply Theorem 17 with S := {2,1} to conclude that the
index of the closure of U(Z[1/2l]) C U(Z,) equals the index of the closure of T'(Z[1/2l]) C T'(Z,)
and is thus bounded above by |u|. It remains to recall that
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o(#la])=to=ola] o)

and, since p splits in k/Q,

U(Zy) ~ O
0

REMARK 25. The conclusion of Corollary 24 can be sharpened in special cases, for example: If the
reduced dimension of D is odd and 2 is unramified in k/Q, then (p = 2 being allowed) there is a
rational prime | # p such that {a € O[%] | *aa =1} C O is dense. This is because d being odd
implies that T = T and 2 being unramified implies that U™ = Spec(Z).

5. Applications

5.1 Extending automorphisms of p-divisible groups

Here we explain the application of some of the above results to the following problem:

Let k be a finite field of characteristic p and A/k a simple abelian variety such that Endg(A) is
a maximal order in the skew-field D := End ;(A4) ®7z Q. The center K of D is a numberfield and
K NEndy(A) = Ok is its ring of integers.

The p-divisible group of A/k [T] splits as

(21) App] =[] A

plp

the product extending over all primes p of Ok dividing p. According to J. Tate, c.f. [MW, Theorem
6], the canonical homomorphism

(22) End;(A) ®z Z, — End (A[p™)])

is an isomorphism. We have

End x(A) @z Zp ~ [ [ End ¢(A) @0, Oxp = [ [ End e(A)g
plp plp

with 9B the unique prime of End ;(A) lying above p. Similarly, (21) implies that

End (A H End (A
plp

These decompositions are compatible with (22) in that the canonical homomorphism
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End (A4) ®0, Ok,p — End ;(A[p™))

is an isomorphism for every p|p. We fix some p|p and ask for a finite set S of finite primes of K such
that p ¢ S and

(23) (End ;(4) ®0, Ok,s)" — Aut ,(A[p*])

is a dense subgroup. Note that this density is equivalent to the following assertion:
For every a € Aut (A[p>°]) and integer n > 1 there is an isogeny ¢ € End (A) of degree divisible
by primes in S only and some x € (’)}"{7 g such that

Oz afpr) = &l apn)s

i.e. the quasi-isogeny ¢z of A extends the truncation at arbitrary finite level n of «.

By Theorem 12, the inclusion (23) is dense if and only if X C U, is dense where X C Oj is the
subgroup of global units which are positive at all real places of K at which D does not split and
Up = (’)}’p are the local units of K at p. The density of X C Uy in turn is firmly controlled by
Theorem 20. We would like to illustrate all of this with some examples:

According to the Albert-classification [Mu, Theorem 2, p. 201], note that types I and II do not
occur over finite fields, there are two possibilities:

Type III: Here, K is a totally real numberfield and D/K is a totally definite quaternion algebra.
The simplest such case occurs if A/k is a super-singular elliptic curve with End ;(A) = End (A).
In this case, it follows from Example 13,2) that, in case the characteristic of k is different from 2,
for a suitable prime [

<Endk(A) m ) o Aut x(A[p™])

is dense.

To see another example of this type, let A/F, correspond to a p-Weil number 7 with 7% = p. Then
dim(A) = 2 and A ®r, Fp2 is isogeneous to the square of a super-singular elliptic curve. We have
K = Q(y/p) and p = (,/p)Ok, hence A[p>®] = A[p™]. Furthermore, O} = {£1} x €’ for a funda-
mental unit € and X C O, is of index 4. To find a small set S such that (23) is dense one first

needs to compute the minimal number of generators of U,/ X Uél)p, denoted g(p, ) in Theorem 20
where, in the present situation, Y consists of both the infinite places of K. For p = 2 one can choose

e=1++/2, then X = €*2. Since Up/U,gl)2 ~ F3 and €% ¢ Uél)Q one gets g(p,X) = 2.
For p = 3 we may take e = 2+ +/3, then X = €?% again. Since now U,O/U,gl)3 =y xF3 ~7/6x7/3
the fact that €2 ¢ Uél) ’ is not enough to conclude that g(p,>) = 1. However, one checks in addition
that €2 € Uél), and concludes that Up/XUlgl)3 ~ 7,/6 and hence indeed g(p, %) = 1.
For p > 5 one has Up/Uél)p = Up—1 X IFI% and since p,—1 ¢ K the image of a generator of X in
U,/ Uél)p will have non-trivial projection to Fg and one concludes that g(p,¥) = 1.

Type IV: In this case, K is a CM-field and X = Oj.. The easiest such example occurs for an
ordinary elliptic curve and we give two examples:
A solution of 72 +5 = 0 is a 5-Weil number to which there corresponds an elliptic curve E/F5 with
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K = D = Q(v/5). For p = (v/5)Ok one has Up/Uél)p = py X F2 and since O} = {£1} one gets
Up/ XU ~ 7,/10 x Z./5, hence g(p, %) = 2.

Similarly, a solution of 72 — 47 45 = 0 gives an elliptic curve over F5 with D = K = Q(i) and since
5 splits in K one has Up/XUél)p ~ 7./10, hence g(p,>) = 1 in this case.

Finally, we leave it as an easy exercise to an interested reader to check that for every prime p and
integer N > 1 there exists a simple abelian variety A/F, such that every set S for which (23) is
dense necessarily satisfies |S| > N.

5.2 A dense subgroup of quasi-isogenies in the Morava stabilizer group

Let p be a prime and n > 1 an integer. The n-th Morava-stabilizer group S,, is the group of units
of the maximal order of the central skew-field over Q, of Hasse-invariant %

In this section we will construct an abelian variety A/k over a finite field & of characteristic p such
that for a suitable prime [ the group (End j(A)[}])* is canonically a dense subgroup of S,. We will
completely ignore the case n = 1 as it is very well understood. In case n = 2 one can take for A a
super-singular elliptic curve [BL2] and the resulting dense subgroup of Sy has been used to great
advantage in the construction of a modular resolution of the K(2)-local sphere [B].

For general n we remark that, since End ;(A) ®z Z, ~ End ,(A[p]), in order that End ;(A) have a
relation with S,, one needs A[p™]®yk to have an isogeny factor of type Gy ,—1 [Ma, IV,§2,2.]. By the
symmetry of p-divisible groups of abelian varieties [Ma, IV, §3, Theorem 4.1], there must then also
be a factor of type Gy—1,1 which shows that n = 2 is somewhat special since (1,n —1) = (n — 1,1)
in this case. For n > 3 the above considerations imply that the sought for abelian variety must
be of dimension at least n, as already remarked by D. Ravenel [R1, Corollary 2.4 (ii)]. Following
suggestions of M. Behrens and T. Lawson we will be able to construct A having this minimal possible

dimension. We start by constructing a suitable isogeny-class as follows.

PROPOSITION 26. Let p be a prime and n > 3 an integer. Then there is a simple abelian variety
A/Fyn such that the center of End Fyn (A)®7Q is an imaginary quadratic field in which p splits into,
say, p and p’ such that invy(Endr , (A) ®z Q) = +, invy (Endr,, (4) ®z Q) = = and dim(A4) = n.
Furthermore, A is geometrically simple with End W(A) ®z Q = Endp,, (A) ®z Q.

Proof. We use Honda-Tate theory, see [MW] for an exposition. Let 7 € Q be a root of f :=
22 — px + p" € Z[x]. Since the discriminant of f is negative, 7 is a p"-Weil number and we choose
A/F,n simple associated with the conjugacy class of 7. Then Q() is an imaginary quadratic field
and is the center of Endy , (4) ®z Q. Since n > 3 the Newton polygon of f at p has different slopes
1 and n — 1 which shows that f is reducible over Q, [Ne, Chapter II, Theorem 6.4], hence p splits
in Q() into p and p’ and, exchanging 7 and 7 if necessary, we can assume that vy(7m) = 1 and
vp(T) =n — 1. Then [MW, Theorem 8, 4.]

invy(End Fyn (A) ®zQ) = :’:((;;)) [Q(m)p : Qp) = % and similarly

. n—1 -1
invy (Endp,, (A) ®z Q) = — =
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Furthermore [MW, Theorem 8, 3.], 2 dim(A) = [End , (A) ®z Q : Q(m)]Y/2 - [Q(n) : Q] = 2n. The
final statement follows easily from the fact that 7% ¢ Q for all k > 1, c.f. [HZ, Proposition 3(2)],
which in turn is evident since vy(7) # vp(7). O

Since the properties of A/F,» in Proposition 26 are invariant under [F,»-isogenies, we can, and
do, choose A/Fyn having these properties such that in addition Endy,,(A) C Endp,,(A4) ®z Q
is a maximal order [Wal, proof of Theorem 3.13]. Denoting by P C Endp,,(A) the unique
prime lying above the prime p constructed in Proposition 26, we have (Endp,,(A))y = Sy since
invy(End p,n (4) ©z Q) = 1/n. We choose a prime I as follows: If p # 2 we take [ to be a topological
generator of Zy. For p = 2 we take [ = 5.

REMARK 27. Note that for p # 2 a prime | # p topologically generates Z if and only if (I mod p?)
generates (7 /p?)*. Hence, by Dirichlet’s Theorem on primes in arithmetic progressions, the set of
all such | has a density equal to ((p—1)¢(p—1))~! > 0 and is thus infinite. Such an | can be found
rather effectively: Given | # p, compute oy, := (IPP?~V/k mod p?) for all primes k dividing p(p — 1).
If for all k, oy, # 1 (p?), then [ is suitable.

THEOREM 28. In the above situation

(Ends,, (A)7])* = (Endx,. (4)) = S

is a dense subgroup.

Proof. We apply Theorem 12 with O := Endp,,(A4), k := Q(7), p the prime of O} constructed
in Proposition 26 and S := {o00,l} the set consisting of the unique infinite place oo of k and all
places dividing [. Clearly, p ¢ S and D := O ®z Q is not a skew-field at oo since ko, ~ C and
n > 1. Using the notation of Theorem 12 we have Oy gin = Ok[1/l] and X = (O[1/l])* since k
has no real place. Theorem 12 shows that the claim of Theorem 28 is equivalent to the density
of (Ox[1/1])* € Of, = Z;. Since | € (Ok[1/1])*, this density is clear for p # 2 by our choice of [
whereas for p = 2 we have that {£1} x 5% C Z} is dense and —1,5 € (O[1/5])*. O
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