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PAUL NORBURY AND NICK SCOTT

ABSTRACT. We prove that stationary Gromov-Witten invariants of P1 arise as the Eynard-Orantin invariants of
the spectral curve x = z + 1/z, y = ln z. As an application we show that tautological intersection numbers on the
moduli space of curves arise in the asymptotics of large degree Gromov-Witten invariants of P1.
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1. INTRODUCTION

As a tool for studying enumerative problems in geometry Eynard and Orantin [8] define invariants of any
compact Torelli marked Riemann surface C, equipped with two meromorphic functions x and y with the
property that the branch points of x are simple and the map

C → C2

p 7→ (x(p), y(p))
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is an immersion. For every (g, n) ∈ Z2 with g ≥ 0 and n > 0 the Eynard-Orantin invariant ω
g
n(p1, ..., pn) for

pi ∈ C is a multidifferential, i.e. a tensor product of meromorphic 1-forms on the product Cn. One can make
sense of Fg = ω

g
0 using a recursion between ω

g
n+1 and ω

g
n known as the dilaton equation. See Section 2 for

more details and the definition of the invariants.

Important examples of the Eynard-Orantin invariants, using different choices of (C, x, y), store intersection
numbers over the moduli space of curves [5]; simple Hurwitz numbers [1, 3, 6]; a count of lattice points in
the moduli space of curves [17]; and conjecturally local Gromov-Witten invariants of (non-compact) toric
Calabi-Yau 3-folds [2, 13] and Chern-Simons invariants of 3-manifolds [4].

The Gromov-Witten invariants of P1 have been studied and well understood over the last ten years [11, 14,
15, 16]. In this paper we show that the Gromov-Witten invariants of P1 arise as Eynard-Orantin invariants,
and how this approach brings new insight to the Gromov-Witten invariants. We also hope to gain a better
understanding of the Eynard-Orantin invariants. The example in this paper, together with the simple Hurwitz
problem [6] and the count of lattice points in the moduli space of curves which also corresponds to a Hurwitz
problem [17], raises the question: is the relationship of Eynard-Orantin invariants to Hurwitz problems a
more general phenomenon?

Assemble the connected stationary Gromov-Witten invariants

(1)

〈
n

∏
i=1

τbi
(ω)

〉g

d

=
∫
[Mg

n(P
1,d)]vir

n

∏
i=1

ψ
bi
i ev∗i (ω)

where d is determined by ∑n
i=1 bi = 2g− 2 + 2d, into the generating function

Ωg
n(x1, ..., xn) = ∑

b

〈
n

∏
i=1

τbi
(ω)

〉g

d

·
n

∏
i=1

(bi + 1)!x−bi−2
i dxi

which is a multidifferential. See Section 3 for a more detailed definition of Gromov-Witten invariants.

The Eynard-Orantin invariants ω
g
n are defined for any genus 0 compact Riemann surface C equipped with

two meromorphic functions x and y. Nevertheless, by taking sequences of meromorphic functions one can
extend the definition to allow y to be any analytic function defined on a domain of C containing the branch
points of x. In particular, consider

(2) C =

x = z + 1/z

y = ln z.

The Riemann surface C is defined via the meromorphic function x(z). The function y(z) = ln z ∼ ∑ (1−z2)k

−2k

is to be understood as the sequence of partial sums yN =
N

∑
1

(1−z2)k

−2k . Each invariant requires only a finite

yN—for fixed (g, n) the sequence of invariants ω
g
n of (C, x, yN) stabilises for N ≥ 6g− 6 + 2n.

Theorem 1. For g = 0 and 1 and 2g− 2 + n > 0, the Eynard-Orantin invariants of the curve C defined in (2) agree
with the generating function for the Gromov-Witten invariants of P1:

ω
g
n ∼ Ωg

n(x1, ..., xn).

More precisely, Ωg
n(x1, ..., xn) gives an analytic expansion of ω

g
n around a branch of {xi = ∞}.

In the two exceptional cases (g, n) = (0, 1) and (0, 2), the invariants ω
g
n are not analytic at xi = ∞. We can

again get analytic expansions around a branch of {xi = ∞} by removing their singularities at xi = ∞ as
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follows:

(3) ω0
1 + ln x1dx1 ∼ Ω0

1(x1), ω0
2 −

dx1dx2

(x1 − x2)2 ∼ Ω0
2(x1, x2).

Theorem 1 gives an extremely efficient way to calculate the Gromov-Witten invariants of P1. It also produces
a general form of the invariants that reduces to the calculation of a collection of polynomials.

Theorem 2. For g = 0 and 1, the stationary Gromov-Witten invariants of P1 are of the form

(4)

〈
k

∏
i=1

τ2ui (ω)
n

∏
i=k+1

τ2ui−1(ω)

〉g

=
uk+1 · · · un

∏n
i=1 ui!2

pg
n,k(u1, . . . , un)

where pg
n,k(u1, . . . , un) is a polynomial of degree 3g− 3 + n in the ui’s, symmetric in the first k and the last n− k

variables, with top coefficients cβ of uβ1
1 · · · u

βn
n given by

(5) cβ = 2g
∫
Mg,n

ψ
β1
1 ...ψβn

n

for |β| = 3g− 3 + n.

Again the exceptional cases are (g, n) = (0, 1) and (0, 2), where we interpret a degree 3g− 3 + n polynomial
to mean a rational function given by the reciprocal of a degree 2, respectively degree 1, polynomial.

The asymptotic behaviour of Eynard-Orantin invariants near branch points of x is governed by the local
behaviour of the curve C there, [9]. By assumption the local behaviour is described by x = y2 which,
as a global curve, has Eynard-Orantin invariants that store tautological intersection numbers over the
compactified moduli space of curvesMg,n. This supplies the top coefficients (5) and enables one to relate the
asymptotic behaviour of the Gromov-Witten invariants of P1 to tautological intersection numbers over the
compactified moduli space of curvesMg,n.

Corollary 3. For g = 0 and 1 and 2g − 2 + n > 0, the stationary Gromov-Witten invariants of P1 behave
asymptotically as

(6)

〈
k

∏
i=1

τ2ui (ω)
n

∏
i=k+1

τ2ui−1(ω)

〉g

∼ uk+1 · · · un

∏n
i=1 ui!2

∑
|β|=3g−3+n

uβ1
1 · · · u

βn
n · 2g

∫
Mg,n

ψ
β1
1 ...ψβn

n .

In the exceptional cases (g, n) = (0, 1) and (0, 2), the asymptotic form is given by the exact formulae in
Section 7.

Section 2 defines the Eynard-Orantin invariants and proves recursions for the Eynard-Orantin invariants
of the curve (2) analogous to recursions satisfied by the Gromov-Witten invariants of P1. The definition
of Gromov-Witten invariants is contained in Section 3. Section 4 begins by proving a weaker result than
Theorem 2 which is essentially that Ωg

n is analytic and extends to a meromorphic multidifferential on a
compact Riemann surface, before proving the main results. Section 5 describes the relationship between the
defining recursion relations for the Eynard-Orantin invariants and the Virasoro constraints satisfied by the
Gromov-Witten invariants of P1. Numerical checks show that the genus constraint in Theorem 1 and hence
also in Theorem 2 and Corollary 3 should be unnecessary. Section 6 gives a non-rigorous matrix model proof
of Theorem 1 that holds for all genus. Section 7 contains explicit formulae for Eynard-Orantin invariants and
Gromov-Witten invariants of P1.

Acknowledgements. The authors would like to thank Norman Do for useful comments.
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2. EYNARD-ORANTIN INVARIANTS.

For every (g, n) ∈ Z2 with g ≥ 0 and n > 0 the Eynard-Orantin invariant of a Torelli marked Riemann
surface with meromorphic functions (C, x, y) is a multidifferential ω

g
n(p1, ..., pn), i.e. a tensor product of

meromorphic 1-forms on the product Cn, where pi ∈ C. Recall that a Torelli marking of C is a choice of
symplectic basis {ai, bi}i=1,..,g of the first homology group H1(C̄) of the compact closure C̄ of C. In particular,
a genus 0 surface C requires no Torelli marking. When 2g− 2 + n > 0, ω

g
n(p1, ..., pn) is defined recursively in

terms of local information around the poles of ω
g′

n′(p1, ..., pn) for 2g′ + 2− n′ < 2g− 2 + n. Equivalently, the

ω
g′

n′(p1, ..., pn) are used as kernels on the Riemann surface. This is a familiar idea, the main example being
the Cauchy kernel which gives the derivative of a function in terms of the bidifferential dwdz/(w− z)2 as
follows

f ′(z)dz = Res
w=z

f (w)dwdz
(w− z)2 = −∑

α
Res
w=α

f (w)dwdz
(w− z)2

where the sum is over all poles α of f (w).

The Cauchy kernel generalises to a bidifferential B(w, z) on any Riemann surface C which arises from the
meromorphic differential ηw(z)dz unique up to scale which has a double pole at w ∈ C and all A-periods
vanishing. The scale factor can be chosen so that ηw(z)dz varies holomorphically in w and transforms as a
1-form in w, hence it is naturally expressed as the unique bidifferential on C

B(w, z) = ηw(z)dwdz,
∮

Ai

B = 0, B(w, z) ∼ dwdz
(w− z)2 near w = z.

It is symmetric in w and z. We will call B(w, z) the Bergmann Kernel, following [8]. It is called the fundamental
normalised differential of the second kind on C in [10]. Recall that a meromorphic differential is normalised if
its A-periods vanish and it is of the second kind if its residues vanish. The Bergmann Kernel is used to express
a normalised differential of the second kind in terms of local information around its poles.

Since each branch point α of x is simple, for any point p ∈ C close to α there is a unique point p̂ 6= p close to
α such that x( p̂) = x(p). The recursive definition of ω

g
n(p1, ..., pn) uses only local information around branch

points of x and makes use of the well-defined map p 7→ p̂ there. The invariants are defined as follows.

ω0
1 = −ydx(z)

ω0
2 = B(z1, z2)

For 2g− 2 + n > 0,

(7) ω
g
n+1(z0, zS) = ∑

α
Res
z=α

K(z0, z)
[

ω
g−1
n+2(z, ẑ, zS) + ∑

g1+g2=g

ItJ=S

ω
g1
|I|+1(z, zI)ω

g2
|J|+1(ẑ, zJ)

]

where the sum is over branch points α of x, S = {1, ..., n}, I and J are non-empty and

K(z0, z) =
−
∫ z

ẑ B(z0, z′)
2(y(z)− y(ẑ))dx(z)

is well-defined in the vicinity of each branch point of x. Note that the quotient of a differential by the differ-
ential dx(z) is a meromorphic function. The recursion (7) depends only on the meromorphic differential ydx
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and the map p 7→ p̂ around branch points of x. For 2g− 2 + n > 0, each ω
g
n is a symmetric multidifferential

with poles only at the branch points of x, of order 6g− 4 + 2n, and zero residues.

For 2g− 2 + n > 0, the invariants satisfy the identity

∑
x(z)=x

ω
g
n+1(zS, z) = 0

and the string and dilaton equations [8]:

∑
α

Res
z=α

y(z)x(z)mω
g
n+1(zS, z) = −

n

∑
i=1

∂zi

(
x(zi)

mω
g
n(zS)

dx(zi)

)
, m = 0, 1(8)

∑
α

Res
z=α

Φ(z)ωg
n+1(zS, z) = (2g− 2 + n)ωg

n(zS)(9)

where the sum is over the branch points α of x, Φ(z) =
∫ z ydx(z′) is an arbitrary antiderivative and

zS = (z1, . . . , zn).

When y is not a meromorphic function on C and is merely analytic in a domain containing the branch points
of x, we approximate it by a sequence of meromorphic functions y(N) which agree with y at the branch points
of x up to the Nth derivatives. The sequence y(N) does not necessarily converge to y. For example, the partial
sums y(N) of

y(z) = ln z ∼∑
(1− z2)k

−2k
give a divergent asymptotic expansion for ln(z) at z = 0 in the region Re(z2) > 0.

The meromorphic functions y(N) can be used in the recursions defining ω
g
n in place of y(z) since they contain

the same local information around z = ±1 up to order N. More precisely, to define ω
g
n for (C, x, y) it is

sufficient to use (C, x, y(N)) for any N ≥ 6g− 6 + 2n.

2.1. Polynomial behaviour. In this section we consider the family of curves:

(10) C̃ =

x = z + 1/z

y = y(z)

for y(z) any analytic function defined on a domain of C containing ±1.

With respect to the local coordinate x on C each invariant ω
g
n has an analytic expansion around a branch of

x = ∞. Define the coefficients of this expansion

ω
g
n =:

∞

∑
b1,...,bn=0

Mg
n,k(b1, . . . , bn)

xb1+1
1 · · · xbn+1

n
dx1 · · · dxn.

for k the number of odd bi. We may abuse this notation by writing Mg
n = Mg

n,k when k is clear.

In [18] it was shown that Eynard-Orantin invariants of such a curve can be expressed via polynomials:

Lemma 4 ([18]). For the curve x = z + 1/z, y = y(z) and 2g− 2 + n > 0, ω
g
n(z1, ..., zn) has an expansion around

{zi = 0} given by

(11) ω
g
n(z1, .., zn) =

d
dz1

. . .
d

dzn
∑

bi>0
Ng

n (b1, . . . , bn)z
b1
1 . . . zbn

n dz1 . . . dzn
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where Ng
n is a symmetric quasi-polynomial in the b2

i of degree 3g− 3 + n, dependent on the parity of the bi.

Recall that a function on Zn is quasi-polynomial if it is polynomial on each coset of a sublattice Γ ⊂ Zn and
it is symmetric if it is invariant under the permutation group Sn. In particular, each polynomial is invariant
under permutations that preserve the corresponding coset. The function Ng

n is polynomial on each coset
of 2Zn ⊂ Zn. By symmetry, we can represent its 2n polynomials by the n polynomials Ng

n,k(b1, ..., bn), for
k = 1, ..., n, symmetric in b1, ..., bk and bk+1, ..., bn corresponding to the first k variables being odd.

Lemma 5 ([18]). The coefficients of the top homogeneous degree terms in the polynomial Ng
n,k(b1, ..., bn), defined above,

can be expressed in terms of intersection numbers of ψ classes onMg,n. For ∑i βi = 3g− 3 + n, the coefficient vβ of

∏ b2βi
i is

vβ =
y′(1)2−2g−n + (−1)ky′(−1)2−2g−n

25g−5+2nβ1!...βn!

∫
Mg,n

ψ
β1
1 ...ψβn

n .

In particular, the proofs are constructive, showing how to calculate such polynomials from ω
g
n’s and lead to

explicit formulae for the Mg
n’s via the following lemma. It is important to point out that z = 0 and z = ∞

correspond to the two branches at x = ∞. The expansion in z is around z = 0 while the expansion in x is
around the other branch z = ∞. This is essentially due to the need for both expansions to have positive
coefficients.

Lemma 6. For the curve x = z + 1/z, y = y(z)

(12) Mg
n(b1, . . . , bn) =

bi

∑
li>

bi
2

Ng
n (2l1 − b1, ..., 2ln − bn)

n

∏
i=1

(2li − bi)

(
bi
li

)

Proof. Extract the coefficients of a local expansion of ω
g
n in x−1

i by taking residues.

Mg
n(b1, ..., bn) := (−1)n Res

x1=∞
... Res

xn=∞
xb1

1 ...xbn
n ·ω

g
n(z1, ..., zn)

= (−1)n Res
z1=∞

... Res
zn=∞

xb1
1 ...xbn

n ·ω
g
n(z1, ..., zn)

= Res
z1=0

... Res
zn=0

xb1
1 ...xbn

n ·ω
g
n(z1, ..., zn) (⇐ ω

g
n(1/z1, ..., 1/zn) = (−1)nω

g
n(z1, ..., zn) )

=
n

∏
i=1

Res
zi=0

(
1
zi

+ zi

)bi ∞

∑
k1,...,kn=1

Ng
n (k1, ..., kn)

n

∏
i=1

kiz
ki−1
i dzi

=
n

∏
i=1

Res
zi=0

bi

∑
l1,...,ln=0

∞

∑
k1,...,kn=1

Ng
n (k1, ..., kn)

n

∏
i=1

ki

(
bi
li

)
zbi−2li+ki−1

i dzi

=
bi

∑
li>

bi
2

Ng
n (2l1 − b1, ..., 2ln − bn)

n

∏
i=1

(2li − bi)

(
bi
li

)
.

�
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Analogous to the notation Ng
n,k(b1, . . . , bn) which is the polynomial expression for Ng

n corresponding to the
first k variables being odd, since the sum (12) respects parity, we define Mg

n,k(b1, . . . , bn) to be the expression
for Mg

n with k odd variables, obtained by summing Ng
n,k terms.

Lemma 7. Mg
n,k(b1, . . . , bn) can be obtained from Ng

n,k(b1, . . . , bn) via the term-by-term transform on monomials

(13) b2α1
1 · · · b2αn

n 7→
k

∏
i=1

bi

(
bi − 1

bi−1
2

)
qαi

(
bi − 1

2

) n

∏
i=k+1

bi
2

(
bi
bi
2

)
pαi

(
bi
2

)
where qα(n) and pα(n) are polynomials of degree α satisfying the recurrences

pα+1(n) = 4n2(pα(n)− pα(n− 1)) + 4npα(n− 1), p0(n) = 1(14)

qα+1(n) = 4n2(qα(n)− qα(n− 1)) + (4n + 1)qα(n− 1), q0(n) = 1(15)

Proof. As the sum (12) is over all combinations of li for each i, for monomial terms of several variables we
can factorise

(16)
bi

∑
li>

bi
2

n

∏
i=1

(2li − bi)
2αi+1

(
bi
li

)
=

n

∏
i=1

li

∑
li>

bi
2

(2li − bi)
2αi+1

(
bi
li

)
to reduce the problem to the one variable case. For different parities b = 2n and b = 2n + 1, the sums become

(17)
b

∑
l> b

2

(2l − b)2α+1
(

b
l

)
=

∑n
l=0 (

2n
n−l)(2l)2α+1, b = 2n

∑n
l=0 (

2n+1
n−l )(2l + 1)2α+1, b = 2n + 1

after exchanging l 7→ n− l. From [20], the sum

p̃α(n) :=
n

∑
l=0

(
2n

n− l

)
(2l)2α+1

satisfies the three term recurrence

p̃α+1(n) = 4n2 p̃α(n)− 8n(2n− 1) p̃α(n− 1), p̃0(n)
(

2n
n

)
.

Letting p̃α(n) = pα(n)n(2n
n ) gives the required recursion (14) for pα. The proof for the odd case proceeds in

the same manner, this time starting from the three term recursion

q̃α+1(n) = (2n + 1)2q̃α(n)− 8n(2n + 1)q̃α(n− 1), q̃0(n) = (2n + 1)
(

2n
n

)
.

�

The first few transformation polynomials (in the form useful for (13)) are

p0(
b
2
) = 1 q0(

b− 1
2

) = 1

p1(
b
2
) = 2b q1(

b− 1
2

) = 2b− 1

p2(
b
2
) = 8b(b− 1) q2(

b− 1
2

) = 8b2 − 12b + 5

p3(
b
2
) = 16b(3b2 − 8b + 6) q3(

b− 1
2

) = 48b3 − 152b2 + 166b− 61.
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The pα and qα are generalisations of the Gandhi polynomials, related to the Dumont-Foata polynomials. See
[20] and the references therein for a survey and properties of these topics.

Proposition 8. For 2g− 2 + n > 0, the coefficients Mg
n,k in the expansion of the Eynard-Orantin invariants of (10)

about x = ∞ can be expressed as

(18) Mg
n,k =

k

∏
i=1

bi

(
bi − 1

bi−1
2

) n

∏
i=k+1

bi
2

(
bi
bi
2

)
mg

n,k(b1, . . . , bn),

where mg
n,k(b1, . . . , bn) is a polynomial of degree 3g− 3 + n, symmetric in variables of the same parity, with coefficient

vβ of bβ1
1 · · · b

βn
n given by

(19) vβ =
y′(1)2−2g−n + (−1)ky′(−1)2−2g−n

22g−2+n

∫
Mg,n

ψ
β1
1 ...ψβn

n

for |β| = 3g− 3 + n.

Proof. Expand the Eynard-Orantin invariants about z = 0, and apply Lemmas 4, 5 and 7 to get expressions for
Mg

n. To prove the proposition we need the polynomials pα(b/2) and qα ((b− 1)/2) used in the transformation
(13) to have leading order coefficients α!2α.

By induction, suppose pα(n) has leading coefficient α!22α. Using the recursion for pα+1(n), the leading part
of pα+1(n) is:

α!22α
(

4n2(nα − (n− 1)α)
)
+ 4α!22αnα+1 + O(nα)

= α!22α
(

4n2(αnα−1) + 4n(nα)
)
+ O(nα)

= (α + 1)!22α+2nα+1 + O(nα)

Similarly, the recursion for qα+1(n) shows that the leading part of qα+1(n) is:

α!22α
(

4n2(αnα−1) + (4n + 1)nα
)
+ O(nα−1) = (α + 1)!22α+2nα+1 + O(nα)

so that all transformation polynomials have the required leading order coefficients. �

2.2. Divisor and string equations. For the remainder of the paper we specialise to the curve (2):

C =

x = z + 1/z

y = ln z.

The recursions (20) and (21) below use the terms divisor and string equations which anticipate the correspond-
ing recursions (25) and (26) satisfied by Gromov-Witten invariants.

Theorem 9. The coefficients Mg
n in the expansion of the Eynard-Orantin invariants of (2) about x = ∞ satisfy the

divisor and string equations. For 2d = 2− 2g− n + ∑n
i=1 bi,

Mg
n+1(b1, . . . , bn, 1) = dMg

n(b1, . . . , bn)(20)

Mg
n+1(b1, . . . , bn, 0) =

n

∑
i=1

bi M
g
n(b1, . . . , bi − 1, . . . , bn)(21)

Where

Mg
n+1,k(b1, . . . , bn, 0) :=

k

∏
i=1

bi

(
bi − 1

bi−1
2

) n

∏
i=k+1

bi
2

(
bi
bi
2

)
mg

n+1,k(b1, . . . , bn, 0).
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These uniquely determine all genus zero terms and, together with the top degree terms known from Proposition 8,
determine all genus one terms.

Proof. In the following we use
∫ z

0 ω
g
n+1(zS, z′) which is well-defined (independently of the choice of path)

since the residues of ω
g
n+1 are zero. The calculations below will not be sensitive to the constant term arising

from the choice of intial point 0 in the integral. To prove equation (20), we use the string and dilaton equations
(8)-(9).

∑
α=±1

Res
z=α

(
yx−

∫
ydx

)
ω

g
n+1(zS, z) = ∑

α=±1
Res
z=α

(
zln(z) +

ln(z)
z
−
∫ z

z0

ln(t)(1− 1
t2 )dt

)
ω

g
n+1(zS, z)

= ∑
α=±1

Res
z=α

(
z− 1

z
+ c
)

ω
g
n+1(zS, z)

= − ∑
α=0,∞

Res
z=α

(
z− 1

z

)
ω

g
n+1(zS, z)

= −2 Res
z=∞

zω
g
n+1(zS, z) [Since ω

g
n+1(zS, 1/z) = −ω

g
n+1(zS, z)]

= −2 Res
z=0

x(z)ωg
n+1(zS, z) [Add residue free term]

= 2
∞

∑
b1,...,bn=0

Mg
n+1(b1, . . . , bn, 1)

xb1+1
1 · · · xbn+1

n
dx1 · · · dxn.

While the right hand side of (8)-(9) gives

−
n

∑
i=1

∂zi

(
x(zi)ω

g
n(zS)

dx(zi)

)
− (2g− 2 + n)ωg

n(zS)

= −
n

∑
i=1

∂xi

(
xi

∞

∑
b1,...,bn=0

Mg
n(b1, . . . , bn)

xb1+1
1 · · · xbn+1

n
dx1 · · · dx̂i · · · dxn

)

− (2g− 2 + n)
∞

∑
b1,...,bn=0

Mg
n(b1, . . . , bn)

xb1+1
1 · · · xbn+1

n
dx1 · · · dxn

= (
n

∑
i=1

bi + 2− 2g− n)
∞

∑
b1,...,bn=0

Mg
n(b1, . . . , bn)

xb1+1
1 · · · xbn+1

n
dx1 · · · dxn.

Equating coefficients and using 2d = 2− 2g− n + ∑n
i=1 bi gives (20) as required.

To prove (21) take m = 0 in (8). When expanded around xi = ∞ the RHS gives

−
n

∑
i=1

∂zi

(
ω

g
n(z1, . . . , zn)

dx(zi)

)
= −

n

∑
i=1

∂xi

(
∞

∑
b1,...,bn=0

Mg
n(b1, . . . , bn)

xb1+1
1 · · · xbn+1

n
dx1 · · · dx̂i · · · dxn

)

=
∞

∑
b1,...,bn=0

∑n
i=1(bi + 1)Mg

n(b1, . . . , bn)

xb1+1
1 · · · xbi+2

i · · · xbn+1
n

dx1 · · · dxn
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=
∞

∑
b1,...,bn=0

∑n
i=1 bi M

g
n(b1, . . . , bi − 1, . . . , bn)

xb1+1
1 · · · xbn+1

n
dx1 · · · dxn.

Where dx̂i denotes dxi missing from the first term. For the LHS, we need the following lemma.

Lemma 10. Let F(z) = ∑∞
n=1 p(n)zn for a quasi-polynomial p(n). Then F(z) is a meromorphic function on P1,

analytic at 0 and ∞, satisfying F(∞)− F(0) = −p(0).

Proof. Recall that p(n) is quasi-polynomial in n if it is polynomial on each coset of a sublattice mZ ⊂ Z, i.e.
it is represented by m polynomials pa(n), a = 1, ..., m, for n ≡ a(m), and p(0) := pm(0).

Decompose F(z) into

F(z) =
∞

∑
n=1

p(n)zn =
m

∑
a=1

∑
0<n≡a(m)

pa(n)zn

and further decompose pa(n) into linear combinations of monomials nk. Then

∑
0<n≡a(m)

nkzn =

(
z

d
dz

)k

∑
0<n≡a(m)

zn =

(
z

d
dz

)k za

1− zm

which vanishes at z = ∞, since the denominator has greater degree than than the numerator, except when
k = 0 and a = m, where at z = ∞ it evaluates to −1. �

The LHS of (8) now becomes

∑
α=±1

Res
z=α

ln(z)ωg
n+1(zS, z) = − ∑

α=±1
Res
z=α

dz
z

∫ z

0
ω

g
n+1(zS, z′) [Integrating by parts]

= ∑
α=0,∞

Res
z=α

dz
z

∫ z

0
ω

g
n+1(zS, z′)

= Res
z=∞

dz
z

∫ z

0
ω

g
n+1(zS, z′) [Analytic at z = 0]

= −
∫ ∞

0
ω

g
n+1(zS, z)

=
∞

∑
k1,...,kn=1

k1 · · · knNg
n+1(kS, 0)zkS−1

S dzS [Lemmas 4, 10]

=
∞

∑
b1,...,bn=0

∏k
i=1 bi(

bi−1
bi−1

2
)∏n

i=k+1
bi
2 (

bi
bi
2
)mg

n+1,k(bS, 0)

xb1+1
1 · · · xbn+1

n
dx1 · · · dxn

where in the final step we have changed the first n variables from expansions in z to x using the transform
from Lemma 7. The last variable contains only a constant term which remains unchanged under this
transform.

Lemma 11. Let fk(t1, ..., tn) be a polynomial symmetric in the variables t1, ..., tk and also symmetric in the variables
tk+1, ..., tn. Evaluation at the two variables fk(a, t2, ..., tn) and fk(t1, ..., tn−1, b) for any a, b determines any such fk of
degree less than n and if the degree of fk equals n it determines fk up to a constant.
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Proof. Suppose gk(t1, ..., tn) were another polynomial of the same degree as fk, symmetric in variables of
the same parity satisfying gk(a, t2, ..., tn) = fk(a, t2, ..., tn) and gk(t1, ..., tn−1, b) = fk(t1, ..., tn−1, b). Define
hk(t1, ..., tn) = gk(t1, ..., tn)− fk(t1, ..., tn). Then hk(a, t2, ..., tn) = 0 = hk(t1, ..., tn−1, b). By symmetry

hk(t1, ..., tn) =
k

∏
i=1

(ti − a)
n

∏
i=k+1

(ti − b)h̃k(t1, ..., tn)

for some other polynomial h̃k. If deg fk = deg hk < n then h̃k ≡ 0 and gk(t1, ..., tn) = fk(t1, ..., tn). If
deg fk = deg hk then h̃k ≡ λ is constant and gk(t1, ..., tn) = fk(t1, ..., tn) + λ ∏k

i=1(ti − a)∏n
i=k+1(ti − b). �

Note that the lemma makes sense and remains true if k = 0 or n.

To complete the proof of Theorem 9 we need to show that the divisor and string equations determine the
genus zero and genus one Eynard-Orantin invariants.

For any k = 1, ..., n, the divisor equation (20) and string equation (21) allow us to compute mg
n+1,k(b1, . . . , bn, 0)

and mg
n+1,k(1, b2, . . . , bn+1) from smaller mg

n,k. (We have assumed that b1 is odd and bn+1 is even. If k = 0 or
n + 1, the string and divisor equation respectively are alone sufficient to determine m0

n+1,k using precisely the
same argument.) For g = 0 and each k, m0

n+1,k(b1, . . . , bn+1) is a polynomial of degree n− 2, symmetric in
variables of the same parity. Hence Lemma 11 shows that m0

n+1,k(b1, . . . , bn+1) is uniquely determined from
smaller m0

n,k.

For g = 1 and each k, m1
n+1,k(b1, . . . , bn+1) is a polynomial of degree n + 1, symmetric in variables of the same

parity. Hence Lemma 11 shows that the string and dilaton equations determine m1
n+1,k(b1, . . . , bn+1) from

smaller m1
n,k up to λ ·∏k

i=1(bi − 1)∏n+1
i=k+1 bi. The constant λ can be determined from Proposition 8 which

gives the coefficients of all top degree terms in terms of intersection numbers onMg,n. In particular, the

coefficient of b1...bn+1 in m1
n+1,k(b1, . . . , bn+1) is 21−n〈τn

1 〉 =
21−n(n− 1)!

24
. �

3. GROMOV-WITTEN INVARIANTS

3.1. The moduli space of stable maps. Let X be a projective algebraic variety and consider (C, x1, . . . , xn) a
connected smooth curve of genus g with n distinct marked points. For β ∈ H2(X, Z) the moduli space of
mapsMg

n(X, β) consists of morphisms

π : (C, x1, . . . , xn)→ X

satisfying π∗[C] = β quotiented by isomorphisms of the domain C that fix each xi. The moduli space has a
compactificationMg

n(X, β) given by the moduli space of stable maps: the domain C is a connected nodal
curve; the distinct points {x1, . . . , xn} avoid the nodes; any genus zero irreducible component of C with
fewer than three distinguished points (nodal or marked) must not be collapsed to a point; any genus one
irreducible component of C with no marked point must not be collapsed to a point. The moduli space of
stable maps has irreducible components of different dimensions but its expected or virtual dimension is

dimMg
n(X, β) = 〈c1(X), β〉+ (dim X− 3)(1− g) + n.

3.1.1. Cohomology on Mg
n(X, β). Let Li be the cotangent bundle over the ith marked point and ψi ∈

H2(Mg
n(X, β), Q) be the first chern class of Li.

For i = 1, . . . , n there exist evaluation maps:

(22) evi :Mg
n(X, β) −→ X, evi(π) = π(xi)
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and classes γ ∈ H∗(X, Z) pull back to classes in H∗(Mg
n(X, β), Q)

(23) ev∗i : H∗(X, Z) −→ H∗(Mg
n(X, β), Q)

Gromov-Witten theory involves integrating cohomology classes, often called descendent classes, of the form

τbi
(γ) = ψ

bi
i ev∗i (γ).

These are integrated against the virtual fundamental class, [Mg
n(X, β)]vir, the existence and construction of

which is highly nontrivial.

Gromov-Witten invariants quite generally satisfy divisor, string and dilaton equations [21] and topological
recursion relations arising from relations on the moduli space of curves Mg,n, [12]. We will write these
relations only in the special case when the target is P1.

3.2. Specialising to P1. We now only consider the specific case of Gromov-Witten invariants of P1. Let
ω ∈ H2(P1, Q) be the Poincare dual class of a point and 1 ∈ H0(P1, Q) Poincare dual to the fundamental
class. We consider the invariants

(24)

〈
l

∏
i=1

τbi
(1)

n

∏
i=l+1

τbi
(ω)

〉g

d

=
∫
[Mg

n(P
1,d)]vir

l

∏
i=1

ψ
bi
i

n

∏
i=l+1

ψ
bi
i ev∗i (ω)

where we consider only connected invariants and (24) is defined to be zero unless ∑n
i=1 bi = 2g− 2 + 2d + l.

In our notation, often either g or d will be missing when clear, since the dimension restraints define one from
the other. Our main interest is the case l = 0, known as the (connected) stationary Gromov-Witten theory of
P1 since the images of the marked points are fixed.

We collect here a few properties of Gromov-Witten invariants of P1 needed here. We recommend reading [14],
[15] and [16], for a thorough treatment of this case. We use the following divisor, string and dilaton equations
[21] principally for stationary Gromov-Witten invariants. For 2d = 2− 2g + ∑n

i=1 bi, and αi ∈ {1, ω}

divisor equation
〈
τ0(ω)τb1(α1) · · · τbn(αn)

〉
d = d

〈
τb1(α1) · · · τbn(αn)

〉
d(25)

+
n

∑
i=1

〈
τb1(α1) · · · τbi−1(αi ∪ω) · · · τbn(αn)

〉
d

string equation
〈
τ0(1)τb1(α1) · · · τbn(αn)

〉
d =

n

∑
i=1

〈
τb1(α1) · · · τbi−1(α1) · · · τbn(αn)

〉
d(26)

dilaton equation
〈
τ1(1)τb1(α1) · · · τbn(αn)

〉g
= (2g− 2 + n)

〈
τb1(α1) · · · τbn(αn)

〉g(27)

where we define τb(0) = 0. Consider the generating function for descendent classes

F = exp
∞

∑
b=0

(tbτb(ω) + sbτb(1)) .

For αi ∈ {1, ω} the genus zero topological recursion [21] is〈
τb1(α1)τb2(α2)τb3(α3)F

〉0
=
〈
τ0(1)τb1−1(α1)F

〉0 〈
τ0(ω)τb2(α2)τb3(α3)F

〉0(28)

+
〈
τ0(ω)τb1−1(α1)F

〉0 〈
τ0(1)τb2(α2)τb3(α3)F

〉0

and the genus one topological recursion is〈
τb1(α1)F

〉1
=
〈
τ0(1)τb1−1(α1)F

〉0 〈τ0(ω)F〉1 +
〈
τ0(ω)τb1−1(α1)F

〉0 〈τ0(1)F〉1(29)

+
1
12
〈
τ0(1)τ0(ω)τb1−1(α1)F

〉0 .
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In [14], Okounkov and Pandharipande show that for Gromov-Witten invariants that allow disconnected
domains (denoted by the superscript •) the following relation holds:

(30)
〈 n

∏
i=1

τbi
(ω)

〉•
d = ∑

|λ|=d

(dim λ

d!

)2 n

∏
i=1

pbi+1(λ)

(bi + 1)!

where the sum is over all partitions of d and for a partition λ, pk(λ) is the shifted symmetric power sum
defined by

pk(λ) =
∞

∑
i=1

[
(λi − i +

1
2
)k − (−i +

1
2
)k]+ (1− 2−k)ζ(−k).

4. PROOF OF THEOREM 1

The strategy of the proof of Theorem 1 will be to use recursions to uniquely determine both the Eynard-
Orantin invariants and the Gromov-Witten invariants of P1 and compare. The obvious candidates for the
genus 0 and 1 Eynard-Orantin invariant are the divisor and string equations, (20) and (21). The genus 0
and 1 Gromov-Witten invariants of P1 are determined by the topological recursion relations (28) and (29).
However, the two sets of recursion relations are not compatible, so we first produce new recursion relations
for the stationary Gromov-Witten invariants of P1, given in Section 4.2, which are interesting in their own
right, and serve our purposes here.

4.1. Polynomial behaviour of Gromov-Witten invariants. We begin by proving the following weaker ver-
sion of Theorem 2.

Proposition 12. For g = 0 and 1, the stationary Gromov-Witten invariants are of the form

(31)

〈
k

∏
i=1

τ2ui (ω)
n

∏
i=k+1

τ2ui−1(ω)

〉g

=
uk+1 · · · un

∏n
i=1 ui!2

pg
n,k(u1, . . . , un)

where pg
n,k(u1, . . . , un) is a polynomial of degree 3g− 3 + n in the ui’s, symmetric in the first k and the last n− k

variables.

Proof. We prove this by induction using the topological recursion relations for genus zero and genus one
Gromov-Witten invariants.

Genus zero case.

4.1.1. Initial cases. The recursion (28) can be used along with the string and divisor equations to explicitly
find expressions for genus zero 1, 2 and 3-point invariants. The one point invariants [14]

〈τ2u(ω)〉0 =
1

(u + 1)!2
=

1
u!2

1
(u + 1)2 .

Let αi = ω, F = 1, b1 = 2u1, b2 = 2u2 and b3 = 0. Repeated application of the string and divisor equations
gives 〈

τ2u1(ω)τ2u2(ω)τ0(ω)
〉0

= (u2 + 1)(u2 + 1)
〈
τ2u1−2(ω)

〉0 〈
τ2u2(ω)

〉0
+ 0

=
(u2 + 1)2

u1!2(u2 + 1)!2
=

1
u1!2u2!2

⇒
〈
τ2u1(ω)τ2u2(ω)

〉0
=

1
u1!2u2!2

1
u1 + u2 + 1

.



14 PAUL NORBURY AND NICK SCOTT

Similarly, αi = ω, F = 1, b1 = 2u1 − 1, b2 = 2u2 − 1 and b3 = 0 gives〈
τ2u1−1(ω)τ2u2−1(ω)

〉0
=

u1u2

u1!2u2!2
1

u1 + u2
.

As mentioned in the introduction, the one-point and two-point functions still satisfy Proposition (12) if we
interpret degree -2 and -1 polynomials to mean the reciprocal of degree 2 and degree 1 polynomials.

We can now use (28), the string and divisor equations to compute the initial step of the induction - the three
point invariants:

〈τ2u1(ω)τ2u2(ω)τ2u3(ω)〉0 =
1

u1!2u2!2u3!2
(32)

〈τ2u1(ω)τ2u2−1(ω)τ2u3−1(ω)〉0 =
u2u3

u1!2u2!2u3!2

Before we apply the inductive step, we need the following lemma.

Lemma 13. Proposition 12 can be extended to include τ0(1) terms.

Proof. This uses the string equation (26). Suppose Proposition 12 holds for the right hand side of the
string equation (26). Then we must check that the left hand side is the required degree polynomial. Let
K = {1, . . . , k} and J = {k + 1, . . . n}. The equation can be written〈

τ0(1)
k

∏
i=1

τ2ui (ω)
n

∏
i=k+1

τ2ui−1(ω)

〉g

=
k

∑
i=1

uiuk+1...un

u1!2...un!2
pg

n,k−1(uK\i, ui, uJ)

+
n

∑
i=k+1

uk+1...ûi...un

u1!2...(ui − 1)!2...un!2
pg

n,k+1(uK, ui − 1, uJ\i)

=
uk+1 · · · un

∏n
i=1 ui!2

( k

∑
i=1

ui p
g
n,k−1(uK\i, ui, uJ) +

n

∑
i=k+1

ui p
g
n,k+1(uK, ui − 1, uJ\i)

)
=:

uk+1 · · · un

∏n
i=1 ui!2

p̃g
n,k(uK, uJ)

Where ûi means to exclude the ui term and we note that pg
n,k±1 is a polynomial of degree 3g− 3+ n, symmetric

in the first k± 1 and last n− (k± 1) variables. Thus p̃g
n,k(uK, uJ) has degree 3g− 3 + n + 1 and the required

symmetries.

�

4.1.2. Induction. Suppose Proposition 12 is true for g = 0 and n′ < n. Apply

dn−3

dtb4 · · · dtbn

∣∣∣
t=0

to (28) and let αi = ω to obtain the recursion〈
τb1(ω) · · · τbn(ω)

〉0
= ∑

I⊂{4,...,n}

( 〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈
τ0(ω)τb2(ω)τb3(ω)τCI(ω)

〉0(33)

+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 〈
τ0(1)τb2(ω)τb3(ω)τCI(ω)

〉0 )
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for CI = {b4, . . . , bn} \ bI . We now wish to pull out the following factors:

1
ui!2

if bi = 2ui, and

ui
ui!2

if bi = 2ui − 1

to be left with only polynomial terms, of degree up to n− 3. By symmetry, we only need to show this for one
of the bi, so choose b1.

Even. If b1 = 2u1, then by induction for |I| 6= 0, 1 both terms will look like

u1

u1!2
p(u1) =

1
u1!2

[u1 p(u1)]

where u1 p(u1) is a polynomial in u1 of degree |I|.

Odd. If b1 = 2u1 − 1 then by induction for |I| 6= 0, 1 both terms will have the form

1
(u1 − 1)!2

p(u1) =
u1

u1!2
[u1 p(u1)]

where u1 p(u1) is a polynomial in u1 of degree |I|.

Special cases. We must be careful about the occurrences of one and two point invariants, as the inductive step
begins at 3. These will occur in the first term when |I| = 0 or |I| = 1, and the second term when |I| = 0. For
the first term, application of the string equation leads to

〈τb1−2(ω)〉 =

 1
u1!2 b1 = 2u1

0 b1 = 2u1 − 1

or

〈τb1−2(ω)τbi
(ω)〉0 + 〈τb1−1(ω)τbi−1(ω)〉0

=


1

(u1−1)!2ui !2
1

u1+ui
+ u1ui

u1!2ui !2
1

u1+ui
= u1

u1!2ui !2
(u1−1)ui

(u1−1)!2ui !2
1

u1+ui−1 + 1
(u1−1)!2(ui−1)!2

1
u1+ui−1 = u1ui

u1!2ui !2
u1

and we still get the correct form. If |I| = 0 the second term is only non zero for b1 = 2u1 − 1 and we get

〈τ0(ω)τ2u1−2(ω)〉0 =
1

(u1 − 1)!2
1
u1

=
u1

u1!2

which is again correct.

Since 0 ≤ |I| ≤ n − 3, adding terms on the right hand side together gives the required degree of the
polynomial part of the stationary Gromov-Witten invariant.

4.1.3. Genus one case. Initial case. This time the induction begins from the one point function. If we set
α1 = ω and F = 1 in (29) we get〈

τb1(ω)
〉1

=
〈
τ0(1)τb1−1(ω)

〉0 〈τ0(ω)〉1

+
〈
τ0(ω)τb1−1(ω)

〉0 〈τ0(1)〉1 +
1

12
〈
τ0(1)τ0(ω)τb1−1(ω)

〉0 .

The left hand side is only non zero if b1 = 2u1, which makes the second term on the right hand side vanish
for dimension reasons. Using the string equation, the initial terms of the genus zero case and the value [14]

〈τ0(ω)〉1 = − 1
24
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this reduces to

(34)
〈
τ2u1(ω)

〉1
= − 1

24
1

u1!2
+

1
12

1
(u1 − 1)!2

1
u1

=
1

24u1!2
(2u1 − 1).

4.1.4. Induction. We have proven the theorem for genus zero and suppose it is true in genus one for n′ < n.
Let us apply

dn−1

dtb2 . . . dtbn

∣∣∣
t=0

to (29) and let α1 = ω, F = 1 to obtain the recursion〈
τb1(ω) · · · τbn(ω)

〉1
= ∑

I⊂{2,...,n}

( 〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈τ0(ω)τCI(ω)〉1(35)

+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 〈τ0(1)τCI(ω)〉1
)

+
1
12
〈
τ0(1)τ0(ω)τb1−1(ω)τb2(ω) · · · τbn(ω)

〉0

for CI = {b2, . . . , bn} \ bI . As with genus zero, we wish to pull out factors

1
ui!2

if bi = 2ui, and

ui
ui!2

if bi = 2ui − 1

and be left with only polynomial terms, of degree up to n. Again by symmetry we only need to see this for
one parameter, so look at b1.

Even. For b1 = 2u1 the first two terms will be

u1

u1!2
p(u1) =

1
u1!2

[u1 p(u1)]

for u1 p(u1) a polynomial in u1 of degree |I|. The last term will look the same but this time u1 p(u1) is a
polynomial in u1 of degree n.

Odd. For b1 = 2u1 − 1 the first two terms will be

1
(u1 − 1)!2

p(u1) =
u1

u1!2
[u1 p(u1)]

for u1 p(u1) a polynomial in u1 of degree |I|. The last term will look the same but this time u1 p(u1) is a
polynomial in u1 of degree n.

Special cases. We already saw in the genus one proof that application of the string equation to the two point
genus zero invariants gave the correct form.

This gives the correct form of all genus one stationary Gromov-Witten invariants, and thus we have proven
Proposition 12 for g = 0, 1. �

Remark. Proposition 8 proved a polynomial form (18) for the coefficients of an expansion of the Eynard-
Orantin invariants ω

g
n using the transform defined in Lemma 7. The transform is invertible so in particular

any power series with coefficients having the polynomial form (18) continues analytically to a meromorphic
multidifferential on the Riemann surface double covering the plane by x = z + 1/z. In particular, Proposi-
tion 12 proves that the generating functions Ωg

n continue analytically to meromorphic multidifferentials over
x = z + 1/z. This is weaker than Theorem 1 which identifies Ωg

n with a known multidifferential.
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4.2. String and dilaton equations for stationary Gromov-Witten invariants. It is easy to see that the divisor
equation (25) restricts to a relationship between purely stationary invariants. It is subtler that the same is true
for the string equation (26) and dilaton equation (26) which tell us how to remove a non-stationary term and
a priori are not statements about stationary invariants alone.

Proposition 14. For g = 0 or 1, τ0(1) classes correspond to evaluation of one variable of the stationary invariant
polynomial pg

n,k at 0. More precisely:〈
τ0(1)

k

∏
i=1

τ2ui (ω)
n−1

∏
i=k+1

τ2ui−1(ω)

〉g

=
uk+1...un−1

∏n−1
i=1 ui!2

pg
n,k(u1, . . . , un−1, 0)

where we have removed from (4) the factor ui/ui!2 corresponding to an odd stationary class and set ui = 0.

Proof. We will use induction on n and the topological recursion (28).

Genus zero. Let us begin with the initial cases. For dimension reasons, we need only check the following
two cases whose expressions were computed in section 4. Interpreting ui = 0 to mean ignore the ui/ui!2

factor before evaluating gives

〈
τ2u1−1(ω)τ2u2−1(ω)

〉0
∣∣∣
u1=0

=
u1u2

u1!2u2!2
1

u1 + u2

∣∣∣
u1=0

=
1

u2!2
=
〈
τ2u2−2(ω)

〉0

=
〈
τ0(1)τ2u2−1(ω)

〉0

and

〈τ2u1(ω)τ2u2−1(ω)τ2u3−1(ω)〉0
∣∣∣
u3=0

=
u2u3

u1!2u2!2u3!2

∣∣∣
u3=0

=
u2

u1!2u2!2

=
u1u2

u1!2u2!2
1

u1 + u2
+

1
u1!2(u2 − 1)!2

1
u1 + u2

= 〈τ2u1−1(ω)τ2u2−1(ω)〉0 + 〈τ2u1(ω)τ2u2−2(ω)〉0

= 〈τ2u1(ω)τ2u2−1(ω)τ0(1)〉0

So that the lemma is true for the smallest cases. Applying appropriate derivatives to (28) and setting F = 1
gives the recursion〈

τb1(α1)τb2(α2)τb3(α3)τS(ω)
〉0

= ∑
I∪J=S

( 〈
τ0(1)τb1−1(α1)τI(ω)

〉0 〈
τ0(ω)τb2(α2)τb3(α3)τJ(ω)

〉0(36)

+
〈
τ0(ω)τb1−1(α1)τI(ω)

〉0 〈
τ0(1)τb2(α2)τb3(α3)τJ(ω)

〉0 )
for S = {b4, . . . , bn}. We will show by induction that for α1 = α2 = α3 = ω and b2 = 2u2 − 1 an odd parity
variable, the LHS evaluated at u2 = 0 is equal to the LHS if α1 = α3 = ω, α2 = 1, b2 = 0. The induction will
involve equating the right hand sides.
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RHS1. Let α1 = α3 = ω, α2 = 1, b2 = 0. Then after applying the divisor equation to the first term and the
string equation to the second, the RHS becomes

∑
I∪J=S

( 〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈
τ0(1)τb3(ω)τJ(ω)

〉0
[
|J|+ b3 + 1

2

]
+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 [ 〈
τ0(1)τb3−1(ω)τJ(ω)

〉0
+
〈
τ0(1)τb3(ω)τJ−1(ω)

〉0 ])
where we have used the notation 〈

τJ−1(ω)
〉g

= ∑
bj∈J

〈
τJ\bj

(ω)τbj−1(ω)
〉g

.

RHS2. Let α1 = α2 = α3 = ω and b2 = 2u2 − 1. Then applying the divisor equation to the first term and the
string equation to the second term, the RHS is

∑
I∪J=S

( 〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈
τ2u2−1(ω)τb3(ω)τJ(ω)

〉0
[
|J|+ b3 + 2u2 + 1

2

]
+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 [ 〈
τ2u2−2(ω)τb3(ω)τJ(ω)

〉0
+
〈
τ2u2−1(ω)τb3−1(ω)τJ(ω)

〉0

+
〈
τ2u2−1(ω)τb3(ω)τJ−1(ω)

〉0 ])
By induction, the polynomial expressions for the first and final two terms are equal when we ignore the

u2
u2!2 factor and put u2 = 0. We must look closely at

〈
τ2u2−2(ω)τb3(ω)τJ(ω)

〉0. The u2 dependence can be
expressed as

1
(u2 − 1)!2

p(u2) =
u2

u2!2
[u2 p(u2)]

for u2 p(u2) a polynomial. When u2 is set to zero in the polynomial component, this term will vanish and
both RHS expressions are equal.

Genus one. We shall proceed analogously. For the smallest case, we may use the genus one topological
recursion (29), along with the initial computation in section 4 to find an expression for 〈τ2u1−1(ω)τ2u2−1(ω)〉1.
Let b1 = 2u1 − 1 and α1 = ω. Taking a derivative to insert a τ2u2−1(ω) term and discarding parts that are the
wrong dimension gives

〈τ2u1−1(ω)τ2u2−1(ω)〉1 =
〈
τ0(1)τ2u1−2(α1)τ2u2−1(ω)

〉0 〈τ0(ω)〉1 +
〈
τ0(ω)τ2u1−2(ω)

〉0 〈
τ0(1)τ2u2−1(ω)

〉1

+
1
12
〈
τ0(1)τ0(ω)τ2u1−2(ω1)τ2u2−1(ω)

〉0

=− 1
24
( 〈

τ2u1−3(α1)τ2u2−1(ω)
〉0

+
〈
τ2u1−2(α1)τ2u2−2(ω)

〉0 )
+
〈
τ0(ω)τ2u1−2(ω)

〉0 〈
τ2u2−2(ω)

〉1

+
1
12

(〈
τ0(ω)τ2u1−3(ω1)τ2u2−1(ω)

〉0
+
〈
τ0(ω)τ2u1−2(ω1)τ2u2−2(ω)

〉0
)

=− 1
24

( (u1 − 1)u2

(u1 − 1)!2u2!2
1

u1 + u2 − 1
+

1
(u1 − 1)!2(u2 − 1)!2

1
u1 + u2 − 1

)
+

1
(u1 − 1)!2

1
u1

2u2 − 3
24(u2 − 1)!2

+
1

12u1!2u2!2
(

u2
1u2(u1 − 1) + u2

1u2
2

)
=

u1u2

24u1!2u2!2
(2u2

1 + 2u2
2 + 2u1u2 − 3u1 − 3u2)

so that 〈
τ2u1−1(ω)τ2u2−1(ω)

〉1
∣∣∣
u1=0

=
u2

24u2!2
(2u2

2 − 3u2)
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=
1

24(u2 − 1)!2
(2u2 − 3) =

〈
τ2u2−2(ω)

〉1

=
〈
τ0(1)τ2u2−1(ω)

〉1

and we have verified the initial case. Applying appropriate derivatives to (29) and setting α1 = ω, F = 1
gives the recursion:

〈τb1(ω)τb2(α2)τS(ω)〉1 = ∑
I∪J=S

[ 〈
τ0(1)τb1−1(ω)τb2(α2)τI(ω)

〉0 〈
τ0(ω)τJ(ω)

〉1

+
〈
τ0(ω)τb1−1(ω)τb2(α2)τI(ω)

〉0 〈
τ0(1)τJ(ω)

〉1
+
〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈
τ0(ω)τb2(α2)τJ(ω)

〉1

+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 〈
τ0(1)τb2(α2)τJ(ω)

〉1
]
+

1
12
〈
τ0(1)τ0(ω)τb1−1(ω)τb2(α2)τS(ω)

〉0

for S = {b3, . . . , bn}. Now we may compare expressions.

RHS1. Let α2 = 1 and b2 = 0.

∑
I∪J=S

[ 〈
τ0(1)τ0(1)τb1−1(ω)τI(ω)

〉0〈
τ0(ω)τJ(ω)

〉1
+
〈
τ0(ω)τ0(1)τb1−1(ω)τI(ω)

〉0〈
τ0(1)τJ(ω)

〉1

+
〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈
τ0(ω)τ0(1)τJ(ω)

〉1
+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 〈
τ0(1)τ0(1)τJ(ω)

〉1
]

+
1
12
〈
τ0(1)τ0(ω)τb1−1(ω)τ0(1)τS(ω)

〉0 .

RHS2. Let α2 = ω, b2 = 2u2 − 1.

∑
I∪J=S

[ 〈
τ0(1)τb1−1(ω)τ2u2−1(ω)τI(ω)

〉0 〈
τ0(ω)τJ(ω)

〉1
+
〈
τ0(ω)τb1−1(ω)τ2u2−1(ω)τI(ω)

〉0〈
τ0(1)τJ(ω)

〉1

+
〈
τ0(1)τb1−1(ω)τI(ω)

〉0〈
τ0(ω)τ2u2−1(ω)τJ(ω)

〉1
+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 〈
τ0(1)τ2u2−1(ω)τJ(ω)

〉1
]

+
1
12
〈
τ0(1)τ0(ω)τb1−1(ω)τ2u2−1(ω)τS(ω)

〉0.

By induction, setting u2 = 0 in the polynomial expressions for all terms in RHS2 we get equality with RHS1.
(The induction is on n, but we have already shown all genus zero to hold.)

�

A similar strategy is required for the dilaton equation.

Proposition 15. For g = 0 or 1, τ1(1) classes can be evaluated in the expression (4) by removing the 1/ui!2 factor
from an even stationary class and setting ui = 0 in the derivative:

(37)

〈
τ1(1)

k

∏
i=2

τ2ui (ω)
n

∏
i=k+1

τ2ui−1(ω)

〉g

=
uk+1 · · · un

∏n
i=2 ui!2

∂

∂u1
pg

n,k(u1, . . . , un)
∣∣∣
u1=0

Proof. We will use induction on n and the topological recursions (28, 29).

Genus zero. Begin with the initial cases. Interpreting operations to mean ignore the 1/ui!2 factor first gives
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∂

∂u2

〈
τ2u1(ω)τ2u2(ω)

〉0
∣∣∣
u2=0

=
1

u1!2
∂

∂u2

1
u1 + u2 + 1

∣∣∣
u2=0

=
1

u1!2
−1

(u1 + 1)2 = −
〈
τ2u1(ω)

〉0

=
〈
τ1(1)τ2u1(ω)

〉0

and
∂

∂u3
〈τ2u1(ω)τ2u2(ω)τ2u3(ω)〉0

∣∣∣
u3=0

=
1

u1!2u2!2
∂

∂u3
1
∣∣∣
u3=0

= 0 = 〈τ1(1)τ2u1(ω)τ2u2(ω)〉0

and
∂

∂u3
〈τ2u1−1(ω)τ2u2−1(ω)τ2u3(ω)〉0

∣∣∣
u3=0

=
u1u2

u1!2u2!2
∂

∂u3
1
∣∣∣
u3=0

= 0 = 〈τ1(1)τ2u1−1(ω)τ2u2−1(ω)〉0

so that the proposition holds for the smallest cases. Now apply appropriate derivatives to (28) to get the
recursion:〈

τb1(α1)τb2(α2)τb3(α3)τS(ω)
〉0

= ∑
I∪J=S

( 〈
τ0(1)τb1−1(α1)τI(ω)

〉0 〈
τ0(ω)τb2(α2)τb3(α3)τJ(ω)

〉0(38)

+
〈
τ0(ω)τb1−1(α1)τI(ω)

〉0 〈
τ0(1)τb2(α2)τb3(α3)τJ(ω)

〉0 )
for S = {b4, . . . , bn}. We will show by induction that when α1 = α2 = α3 = ω and b2 = 2u2 an even parity
variable, if we ignore the 1/u2!2 factor, take the derivative and set u2 = 0, the LHS is the same as the LHS
when α1 = α3 = ω, α2 = 1 and b2 = 1.

RHS1. Let α1 = α3 = ω, α2 = 1, b2 = 1. Then after applying the divisor equation to the first term and the
string equation to the second, the RHS becomes

∑
I∪J=S

( 〈
τ0(1)τb1−1(ω)τI(ω)

〉0 [ 〈
τ0(ω)τb3(ω)τJ(ω)

〉0
+
〈
τ1(1)τb3(ω)τJ(ω)

〉0
[
|J|+ b3 + 2

2

] ]
+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 [ 〈
τ0(1)τb3(ω)τJ(ω)

〉0
+
〈
τ1(1)τb3−1(ω)τJ(ω)

〉0
+
〈
τ1(1)τb3(ω)τJ−1(ω)

〉0 ])
RHS2. Let α1 = α2 = α3 = ω, b2 = 2u2. After applying the divisor equation to the first term and the string
equation to the second term, the RHS becomes

∑
I∪J=S

( 〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈
τ2u2(ω)τb3(ω)τJ(ω)

〉0
[
|J|+ b3 + 2u2 + 2

2

]
+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 [ 〈
τ2u2−1(ω)τb3(ω)τJ(ω)

〉0
+
〈
τ2u2(ω)τb3−1(ω)τJ(ω)

〉0

+
〈
τ2u2(ω)τb3(ω)τJ−1(ω)

〉0 ])
By induction, pulling out 1

u2!2 , taking the derivative and setting u2 = 0 gives equality with the last two terms
of each RHS. For the first term, the product rule on u2 and induction give equality with the first two terms,
and all that remains is to check the third term. We may write the u2 dependence in

〈
τ2u2−1(ω)τb3(ω)τJ(ω)

〉0
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as
u2

u2!2
p(u2) =

1
u2!2

[u2 p(u2)]

so that when the product rule is used, and u2 subsequently set to zero, this is equivalent to ignoring a u2/u2!2

factor and setting u2 = 0 in the polynomial part. That is, by Proposition 14,
〈
τ0(1)τb3(ω)τJ(ω)

〉0. Performing
these evaluations gives an overall equality.

Genus one. Begin with the initial case. Again interpreting ui = 0 to mean ignore the 1/ui!2 factor before
performing any operations gives

∂

∂u2

〈
τ2u1(ω)τ2u2(ω)

〉1
∣∣∣
u2=0

=
1

u1!2
∂

∂u2

1
24

(2u2
1 + 2u2

2 + 2u1u2 − u1 − u2)
∣∣∣
u2=0

=
1

24u1!2
(2u1 − 1) =

〈
τ1(1)τ2u1(ω)

〉1

and the proposition holds. Applying appropriate derivatives to (29) and setting α1 = ω, F = 1 gives the
recursion:

〈τb1(ω)τb2(α2)τS(ω)〉1 = ∑
I∪J=S

[ 〈
τ0(1)τb1−1(ω)τb2(α2)τI(ω)

〉0 〈
τ0(ω)τJ(ω)

〉1

+
〈
τ0(ω)τb1−1(ω)τb2(α2)τI(ω)

〉0 〈
τ0(1)τJ(ω)

〉1
+
〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈
τ0(ω)τb2(α2)τJ(ω)

〉1

+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 〈
τ0(1)τb2(α2)τJ(ω)

〉1
]
+

1
12
〈
τ0(1)τ0(ω)τb1−1(ω)τb2(α2)τS(ω)

〉0

for S = {b3, . . . , bn}. Now we may compare expressions.

RHS1. Let α2 = 1 and b2 = 1.

∑
I∪J=S

[ 〈
τ0(1)τ1(1)τb1−1(ω)τI(ω)

〉0 〈
τ0(ω)τJ(ω)

〉1
+
〈
τ0(ω)τ1(1)τb1−1(ω)τI(ω)

〉0 〈
τ0(1)τJ(ω)

〉1

+
〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈
τ0(ω)τ1(1)τJ(ω)

〉1
+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 〈
τ0(1)τ1(1)τJ(ω)

〉1
]

+
1
12
〈
τ0(1)τ0(ω)τb1−1(ω)τ1(1)τS(ω)

〉0 .

RHS2. Let α2 = ω, b2 = 2u2.

∑
I∪J=S

[ 〈
τ0(1)τb1−1(ω)τ2u2(ω)τI(ω)

〉0 〈
τ0(ω)τJ(ω)

〉1
+
〈
τ0(ω)τb1−1(ω)τ2u2(ω)τI(ω)

〉0〈
τ0(1)τJ(ω)

〉1

+
〈
τ0(1)τb1−1(ω)τI(ω)

〉0〈
τ0(ω)τ2u2(ω)τJ(ω)

〉1
+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 〈
τ0(1)τ2u2(ω)τJ(ω)

〉1
]

+
1
12
〈
τ0(1)τ0(ω)τb1−1(ω)τ2u2(ω)τS(ω)

〉0.

Given the proposition is true in genus zero, we need only consider terms three and four. By induction on n,
when we ignore the 1/u2!2 factor, take the derivative and evaluate at u2 = 0 the polynomial expressions for
RHS2, we get equality with RHS1.

�
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Remarks. 1. Combining Proposition 14, respectively Proposition 15, with the string equation, respectively the
dilaton equation, gives relations between stationary invariants alone. One might call these string and dilaton
equations for stationary invariants.

2. We expect Propositions 12, 14 and 15 to hold for the Gromov-Witten invariants of P1 for all genus g.

Theorem 16. The divisor and string equations uniquely determine all genus zero and one stationary Gromov-Witten
invariants.

Proof. We begin with the genus zero case and use the g = 0 form of Proposition 12:〈
k

∏
i=1

τ2ui (ω)
n

∏
i=k+1

τ2ui−1(ω)

〉0

=
uk+1 · · · un

∏n
i=1 ui!2

p0
n,k(u1, . . . , un)

where p0
n,k(u1, . . . , un) is a polynomial of degree n− 3 in the ui’s, symmetric in the first k and the last n− k

variables.

The divisor equation enables one to compute pg
n,k(0, u2, . . . , un) from pg

n−1,k−1(u2, . . . , un). By symmetry, this
equates evaluation of any of the first k variables at 0 to known functions. Proposition 14 and the string
equation enable one to compute pg

n,k(u1, . . . , un−1, 0) from pg
n−1,k(u1, . . . , un−1) which by symmetry gives

evaluation of any of the last n− k variables. Thus we can apply Lemma 11 to deduce the genus zero case.

The genus one case relies on the g = 0, 1 version of Proposition 12 and the g = 0 version of Theorem 1 which
requires only the g = 0 of Theorem 16 proven above. Proposition 14 and Lemma 11 prove that the string and
divisor equations determine the p1

n,k’s up to a constant. (This time H has degree n so that H̃ is a constant.)
The constant is the coefficient of u1 · · · un. We use the genus one topological recursion and theorem 1 for
genus zero to determine this coefficient. Having taken the appropriate derivatives the recursion (29) becomes〈

τb1(ω) · · · τbn(ω)
〉1

= ∑
I⊂{2,...,n}

( 〈
τ0(1)τb1−1(ω)τI(ω)

〉0 〈τ0(ω)τCI(ω)〉1(39)

+
〈
τ0(ω)τb1−1(ω)τI(ω)

〉0 〈τ0(1)τCI(ω)〉1
)

+
1
12
〈
τ0(1)τ0(ω)τb1−1(ω)τb2(ω) · · · τbn(ω)

〉0

for CI = {b2, . . . , bn} \ bI . For each i = 1, . . . , n let bi = 2ui or 2ui − 1 depending on parity. Proposition 12
shows that removing the appropriate binomial coefficients1 leaves the first two terms as polynomials in the
ui’s of degree n− 1. The third term leaves a polynomial of degree n, which by Proposition 14 is:

u1 p0
n+2,k(0, u1, . . . , un, 0)

where we have evaluated one of the first k and one of the last n− k variables at zero.

Note that we write the first k variables corresponding to the even parity bi’s and so as written above we have
assumed b1 to be even. Shuffling the parameters in p0

n+2,k will give the argument for b1 odd.

The monomial u2 · · · un appears in p0
n+2,k(0, u1, . . . , un, 0) as a top degree term and using the genus zero

equality with the Eynard-Orantin expansion (40):

p0
n+2,k(0, u1, . . . , un, 0) = m0

n+2,k(1, 2u1 + 1, . . . , 2un, 0),

1We must be careful of the parity of the b1 terms, along with the special cases I = φ, {2, . . . , n} as in section 4.1.



GROMOV-WITTEN INVARIANTS OF P1 AND EYNARD-ORANTIN INVARIANTS. 23

Proposition 8 computes this coefficient to be

2
2n

〈
τn−1

1 τ3
0

〉
2n−1 = (n− 1)!

The extra factors of 2 come from the change of variables b = 2u or 2u + 1. Thus the coefficient of u1 · · · un in
p1

n,k(u1, . . . , un) is
1

12
(n− 1)!

�

We are finally in a position to prove Theorem 1.

Proof of Theorem 1. Genus zero. Begin with the divisor (20) and string (21) equations for the Mg
n’s. If we divide

by ∏n
i=1 b1! and shift the arguments by one, we obtain the form of the string and divisor equations ((26), (25))

for the stationary Gromov-Witten invariants. Recall that the string equation for the stationary Gromov-Witten
invariants involves evaluation at -1 by combining Proposition 14 with the string equation.

Since both invariants are uniquely determined by these same equations (Theorems 16 and 9), all we need
to do is check that the initial cases match. We can explicitly calculate the (g, n) = (0, 3) case: using the
topological recursion for Gromov-Witten invariants we have already seen (32):

〈τ2u1(ω)τ2u2(ω)τ2u3(ω)〉0 =
1

u1!2u2!2u3!2

〈τ2u1(ω)τ2u2−1(ω)τ2u3−1(ω)〉0 =
u2u3

u1!2u2!2u3!2
.

Using [18], we can compute the expansion of the (g, n) = (0, 3) Eynard-Orantin invariants for the curve (2):

M0
3(2u1 + 1, 2u2 + 1, 2u3 + 1) =

3

∏
i=1

(2ui + 1)
(

2ui
ui

)
=

3

∏
i=1

(2ui + 1)!〈τ2u1(ω)τ2u2(ω)τ2u3(ω)〉0

M0
3(2u1 + 1, 2u2, 2u3) = (2u1 + 1)u2u3

3

∏
i=1

(
2ui
ui

)
= (2u1 + 1)!(2u2)!(2u3)!〈τ2u1(ω)τ2u2−1(ω)τ2u3−1(ω)〉0

and so the theorem is true in genus zero and we have the equality

(40) p0
n,k(u1, . . . , un) = m0

n,k(2u1 + 1, . . . , 2uk + 1, 2uk+1, . . . , 2un).

The 1-point and 2-point cases given in (3)

Genus one. This time both sets of invariants are determined by the string and divisor equations and the
coefficient of the top degree polynomial terms. We must check that the initial cases and that the top coefficients
agree. We already saw the initial Gromov-Witten invariant (34):

〈τ2u(ω)〉1 =
1

24u!2
(2u− 1).

Using [18] and lemma 7 we can compute the expansion of the (g, n) = (1, 1) Eynard-Orantin invariant:

M1
1(2u1 + 1) = (2u1 + 1)

(
2u1

u1

)
1

24
(2u1 − 1) = (2u1 + 1)!

〈
τ2u1(ω)

〉1

which are the required Gromov-Witten invariants, so the initial cases hold. Furthermore, the coefficient of
u1 · · · un in m1

n,k(2u1 + 1, . . . 2uk + 1, 2uk+1, . . . , 2un) is 1
12 (n− 1)! by Proposition 8. Thus the theorem is true

in genus one. �
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Remark. The identification of the coefficients Mg
n in the expansion of ω

g
n around xi = ∞ with Gromov-Witten

invariants raises the question of finding a similar geometric interpretation of Ng
n which is related to Mg

n

via Lemma 6. The Ng
n are much simpler and contain the essential information of the Mg

n and hence the
Gromov-Witten invariants.

A corollary of Theorem 1 is Theorem 2.

Proof of Theorem 2. For g = 0, 1, Theorem 1 allows us to identify

Mg
n,k =

n

∏
i=1

(bi + 1)!

〈
k

∏
i=1

τ2ui (ω)
n

∏
i=k+1

τ2ui−1(ω)

〉g

under the substitution bi = 2ui(+1), and hence their polynomial parts mg
n,k(b1, ..., bn) = pg

n,k(u1, ..., un)

defined in Propositions 8 and 12.

Proposition 8 gives the coefficient of bβ1
1 ...bβn

n = bβ in mg
n,k as vβ = 0 or vβ = 2−2g+3−n ∫

Mg,n
ψ

β1
1 ...ψβn

n since

y′(1) = 1 and y′(−1) = −1 in (19).

Hence the top coefficients cβ of uβ1
1 · · · u

βn
n which satisfy cβ = vβ · 23g−3+n are given by

(41) cβ = 2g
∫
Mg,n

ψ
β1
1 ...ψβn

n

for |β| = 3g− 3 + n. �

5. VIRASORO CONSTRAINTS

The Gromov-Witten invariants of P1 satisfy the following recursions for each k > 0 known as Virasoro
constraints:

(k+1)!〈[τk+1(1) + 2ck+1τk(ω)]τbS(ω)〉g −
n

∑
j=1

(k + bj + 1)!
bj!

〈τk+bj
(ω)τb1(ω)..τ̂bj

(ω)..τbn(ω)〉g

=
k−2

∑
m=0

(m + 1)!(k−m− 1)!
[
〈τm(ω)τk−m−2(ω)τbS(ω)〉g−1 + ∑

g1+g2=g

ItJ=S

〈τm(ω)τbI (ω)〉g1〈τk−m−2(ω)τbJ (ω)〉g2

]

for ck = 1 + 1/2 + ... + 1/k and τbK (ω) = ∏j∈K τbj
(ω).

In terms of the generating functions, the Virasoro constraints become:

(42) η
g
n+1(x, xS) = Ωg−1

n+2(x, x, xS) + ∑
g1+g2=g

ItJ=S

Ωg1
|I|+1(x, xI)Ω

g2
|J|+1(x, xJ)−

n

∑
i=1

dxdxi
(x− xi)2 Ωg

n(x, xS\i)

where non-stationary invariants are stored in the generating function

η
g
n+1(x, xS)dx2 := ∑

bi≥0

n

∏
j=1

(bj + 1)!x
−bj−2
j dxjdx2

[ ∞

∑
k=0

(k + 1)!x−k−2〈[τk+1(1) + 2ck+1τk(ω)]τbS(ω)〉g

−
n

∑
j=1

1
bj!

bj−1

∑
k=0

xbj−k−2〈τk(ω)τb1(ω)..τ̂bj
(ω)..τbn(ω)〉g

]
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A consequence of (7) is the following set of loop equations, also known as Virasoro constraints, satisfied by
the Eynard-Orantin invariants [9]. The loop equations express the fact that the sum over the fibres of x of
a combination of the Eynard-Orantin invariants cancels the poles at the branch points of x. Explicitly, the
following function Pg

n+1(x, zS) has no poles at the branch points of x:

Pg
n+1(x, zS)dx(z)2 = ∑

x(z)=x

[
ω

g−1
n+2(z, z, zS) + ∑

g1+g2=g

ItJ=S

ω
g1
|I|+1(z, zI)ω

g2
|J|+1(z, zJ)

]
(43)

or equivalently the right hand side vanishes to order two at each branch point of x. The sum of differentials
over fibres of x is to be understood via a common trivialisation of the cotangent bundle supplied by dx. The
statement of the loop equations is unchanged if we replace y(z) by yN(z) for N ≥ 6g− 4+ 2n. This is because

each ω
g′

n′ in the equation stabilises in this range, except for ω0
1(z). If yN(z) 7→ yN(z) + a(1− z2)N+1 then

ω0
1(z)ω

g
n+1(z, zS) 7→ ω0

1(z)ω
g
n+1(z, zS) + (1− z2)2h(z) for h analytic at z = ±1 since a(1− z2)N+1 cancels

the poles of ω
g
n+1. Hence Pg

n+1(x, zS)dx(z)2 7→ Pg
n+1(x, zS)dx(z)2 + z2h(z)dx(z)2 which still has no poles at

z = ±1. The proof of (43) uses the fact that the recursion (7) is retrieved from

0 = ∑
α

Res
z=α

K(z0, z) · Pg
n+1(x, zS)dx(z)2

together with the identity ∑x(z)=x ω
g
n(z, zS) = 0 (which has the effect of converting some z to ẑ.)

For x = z + 1/z, the involution that swaps branches is given by ẑ = 1/z and

ω
g
n(1/z, z1) = −ω

g
n(z, z1) + δg,0δn,2Ω0

2(x, x1).

In particular

Pg
n+1(x, zS)dx(z)2 = 2

[
ω

g−1
n+2(z, z, zS) + ∑

g1+g2=g

ItJ=S

ω
g1
|I|+1(z, zI)ω

g2
|J|+1(z, zJ)−

n

∑
i=1

dxdxi
(x− xi)2 ω

g
n(z, zS\i)

]

= 2
[

Ωg−1
n+2(x, x, xS) + ∑

g1+g2=g

ItJ=S

Ωg1
|I|+1(x, xI)Ω

g2
|J|+1(x, xJ) +

n

∑
i=1

dxdxi
(x− xi)2 Ωg

n(x, xS\i)

]
.

Thus the Virasoro constraints and the loop equations agree if η
g
n+1(x, xS) has no poles at the branch points of

x. The Virasoro constraints enable one to calculate non-stationary invariants from stationary invariants but
does not determine the stationary invariants [16]. The Eynard-Orantin recursions determine the stationary
invariants by assembling into a generating function maps of all degrees. This is necessary to make sense of
residues away from the point of expansion.

6. A MATRIX INTEGRAL PROOF OF THEOREM 1 FOR ALL GENUS

The Eynard-Orantin invariants come from matrix integrals. In good cases, the expansion of the invariants ω
g
n

around {xi = ∞} coincides with the expectation value with respect to a measure on the space of Hermitian
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matrices of the product of resolvents

Wg
n (x1, . . . , xn) :=

〈 n

∏
i=1

Tr
1

xi −M

〉g

conn
.

The right hand side denotes the connected genus g part of the perturbative expansion of the integral which is
expanded over a set of fatgraphs that naturally have genus. The space of matrices may be a variant of the
space of Hermitian matrices.

Plancherel Measure. There is a natural measure on partitions given by the Plancherel measure, using the
dimension of irreducible representations of SN , labeled by partitions λ and satisfying ∑|λ|=N dim(λ)2 = N!.
We can use Eynard-Orantin techniques to study expectation values of the partition function

ZN(Q) = ∑
l(λ)≤N

(
dim λ

|λ|!

)2
Q2|λ|.

The asymptotic expansion of ZN as Q→ ∞

ln ZN(Q) = ∑
g

Q2−2gFg

can be solved using the normalisation of the Plancherel measure. For N → ∞, exp(−Q2)ZN(Q)→ 1 so

Fg = δg,0.

Expectation values of ZN can be generated by the spectral curve [7]

C =

x = z + 1/z

y = ln z

In particular, we will prove that if Mg
n(b1, . . . , bn) are the coefficients of the Eynard-Orantin invariant ω

g
n in

the expansion about x = ∞, then the Mg
n’s can be expressed as stationary Gromov-Witten invariants.

Proof of theorem 1. We use the expression of Okounkov and Pandharipande (30) that relates Gromov-Witten
invariants to the Plancherel measure:〈 n

∏
i=1

τbi
(ω)

〉•
d = ∑

|λ|=d

(dim λ

d!

)2 n

∏
i=1

pbi+1(λ)

(bi + 1)!

for

pk(λ) =
∞

∑
i=1

[
(λi − i +

1
2
)k − (−i +

1
2
)k]+ (1− 2−k)ζ(−k).

In [7], it is shown that the Plancherel measure can be written in the large N limit as a matrix integral:

(44) ∑
l(λ)≤N

(dim λ

|λ|!

)2
Q2|λ| =

QN2

N!

∫
HN(C)

e−Qtr(V(X))dX

where QV(x) = ln(Γ(Qx))− ln(Γ(−Qx)) + iπQx + ln(Qx)− Qx ln Q + QA0 for some constant A0, C is a
contour in the complex plane surrounding all of the positive integers and HN(C) is the set of normal N × N
matrices whose eigenvalues lie on the contour C.

HN(C) =
{

X
∣∣∣X = UTΛU, UUT= IdN , Λ = diag(λ1, . . . , λN), λi ∈ C

}
.
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It was also found that this matrix model has a rational spectral curve given by

(45) C̃ =

x = N−1/2
Q + z + 1/z

y = ln(z).

Thus the M̃g
n’s of C̃ correspond to expectation values in this integral, or equivalently expectation values of

the Plancherel measure. If hi represent the π/4 rotated partitions, hi = λi − i + N, then

Wg
n (x1, . . . , xn) :=

〈 n

∏
i=1

∑
j

1
xi − hj/Q

〉g

conn

=
∞

∑
b1,...,bn=0

M̃g
n(b1, . . . , bn)

xb1+1
1 · · · xbn+1

n

=
∞

∑
b1,...,bn=0

1

xb1+1
1 · · · xbn+1

n

[
∑

l(λ)≤N

(dim λ

|λ|!

)2
Q2|λ|−∑ bi

n

∏
i=1

∑
j

hki
j

]g

conn

=
∞

∑
b1,...,bn=0

1

xb1+1
1 · · · xbn+1

n

[
∑

l(λ)≤N

(dim λ

|λ|!

)2
Q2|λ|−∑ bi

n

∏
i=1

∑
j
(λj − j + N)bi

]g

conn
.

Since Eynard-Orantin invariants don’t change when x changes by a constant, we can consider the curve

(46) C2 =

x′ = z + 1/z

y = ln(z).

The ω
g
n will be the same, but the expansion around x′ = ∞ will be different, and we get new Mg

n’s:

Wg
n (x1, . . . , xn) =

〈 n

∏
i=1

∑
j

1
x′i + (N − 1/2)/Q− hj/Q

〉g

conn

=
∞

∑
b1,...,bn=0

Mg
n(b1, . . . , bn)

x′b1+1
1 · · · x′bn+1

n

where

Mg
n(b1, . . . , bn) =

[
∑

l(λ)≤N

(dim λ

|λ|!

)2
Q2|λ|−b1−···−bn

n

∏
i=1

∑
j
(hj − N +

1
2
)bi
]g

conn

=
[
∑
d

Q2d−∑ bi ∑
|λ|=d

(dim λ

|λ|!

)2 n

∏
i=1

∑
j
(λj − j +

1
2
)bi
]g

conn

=
[
∑
d

Q2d−∑ bi ∑
|λ|=d

(dim λ

|λ|!

)2 n

∏
i=1

(pbi
(λ) + ∑

j
(−j +

1
2
)bi − (1− 2bi )ζ(−bi))

]g

conn

=
[
∑
d

Q2d−∑ bi
n

∏
i=1

bi!
〈 n

∏
i=1

τbi−1(ω)
〉•

d

]g

conn
+ 0.

Using the fact that

∞

∑
j=1

∞

∑
k=0

(−j + 1
2 )

kzk

k!
=

∞

∑
j=1

ez(−j+ 1
2 ) = e

z
2 (

1
1− e−z − 1) =

2
sinh(z/2)

=
∞

∑
k=0

(1− 2−k)ζ(−k)
k!

zk
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and comparing coefficients. Note that these extra components of pk are only used in [14] so that evaluations
can be made for finite partitions without the need to evaluate infinite series. In an expectation value they will
have no effect. Since 2g− 2 + 2d = ∑n

i=1(bi − 1) defines the degree, taking the genus g component involves
taking only one term, and we extract the coefficient of Q2−2g−n. The connected part then gives connected
Gromov-Witten invariants:

Mg
n(b1, . . . , bn) =

n

∏
i=1

bi!
〈 n

∏
i=1

τbi−1(ω)
〉g.

�

7. FORMULAE

The following values for Ng
n,k were computed with the method of [18] and using lemma 7 we can compute

the corresponding mg
n,k’s.

g n k Ng
n,k(b1, ..., bn) mg

n,k(b1, . . . , bn)

0 3 0,2 0 0

0 3 1,3 1 1

1 1 0 0 0

1 1 1 1
48 (b

2
1 − 3) 1

24 (b1 − 2)

0 4 0 1
4 (b

2
1 + b2

2 + b2
3 + b2

4)
1
2 (b1 + b2 + b3 + b4)

0 4 1,3 0 0

0 4 2 1
4 (b

2
1 + b2

2 + b2
3 + b2

4 − 2) 1
2 (b1 + b2 + b3 + b4 − 2)

0 4 4 1
4 (b

2
1 + b2

2 + b2
3 + b2

4)
1
2 (b1 + b2 + b3 + b4 − 2)

1 2 0 1
384 (b

2
1 + b2

2 − 8)(b2
1 + b2

2)
1
48 (b

2
1 + b2

2 + b1b2 − 3(b1 + b2))

1 2 1 0 0

1 2 2 1
384 (b

2
1 + b2

2 − 6)(b2
1 + b2

2 − 2) 1
48 (b

2
1 + b2

2 + b1b2 − 4(b1 + b2) + 5)

1 3 0,2 0 0

1 3 1 1
4608

(
∑3

i=1 b6
i −20b4

i +94b2
i + 6 ∑i 6=j b2

i b2
j (b

2
i − 5) 1

96
(

∑3
i=1 b3

i −7b2
i +14bi + ∑i 6=j bibj(2bi − 5)

+12b2
1b2

2b2
3 + 3b4

1 − 63b2
1 − 15

)
+2b1b2b3 + b2

1 − 5b1 − 4
)

1 3 3 1
4608

(
∑3

i=1 b6
i −17b4

i +103b2
i + 6 ∑i 6=j b2

i b2
j (b

2
i − 5) 1

96
(

∑3
i=1 b3

i −8b2
i +23bi + 2 ∑i 6=j bibj(bi − 3)

+12b2
1b2

2b2
3 − 129

)
+2b1b2b3 − 26

)
2 1 0 0 0

2 1 1 1
216335 (b

2
1 − 1)2(5b4

1 − 186b2
1 + 1605) 1

29325 (b− 1)2(b− 4)(5b− 22)

3 1 0 0 0

3 1 1 1
22536527 (b

2−1)2(b2−3)2(5b6−649b4+27995b2−394695) 1
2143457 (b−1)2(b−3)2(b−6)(35b2−462b+1528)

We can use theorem 1, the above table and the divisor equation (20) to compute the following expressions for
stationary Gromov-Witten invariants of P1.
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Genus zero two-point invariants:

〈τ2u1(ω)τ2u2(ω)〉g=0 =
1

u1!2u2!2
1

(u1 + u2 + 1)

〈τ2u1−1(ω)τ2u2−1(ω)〉g=0 =
u1u2

u1!2u2!2
1

(u1 + u2)

Genus zero three-point invariants:

〈τ2u1(ω)τ2u2(ω)τ2u3(ω)〉g=0 =
1

u1!2u2!2u3!2

〈τ2u1(ω)τ2u2−1(ω)τ2u3−1(ω)〉g=0 =
u2u3

u1!2u2!2u3!2

Genus zero four-point invariants:

〈
4

∏
i=1

τ2ui (ω)〉g=0 =
1

∏4
i=1 ui!2

(u1 + u2 + u3 + u4 + 1)

〈
2

∏
i=1

τ2ui (ω)
4

∏
i=3

τ2ui−1(ω)〉g=0 =
u3u4

∏4
i=1 ui!2

(u1 + u2 + u3 + u4)

〈
4

∏
i=1

τ2ui−1(ω)〉g=0 =
4

∏
i=1

ui
ui!2

(u1 + u2 + u3 + u4)

Repeatedly applying the divisor equation gives the even, genus zero n point invariants:

〈
n

∏
i=1

τ2ui (ω)〉g=0 =
1

∏n
i=1 ui!2

(
n

∑
i=1

ui + 1)n−3

Genus one one-point invariants:

〈τ2u(ω)〉g=1 =
1

24u!2
(2u− 1)

Genus one two-point invariants:

〈τ2u1(ω)τ2u2(ω)〉g=1 =
1

24u1!2u2!2
(2u2

1 + 2u2
2 + 2u1u2 − u1 − u2)

〈τ2u1−1(ω)τ2u2−1(ω)〉g=1 =
u1u2

24u1!2u2!2
(2u2

1 + 2u2
2 + 2u1u2 − 3u1 − 3u2)

Genus one three-point invariants:

〈τ2u1(ω)τ2u2(ω)τ2u3(ω)〉g=1 =
1

24 ∏3
i=1 ui!2

( 3

∑
i=1

2u3
i−u2

i + ∑
i 6=j

uiuj(4ui − 1) + 4u1u2u3

)

〈τ2u1(ω)τ2u2−1(ω)τ2u3−1(ω)〉g=1 =
u2u3

24 ∏3
i=1 ui!2

( 3

∑
i=1

2u3
i − 5u2

i + 3ui + ∑
i 6=j

uiuj(4ui − 3)

+ 2u2
1 − 3u1 − 2u2u3 + 4u1u2u3

)
Genus two one-point invariants:

〈τ2u(ω)〉g=2 =
1

27325u!2
u2(2u− 3)(10u− 17)
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Genus three one-point invariants:

〈τ2u(ω)〉g=3 =
1

2103457u!2
u2(u− 1)2(2u− 5)(140u2 − 784u + 1101).
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