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ABSTRACT. We represent stationary descendant Gromov-Witten invariants of projective space, up to explicit
combinatorial factors, by polynomials. One application gives the asymptotic behaviour of large degree behaviour of
stationary descendant Gromov-Witten invariants in terms of intersection numbers over the moduli space of curves.
We also show that primary Gromov-Witten invariants are ”virtual” stationary descendants and hence the string
and divisor equations can be understood purely in terms of stationary invariants.
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1. INTRODUCTION

Let X be a projective algebraic variety and (C, x1, . . . , xn) a connected smooth curve of genus g with n distinct
marked points. For β ∈ H2(X, Z) the moduli space of mapsMg

n(X, β) consists of morphisms

π : (C, x1, . . . , xn)→ X

satisfying π∗[C] = β quotiented by isomorphisms of the domain C that fix each xi. The moduli space has a
compactificationMg

n(X, β) given by the moduli space of stable maps: the domain C is a connected nodal
curve; the distinct points {x1, . . . , xn} avoid the nodes; any genus zero irreducible component of C with
fewer than three distinguished points (nodal or marked) must not be collapsed to a point; any genus one
irreducible component of C with no marked point must not be collapsed to a point. The moduli space of
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stable maps may have irreducible components of different dimensions but its expected or virtual dimension
is

(1) dimMg
n(X, β) = 〈c1(X), β〉+ (dim X− 3)(1− g) + n.

Any cohomology class γ ∈ H∗(X, Z) pulls back to a cohomology class ev∗i (γ) in H∗(Mg
n(X, β), Q) via

the evaluation map evi : Mg
n(X, β) −→ X, evi(π) = π(xi) for i = 1, . . . , n. Further cohomology classes

ψi ∈ H2(Mg
n(X, β), Q) are obtained from the first Chern class of the tautological line bundle Li over

Mg
n(X, β) with fibre given by the cotangent bundle of T∗xi

C over the ith marked point.

Define the descendant Gromov-Witten invariants of X by:

(2)

〈
n

∏
i=1

τmi (γi)

〉g

X,β

=
∫
[Mg

n(X,β)]vir

n

∏
i=1

ψ
mi
i ev∗i (γi).

The integration is against the virtual fundamental class, [Mg
n(X, β)]vir and (22) is defined to be zero unless

∑n
i=1 mi + deg γi = 〈c1(X), β〉+ (dim X− 3)(1− g) + n. We may drop g, d or X from the notation when it is

understood.

This paper will be principally concerned with primary Gromov-Witten insertions τ0(γi) where mi = 0 and γi

is arbitrary and stationary insertions τm(γi) where γi is Poincare dual to a point. For a stationary insertion
we usually write τmi (pt) in place of τm(γi) to emphasise that the ith point is stationary, i.e. it must map to a
given point in X.

Restrict to X = PN for N > 0 and let ω ∈ H2(PN , Q) be the generator of H∗(PN , Q) so ωN is the
Poincare dual class of a point. The degree of a map C → PN is simply an integer d ∈ Z ∼= H2(P

N).
Also c1(P

N) = (N + 1)ω hence dimMg
n(P

N , d) = (N + 1)d + (N − 3)(1− g) + n and this gives rise to
mod N + 1 dependence of the invariants.

Primary Gromov-Witten invariants and 1-point descendant Gromov-Witten invariants are fundamental via
various reconstruction theorems for Gromov-Witten invariants [55, 77, 88]. In this paper we take a different
point of view and show that the stationary Gromov-Witten invariants are somehow fundamental and par-
ticularly well-behaved. They have a nice polynomial form which allows closed form expressions and they
satisfy recursions (without using non-stationary Gromov-Witten invariants.) They take the position as the
fundamental invariants since the primary invariants can be represented as virtual stationary invariants,

τ0(ω
k) = ”τk−N(pt)”, k = 0, ..., N.

The negative stationary insertion is explained in Theorem 33. With this viewpoint, the divisor and string
equations, which usually require a non-stationary term, become relations between stationary invariants
alone.

Given m, N ∈ {1, 2, 3, ...}, define

cN(m) = dm/Ne · cN(m− 1), cN(0) = 1

where the ceiling function dre is the smallest integer not less than r. So cN(m) generalises m! = c1(m). For
m > 0, an explicit formula is cN(m) = dm/Ne!N dm/Nem−Ndm/Ne.

The stationary Gromov-Witten invariants of PN have polynomial behaviour as follows.
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Theorem 1. For 2g− 2 + n > 0 and mi ≥ 3g− 1, i ∈ {1, ..., n} define

(3) p(N)
g (m1, . . . , mn) :=

〈
n

∏
i=1

τmi (pt)

〉g

PN

·
n

∏
i=1

cN+1(mi).

Then p(N)
g (m1, . . . , mn) is a degree 3g− 3 + n symmetric quasi-polynomial, in the sense that it is polynomial on each

coset of the sublattice (N + 1)Zn ⊂ Zn. The top coefficients c(N)
β of mβ1

1 · · ·m
βn
n are given by

(4) c(N)
β = (N + 1)3−2g−n

∫
Mg,n

ψ
β1
1 ...ψβn

n

for |β| = 3g− 3 + n.

Remark. We expect to be able to drop the restriction mi ≥ 3g− 1. This is true for g = 0 since mi are necessarily
non-negative and the theorem can be strengthened so that for g = 1 the restriction mi ≥ 3g− 1 can also be
dropped. For g = 2 it can be relaxed to mi ≥ 2.

By the dimension constraint, p(N)
g (m1, . . . , mn) is non-trivial only when ∑ mi ≡ 2(2g− 2 + n) mod N + 1.

The genus zero 1 and 2-point functions p0
1(m) and p0

2(m1, m2) defined analogously to (33) in Section 22 can be
thought of as degree -2 and -1 quasi-polynomials, respectively.

Corollary 2. For 2g− 2 + n > 0, the stationary Gromov-Witten invariants of PN behave asymptotically as

(5)

〈
n

∏
i=1

τmi (pt)

〉g

PN

∼ (N + 1)3−2g−n

∏n
i=1 cN+1(mi)

∑
|β|=3g−3+n

mβ1
1 · · ·m

βn
n

∫
Mg,n

ψ
β1
1 ...ψβn

n .

The quasi-polynomial p(N)
g (m1, ..., mn) only makes enumerative sense when its entries satisfy mi ≥ 3g− 1.

As mentioned above, we expect evaluation at 0 ≤ mi < 3g− 1 to give the expected stationary invariants.
Furthermore, evaluation at the negative integers k− N for k = 0, ..., N − 1, makes sense and one can give an
enumerative interpretation as follows.

Theorem 3. For 2g− 2 + n ≥ 0
τ0(ω

k) = ”τk−N(pt)”, k = 0, ..., N

via evaluation of the quasi-polynomial p(N)
g (m1, ..., mn) at negative integers. More precisely:

(6)

〈
s

∏
j=1

τ0(ω
kj)

n

∏
i=1

τmi (pt)

〉g

PN

·
n

∏
i=1

cN+1(mi) = p(N)
g (k1 − N, ..., ks − N, m1, ..., mn).

The Gromov-Witten invariants are not quasi-polynomial in non-stationary descendant variables. A counter-
example is given in Section 22.

The divisor and string equations [1414] satisfied by stationary Gromov-Witten invariants are:〈
τ0(ω)

n

∏
i=1

τmi (pt)

〉g

d

= d

〈
n

∏
i=1

τmi (pt)

〉g

d

divisor equation

〈
τ0(1)

n

∏
i=1

τmi (pt)

〉g

d

=
n

∑
i=1

〈
τm1(pt) · · · τmi−1(pt) · · · τmn(pt)

〉g
d string equation

where the term τmi−1(pt) vanishes if mi = 0. They necessarily involve the non-stationary terms τ0(ω) and
τ0(1). Using Theorem 33 to interpret τ0(ω) = τ1−N(pt) and τ0(1) = τ−N(pt) we get relations involving only
stationary terms.
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Corollary 4. The divisor and string equations can be expressed entirely in terms of stationary invariants.

The N = 0 and N = 1 cases are both interesting and important. The N = 0 case does not correspond directly
to target space the point P0 which admits only degree 0 maps. Rather, we introduce a degree d by allowing
d unlabeled points on the domain curves. This case is important because it is used to calculate the top
degree terms of p(N)

g (m1, . . . , mn) which gives the large degree asymptotic behaviour of the Gromov-Witten

invariants of PN . It also shows that the top degree terms of p(N)
g (m1, . . . , mn) are in fact polynomial rather

than quasi-polynomial. The N = 1 case was studied in [1010] where the quasi-polynomial behaviour and large
degree asymptotic behaviour was conjectured. Understanding this is part of the motivation for this paper.

Following [1010], assemble the (connected) stationary Gromov-Witten invariants of P1 into the generating
function multidifferential

Ωg
n(x1, ..., xn) = ∑

~m

〈
n

∏
i=1

τmi (pt)

〉g

P1

·
n

∏
i=1

(mi + 1)!x−mi−2
i dxi.

Theorem 5. For 2g− 2 + n > 0, Ωg
n(x1, ..., xn) is analytic around xi = ∞ and extends to a meromorphic multidiffer-

ential on the compact Riemann surface defined by x = z + 1/z. It has poles at zi = ±1 of order 6g− 4 + 2n in each
variable and asymptotic behaviour

Ωg
n ∼ s6−6g−3n 1

25g−5+2n ∑
|β|

n

∏
i=1

(2βi + 1)!
βi!

dti

t2βi+2
i

〈τβ1 ...τβn〉g,

for the local variable zi = ±1 + s · ti.

In particular, Theorem 55 proves that the generating function Ωg
n(x1, ..., xn) for stationary Gromov-Witten

invariants of P1 is algebraic and moreover rational. This was conjectured in [1010] along with the asymptotic
behaviour at the poles and proven there for g = 0 and 1 as part of the stronger result that the multidifferentials
can be defined in another way: the genus 0 and 1 Gromov-Witten invariants of P1 coincide with the Eynard-
Orantin invariants [22, 33] of a particular Riemann surface and are recursively calculable. Conjecturally the
stronger result holds for general g generating function multidifferentials. In particular, the generating
function multidifferentials for stationary Gromov-Witten invariants of P1 are conjecturally known. For
example, the genus two 1-point generating function differential has been checked numerically to coincide
with the known differential. Moreover, the quasi-polynomial applies to all mi not just those satisfying
mi ≥ 3g− 1. See Section 3.13.1 for more details.

Section 22 contains the topological recursion relations satisfied quite generally by Gromov-Witten invariants,
and the N = 0 case which consists of intersection theory on the moduli space of curves. These are used to
prove Theorem 11 , Corollary 22 and Theorem 33. In Section 33 we specialise to the N = 1 case and study the
string and divisor equations for general N. Explicit formulae appear in Section 44.

Acknowledgements. I would like to thank the Department of Mathematics at LMU, Munich for its hospitality
during the second half of 2011 during which this research was carried out.
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2. POLYNOMIAL BEHAVIOUR OF GROMOV-WITTEN INVARIANTS

We will need the following recursion relations satisfied by Gromov-Witten invariants of any target space. For
γi ∈ H∗(X),〈

τ0(1)
n

∏
i=1

τmi (γi)

〉g

d

=
n

∑
i=1

〈
τm1(γ1) · · · τmi−1(γi) · · · τmn(γn)

〉g
d string equation(7)

〈
τ0(ω)

n

∏
i=1

τmi (γi)

〉g

d

= d 〈τm1(γ1) · · · τmn(γn)〉gd divisor equation(8)

+
n

∑
i=1

〈
τm1(γ1) · · · τmi−1(γi ∪ω) · · · τmn(γn)

〉g
d

where d satisfies (N + 1)d + (N − 3)(1− g) + n = ∑n
i=1(mi + deg γi).

The following standard notation is used for expressing the topological recursion relations below.〈〈
n

∏
i=1

τmi (γi)

〉〉g

=

〈
n

∏
i=1

τmi (γi) exp ∑
k,r

tr
kτk(γr)

〉g

=
∞

∑
s=0

1
s! ∑

~k,~r

s

∏
j=1

t
rj
kj

〈
n

∏
i=1

τmi (γi)
s

∏
j=1

τkj
(γrj)

〉g

.

Let {Tj} be a basis for H∗(X) and let {T j} ⊂ H∗(X) be the dual basis obtained via Poincare duality. Inside
intersection brackets, we often identify Tj with its pull-back to the moduli space, i.e. we write Tj for τ0(Tj).
We follow the usual convention of summing over any index that appears twice in a formula as a subscript
and superscript.

For γi ∈ H∗(X) a genus zero topological recursion (TRR) is [1414]

(9)
〈〈

τm1+1(γ1)τm2(γ2)τm3(γ3)
〉〉0

= ∑
j

〈〈
τm1(γ1)Tj

〉〉0
〈〈

T jτm2(γ2)τm3(γ3)
〉〉0

.

For any g > 0, a topological recursion relation [11, 44, 99] is:

(10)
〈〈

τm+3g−1(γ)
〉〉g

= ∑
α+β=3g−2

〈〈τα(Tk)〉〉g
〈〈

Tkτm(γ)
〉〉

(β)

where the function
〈〈

T jτm(γ)
〉〉

(β) involves only genus zero invariants. It is defined by

〈〈
T jτm(γ)

〉〉
(β)

=
3g−1

∑
k=1

(−1)k−1 ∑
(m1, ..., mk)

k + ∑
i>0

mi = β + 1

〈〈
Tak τmk+m(γ)

〉〉0
k−1

∏
i=1
〈〈Tai τmi (T

ai+1)〉〉0 , a1 = j

and can also be obtained recursively by〈〈
T jτm(γ)

〉〉
(β)

=
〈〈

T jτm+1(γ)
〉〉

(β−1)
−
〈〈

Tiτm(γ)
〉〉

0

〈〈
TiT j

〉〉
(β−1)

with initial condition 〈〈· · · 〉〉(0) = 〈〈· · · 〉〉
0.

For X = PN , we take Tj = ω j, T j = ωN−j. Note that in this case the dimension constraint uniquely chooses a
Tj in each bracket so that the sum over TjT j consists of a single term.

We prove Theorem 11 by induction. First we calculate the genus zero 1-point and 2-point functions which are
required as initial conditions in the induction.
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Genus zero one-point and two-point descendant invariants.

The 1-point genus zero stationary invariants can be determined via the genus zero topological recursion
relation (99). They are

〈τ(N+1)d−2(pt)〉0 =
1

d!N+1

or equivalently

〈τm(pt)〉0 =
1

cN+1(m)
· 1

d2 , d =
m + 2
N + 1

for m + 2 ≡ 0 mod N + 1 and 0 otherwise.

For the 2-point invariants we need to also allow non-stationary terms.

Lemma 1. The genus zero two-point stationary descendant invariants are given by

〈τm1(pt)τm2(pt)〉 = 1
cN+1(m1)cN+1(m2)

· 1
d

, d = 1 +
m1 + m2

N + 1

and primary and stationary insertions together are given by

〈τm(pt)τ0(ω
k)〉 = 1

cN+1(m)
· 1

d
=

1
cN+1(m + 1)

, d =
m + k + 1

N + 1

for m1 + m2 ≡ 0 mod N + 1 and m + k + 1 ≡ 0 mod N + 1 and they vanish otherwise.

Note that genus zero two-point primary invariants vanish because the stable maps necessarily have degree
zero and there are no genus zero 2-pointed degree zero stable maps.

Proof. The proof is by induction. We first prove the case involving primary insertions by induction on k. The
initial case in the induction is the stationary case k = N, so m ≡ 0 mod N + 1. Note that in each case below
the degree is positive and hence we can apply the divisor equation.

〈τm(pt)τ0(ω
N)〉d = 〈τm(pt)τ0(pt)〉d =

1
d
〈τm(pt)τ0(pt)τ0(ω)〉d divisor equation

=
1
d
〈τm−1(pt)τ0(1)〉d−1〈τ0(pt)τ0(pt)τ0(ω)〉1 TRR (99)

=
1
d
〈τm−1(pt)τ0(1)〉d−1

=
1
d
〈τm−2(pt)〉d−1 string equation

=
1
d
· 1

cN+1(m− 2)
· 1
(d− 1)2

=
1
d
· 1

cN+1(m)

cN+1(m)

cN+1(m− 2)
=

⌈
m

N + 1

⌉ ⌈
m− 1
N + 1

⌉
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For k < N and m + k + 1 ≡ 0 mod N + 1,

〈τm(pt)τ0(ω
k)〉 = 1

d
〈τm(pt)τ0(ω

k)τ0(ω)〉 divisor equation

=
1
d
〈τm−1(pt)τ0(ω

k+1)〉〈τ0(ω
N−k−1)τ0(ω

k)τ0(ω)〉 TRR (99)

=
1
d
〈τm−1(pt)τ0(ω

k+1)〉

=
1
d
· 1

cN+1(m− 1)
· 1

d
inductive hypothesis

=
1
d
· 1

cN+1(m)
cN+1(m) =

⌈
m

N + 1

⌉
cN+1(m− 1)

as required. The stationary case:

〈τm1(pt)τm2(pt)〉d =
1
d
〈τm1(pt)τm2(pt)τ0(ω)〉d divisor equation

=
1
d
〈τm1−1(pt)τ0(ω

k)〉d1〈τ0(ω
N−k)τm2(pt)τ0(ω)〉d2 TRR (99)

=
d2

d
〈τm1−1(pt)τ0(ω

k)〉d1〈τ0(ω
N−k)τm2(pt)〉d2 divisor equation

=
d2

d
· 1

cN+1(m1 − 1)
· 1

d1
· 1

cN+1(m2)
· 1

d2
inductive hypothesis

=
1
d
· 1

cN+1(m1)
· 1

cN+1(m2)

cN+1(m1)

cN+1(m1 − 1)
=

⌈
m1

N + 1

⌉
As already mentioned, in each application of the TRR, the choice of ω j is uniquely determined by dimension
constraints. �

The first part of Theorem 11 is an immediate consequence of the following more general statement in which
the stationary insertions vary while all others are held fixed.

Theorem 6. For 2g− 2 + n + s > 0 and mi ≥ 3g− 1, i = 1, ..., n define

(11) q(N)
g,~κ (m1, . . . , mn) :=

〈
s

∏
j=1

τκj(ω
kj)

n

∏
i=1

τmi (pt)

〉g

·
n

∏
i=1

cN(mi)

for~κ = (κ1, k1, κ2, ..., ks). Then q(N)
g,~κ (m1, . . . , mn) is a degree 3g− 3 + n + s symmetric quasi-polynomial in mi.

Proof. When n = 0

q(N)
g,~κ :=

〈
s

∏
j=1

τκj(ω
kj)

〉g

is a constant and there is nothing to prove. This is the initial case in an induction on the genus, the number of
insertions and the number of stationary insertions, respectively. The main tool is the topological recursion
relations for Gromov-Witten invariants.

The genus zero 1-point and 2-point functions described above allow us to define

p0
2(m1, m2) :=

N + 1
m1 + m2 + N + 1

, p0
1(m) :=

(N + 1)2

(m + 2)2 .

Notice that these also have the form (1111) if we allow degree -2 and -1 ”polynomials”.
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If there are no descendant stationary terms, i.e. mi = 0 for all i then as already mentioned there is nothing to
prove since both sides are constant. So we may assume that m1, say, is non-zero.

Genus 0. In the genus 0 case n + s ≥ 3 so we write
s

∏
j=1

τκj(ω
kj)

n

∏
i=1

τmi (pt) = τm1(pt)τa2(ω
b2)τa3(ω

b3)τUτV

where τai (ω
bi ) are two factors chosen from ∏s

j=1 τ0(ω
kj)∏i 6=1 τmi (pt), and τUτV contains all other factors.

Apply the genus zero TRR (99)

(12)

〈
s

∏
j=1

τκj(ω
kj)

n

∏
i=1

τmi (pt)

〉
= ∑

U

〈
τ0(ω

kU )τm1−1(pt)τU

〉 〈
τ0(ω

N−kU )τa2(ω
b2)τa3(ω

b3)τV

〉
where, as usual, the choice of U (and hence V) uniquely determines kU .

Each term in the right hand side of (1212) is simpler in the induction—either there are fewer than n+ s insertions
in each factor, or there is the term

(13)
〈

τ0(ω
k)τm1−1(pt)

〉〈
τ0(ω

N−k)
s

∏
j=1

τκj(ω
kj)∏

i 6=1
τmi (pt)

〉
which has n + s insertions in the second factor, though with only n− 1 stationary descendants.

The initial cases consist either of no stationary descendants, where the theorem trivially holds, or the genus
zero two-point function whose formula is given in Lemma 11.

Hence, by induction we can assume that each term is of the form (1111), where we allow the degree -2 and -1
”polynomials” discussed above.

By the inductive assumption, any summand of (1212) satisfies〈
τ0(ω

kU )τm1−1(pt)τU

〉 〈
τ0(ω

N−kU )τa2(ω
b2)τa3(ω

b3)τV

〉
=

n

∏
i=1

1
cN+1(mi)

·
⌈

m1

N + 1

⌉
q0
~κ1,|I1|(mI1)q

0
~κ2,|I2|(mI2)

where #~κ1 + #~κ2 = s + 2 (for #~κi (half) the number of components of ~κi), I1 t I2 = {1, ..., n} and we have used
1/cN+1(m1 − 1) = dm1/(N + 1)e /cN+1(m1).

If neither factor is a genus zero two-point function then the three factors
⌈ m1

N+1
⌉

q0
~κ1,|I1|

(mI1)q
0
~κ2,|I2|

(mI2) are
quasi-polynomials of respective degrees 1, |I1|+ #~κ1 − 3, |I2|+ #~κ2 − 3 so their product is a quasi-polynomial
of degree

1 + |I1|+ #~κ1 − 3 + |I2|+ #~κ2 − 3 = n + s− 3

as required.

The summand (1313) requires special consideration. Apply Lemma 11 to the two-point factor
〈

τ0(ω
k)τm1−1(pt)

〉
so d = m1+k

N+1 =
⌈ m1

N+1
⌉

and〈
τ0(ω

k)τm1−1(pt)
〉
=

1
cN+1(m1 − 1)

· 1
d
=

⌈ m1
N+1

⌉
cN+1(m1)

· 1
d
=

1
cN+1(m1)

.

The factor
〈

τ0(ω
N−k)∏s

j=1 τκj(ω
kj)∏i 6=1 τmi (pt)

〉
= ∏i 6=1

1
cN+1(mi)

× degree n + s− 3 quasi-polynomial so
the summand has the required form and the theorem is proven for genus 0.
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Genus g > 0. We assume m1 ≥ 3g− 1 and write
s

∏
j=1

τκj(ω
kj)

n

∏
i=1

τmi (pt) = τm1(pt)τUτV

where we will sum over all factorisations τUτV = ∏s
j=1 τκj(ω

kj)∏i 6=1 τmi (pt).

Apply the genus g TRR (1010)

(14)

〈
s

∏
j=1

τ0(ω
kj)

n

∏
i=1

τmi (pt)

〉g

= ∑
α+β=3g−2

∑
U

〈
τ0(ω

kU )τm1+1−3g(pt)τU

〉
(β)

〈
τα(ω

N−kU )τV

〉g

Each term in the right hand side of (1414) is simpler in the induction—either it is genus 0 or there are fewer
than n + s insertions in each factor, or there are fewer than n descendant insertions.

The term
〈

τ0(ω
kU )τm1+1−3g(pt)τU

〉
(β)

consists of only genus zero invariants. It contains a 2-point term

involving τm1+1−3g+β(pt) which determines the degree of the following quasi-polynomial—-pull out the
quotients of cN+1(m1), as in the genus zero argument above, to get a quasi-polynomial q ~κ1,(β),|I1|

(mI1) of

degree −3 + |I1|+ #~κ1 + 1− 3g + β + 1 ≤ −3 + |I1|+ #~κ1 since β ≤ 3g− 2.

If all mi ≥ 3g− 1, by induction, each summand
〈

τ0(ω
kU )τm1+1−3g(pt)τU

〉
(β)

〈
τα(ωN−kU )τV

〉g
of (1414) fac-

torises into
n

∏
i=1

1
cN+1(mi)

·
⌈

m1

N + 1

⌉
q(N)

0,~κ1,(β)
(mI1)q

(N)
g,~κ2

(mI2)

and
⌈ m1

N+1
⌉

q(N)
0,~κ1,(β)

(mI1)q
(N)
g,~κ2

(mI2) is a quasi-polynomial of degree at most

(15) 1 + (−3 + |I1|+ #~κ1) + (3g− 3 + |I2|+ #~κ2) = 3g− 3 + n + s

since |I1|+ |I2| = n and #~κ1 + #~κ2 = s + 2. This also includes the special case involving the genus zero

2-point factor
〈

τ0(ω
k)τm1−1(pt)

〉0
= 1/cN+1(mi).

Hence the theorem is proven. �

Remarks. 1. For g = 1 a different genus one topological recursion relation〈〈
τm1+1(α1)

〉〉1
=
〈〈

τm1(α1)Tj
〉〉0

〈〈
T j
〉〉1

+
1

12

〈〈
TjT jτm1(α1)

〉〉0
.

can be used to drop the restriction mi ≥ 3g− 1. Getzler’s genus two topological recursion relation [66] can be
used to relax the restriction to mi ≥ 2 for g = 2.

2. Theorem 66 is essentially due to the topological recursion relations which are satisfied in general. Thus it
might be possible to generalise the theorem to other target spaces, such as Fano manifolds. The proof can
break down at the 2-point function part of the induction. For example it breaks down for non-stationary
Gromov-Witten invariants of PN . The following example shows non-polynomial behaviour of the non-
stationary invariants.
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Example. The non-stationary invariants are not quasi-polynomial in the descendant variables. Consider the
case of P1 for simplicity.

〈τm(1)τ0(pt)τ0(pt)〉 = 〈τm−1(1)τ0(1)〉 〈τ0(pt)τ0(pt)τ0(pt)〉 TRR

= 〈τm−2(1)〉 string eq

=
1
d2 (〈τm−2(1)τ0(pt)τ0(pt)〉 − 〈τm−3(pt)〉 − 〈τm−3(pt)τ0(pt)〉) divisor eq

=
1
d2

(
〈τm−2(1)τ0(pt)τ0(pt)〉 − 1

c2(m− 1)
− d− 1

c2(m− 1)

)
for d = dm/2e and we have used the 1-point and 2-point stationary formulae. Define

f (m) := 〈τm(1)τ0(pt)τ0(pt)〉 · c2(m)

then we have proven
f (m) = (1− 1/d) f (m− 2)− 1, d = dm/2e

and clearly f (m) is not quasi-polynomial in m.

2.1. The point P0. The dimension constraint in the N = 0 case is

(16) 3g− 3 + n + d =
n

∑
i=1

mi

which does not correspond directly to Gromov-Witten invariants with target P0 = {pt}. This is because all
maps to a point have degree d = 0 or equivalently the Gromov-Witten invariants of a point, 〈∏n

i=1 τmi 〉g, are

non-trivial only when 3g− 3 + n = ∑n
i=1 mi which constrains {mi}. This reflects the fact that PN is Fano

when N > 0 and it is Calabi-Yau when N = 0.

Nevertheless, the proof of Theorem 66 still applies to N = 0 and generates a family of polynomials (since the
mod N + 1 dependence is no longer a restriction when N = 0) in unconstrained variables mi. One introduces
a non-trivial degree d in this situation by allowing d extra unlabeled points on a curve.

Definition 1. For d ≥ 0, define〈
n

∏
i=1

τmi

〉g

d

:=
1
d!

∫
Mg

n+d

n

∏
i=1

ψ
mi
i =

〈
n

∏
i=1

τmi · exp τ0

〉g

=

〈〈
n

∏
i=1

τmi

〉〉g∣∣∣∣∣
~t=(1,0,0,...)

.

In particular, 〈∏n
i=1 τmi 〉

g
d is non-trivial only when the dimension constraint (1616) is satisfied, and as expected

〈∏n
i=1 τmi 〉

g
d=0 = 〈∏n

i=1 τmi 〉
g. The generating function is〈〈

n

∏
i=1

τmi

〉〉g

d

:=

〈
n

∏
i=1

τmi · exp τ0 · exp ∑
k

tkτk

〉g

=

〈
n

∏
i=1

τmi · exp ∑
k

t̃kτk

〉g

, t̃k = tk + δ1
k .

Lemma 2. 〈∏n
i=1 τmi 〉

g
d satisfies the topological recursion relations (99) and (1010).

Proof. This is immediate from the proofs of the topological recursion relations. The topological recursion
relations apply to the target X = {pt} and can be expressed using the generating function 〈〈∏n

i=1 τmi 〉〉
g.

Simply substituting t0 7→ t0 + 1 gives the result for the generating function 〈〈∏n
i=1 τmi 〉〉

g
d that includes degree.

We present the proof here.
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For I ⊂ {1, ..., n}, denote byMg
I
∼=Mg

|I| having points labeled by the subset I. For I1 t I2 = {1, ..., n} and
g1 + g2 = g define the boundary divisor

D(g1, I1|g2, I2) :=Mg1
{I1,0} ×M

g2
{I2,0} ↪→M

g
n

obtained by gluing the points labeled by {0} on each component to obtain a new stable curve. Define
D̂(g1, I1|g2, I2) ∈ H2(Mg

n, Q) to be the Poincare dual of D(g1, I1|g2, I2). Consider the forgetful map πI :
Mg

n →M
g
I for I ⊂ {1, ..., n}. Then for i ∈ I,

(17) ψi = π∗I ψi + ∑
I1 t I2 = {1, ..., n}

I2 ∩ I = {i}

D̂(g, I1|0, I2)

which follows from the simplest case

ψj = π∗I ψj + [̂sj], I = {1, ..., n− 1}

and the identification of the image of the jth section [sj] with D(g, I\{j}|0, {j, n}). See, Getzler [66].

Since ψi = 0 onM0
3, the relation (1717) expresses ψi overM0

n as a sum of boundary divisors by setting g = 0
and |I| = 3 so that π∗I ψi = 0. Multiply (1717) by ∏ ψ

mi
i and integrate overMg

n to get〈〈
τm1+1τm2 τm3

〉〉0
= ∑

j
〈〈τm1 τ0〉〉0 〈〈τ0τm2 τm3〉〉

0 ,

and further set~t = (1 + t0, t1, t2, ...) which shows 〈∏n
i=1 τmi 〉

0
d satisfies the topological recursion relation (99) as

required.

The proof that 〈∏n
i=1 τmi 〉

g
d satisfies the genus g topological recursion relation (1010) uses ψ3g−1 = 0 onMg

1
together with a pull-back formula for psi classes on the moduli space of pre-stable curves. The vanishing of
ψ3g−1 onMg

1 is simply due to the dimension constraint and is applied analogously to the property ψi = 0

used onM0
3 above. The moduli space of pre-stable curves includes genus 0 components with only two

distinguished components which we will not go into here. Instead we give a consequence that can be stated
over the moduli space of stable curves and found in [55].

(18)
〈〈

τm+3g−1
〉〉g

=
3g−1

∑
k=1

(−1)k−1 ∑
(m0, ..., mk)

k + ∑ mi = 3g− 1

〈〈τm0〉〉
g 〈〈τ0τm1〉〉

0 · · ·
〈〈

τ0τmk−1

〉〉0 〈〈
τ0τmk+m

〉〉0 .

Set~t = (1 + t0, t1, t2, ...) and define

〈〈τ0τm〉〉(β) =
3g−1

∑
k=1

(−1)k−1 ∑
(m1, ..., mk)

k + ∑
i>0

mi = β + 1

〈〈τ0τm1〉〉
0 · · ·

〈〈
τ0τmk−1

〉〉0 〈〈
τ0τmk+m

〉〉0 .

to prove that 〈∏n
i=1 τmi 〉

g
d satisfies the genus g topological recursion relation (1010). �

Recall that c1(m) = m! so in the N = 0 case (33) is given by

(19) pg(m1, ..., mn) = p(0)g (m1, ..., mn) :=
n

∏
i=1

mi!

〈
n

∏
i=1

τmi · exp τ0

〉g
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where we drop the superscript (0). Each pg(m1, ..., mn) is a polynomial, by Theorem 66, or more directly from
the following lemma which gives an explicit formula and will be needed later.

Lemma 3.

pg(m1, ..., mn) =
n

∏
i=1

mi!

〈
n

∏
i=1

τmi · exp τ0

〉g

= ∑
|β|=3g−3+n

n

∏
i=1

(
mi
βi

)
· βi!

〈
n

∏
i=1

τβi

〉g

.

Proof. There are three cases corresponding to

d = ∑ mi − (3g− 3 + n)

being negative, zero and positive.

When d < 0, the formula is true since both sides vanish. The left hand side 〈∏n
i=1 τmi · exp τ0〉g = 0 by

dimensional constraints. The right hand side vanishes since d < 0 implies there exists an i ∈ {1, ..., n} such
that mi < βi and hence the factor (mi

βi
) vanishes.

When d = 0, the left hand side is simply ∏n
i=1 mi! 〈∏n

i=1 τmi 〉
g. On the right hand side, unless βi = mi for all

i = 1, ..., n, then there exists an i ∈ {1, ..., n} such that βi > mi and hence the factor (mi
βi
) vanishes. This leaves

the only surviving summand ∏n
i=1 mi! 〈∏n

i=1 τmi 〉
g where βi = mi for all i = 1, ..., n.

When d > 0, then exp τ0 makes a non-trivial contribution, so in particular there is a τ0 term and pg(m1, ..., mn)

is uniquely determined by the string equation and the d = 0 case. The string equation is

d · pg(m1, ..., mn) =
n

∑
i=1

mi · pg(m1, ..., mi − 1, ..., mn)

and the formula is proven by induction on d. The initial case d = 0 has been proven. For d > 0,

d · pg(m1, ..., mn) =
n

∑
i=1

mi · pg(m1, ..., mi − 1, ..., mn) string equation

=
n

∑
i=1

∑
|β|=3g−3+n

mi ·
(

m1

β1

)
· ·
(

mi − 1
βi

)
· ·
(

mn

βn

)
·∏ βi!

〈
n

∏
i=1

τβi

〉g

inductive hypothesis

= ∑
|β|=3g−3+n

n

∑
i=1

(mi − βi) ·∏
(

mi
βi

)
· βi!

〈
n

∏
i=1

τβi

〉g

= d · ∑
|β|=3g−3+n

∏
(

mi
βi

)
· βi!

〈
n

∏
i=1

τβi

〉g

⇐ ∑(mi − βi) = d

and divide both sides by d > 0 to get the result. �

2.2. Asymptotic behaviour of Gromov-Witten invariants. The large degree asymptotic behaviour of sta-
tionary Gromov-Witten invariants of PN is stated in Corollary 22. It is an immediate consequence of Theorem 11
which gives the highest degree terms in the polynomial part. These highest degree terms, and hence the
asymptotic behaviour, are governed by the N = 0 case.

Proof of Theorem 11. The proof of quasi-polynomiality follows immediately from Theorem 66. It remains to
prove that the top degree terms are in fact polynomial, i.e. there is no mod N + 1 dependence, with coefficients
given by intersections of ψ classes over the moduli space of curves.
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We first prove that the top degree terms are essentially independent of N— the dependence is simply the
factor (N + 1)3−2g−n. The proof is, as usual, by induction. The recursions that define the quasi-polynomials
term-by-term correspond between different N. The quasi-polynomials contain constants that depend on
Gromov-Witten invariants of insertions τm for m < 3g− 1. But the top degree terms are independent of
these constants—the two degree terms are both strictly positive in (1515) in the construction of the quasi-
polynomials contained in the proof of Theorem 66. By the inductive hypothesis the top degree term of each
quasi-polynomial is (N + 1)3−2g′−n′ times an intersection number, independent of N. The genus zero 2-point
invariants contribute only a factor of 1 to the more complicated quasi-polynomial so have no influence.

The independence of the top degree terms from N immediately implies the top degree terms are polynomial
by considering the N = 0 case, i.e. the top degree terms of the N = 0 polynomials coincide (up to a factor of
(N + 1)3−2g−n) with the top degree terms of the quasi-polynomials from PN , N > 0. In particular there is no
mod N + 1 dependence in the top degree terms.

To prove that the top coefficients are intersection numbers of ψ classes over the moduli space of curves
it is enough to prove this for any N. Again we consider the N = 0 case. We use the explicit formula for
pg(m1, ..., mn) given in Lemma 33. For βi constant and mi a variable, the top coefficient of the polynomial

(mi
βi
) · βi! is mβi

i . Hence the top coefficients cβ of mβ1
1 · · ·m

βn
n in pg(m1, ..., mn) are

cβ =

〈
n

∏
i=1

τβi

〉g

=
∫
Mg,n

ψ
β1
1 ...ψβn

n

as required. For N > 0, the top coefficients are

c(N)
β = (N + 1)3−2g−n

∫
Mg,n

ψ
β1
1 ...ψβn

n

and the theorem is proven. �

Remark. The N = 1 case has already been studied in [1010] where the coefficients are proven to be the correct
intersection numbers of ψ classes when g = 0 and g = 1.

It will be useful to identify the quasi-polynomials q(N)
g,~κ in Theorem 66 with the stationary quasi-polynomials

p(N)
g evaluated at particular values.

Theorem 7. When all non-stationary insertions are primary, mi ≥ 3g− 1, i = 1, ..., n and n + s > 2

q(N)
g,~κ (m1, . . . , mn) = p(N)

g (k1 − N, ..., ks − N, m1, . . . , mn)

where~κ = (0, k1, 0, ..., 0, ks).

Proof. We start with n = 0, where we need to prove that primary invariants are stored in the stationary
quasi-polynomials.

Genus 0. Using the genus zero TRR (99),〈
s

∏
j=1

τnj(pt)

〉0

=
〈

τn1−1(pt)τ0(ω
k)
〉0
〈

τ0(ω
N−k)

s

∏
j=2

τnj(pt)

〉0

+
〈
τn1−1(pt)...

〉0
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where the RHS contains one summand, which is shown, with τn1−1(pt) in a genus zero 2-point invariant,
and all other summands with τn1−1(pt) in a genus zero k-point invariant for k > 2. Hence〈

s

∏
j=1

τnj(pt)

〉0

cN+1(n1) =
〈

τn1−1(pt)τ0(ω
N−k1)

〉0
cN+1(n1)

〈
τ0(ω

k1)
s

∏
j=2

τnj(pt)

〉0

+

⌈
n1

N + 1

⌉
q(n1, .., nm)

=

〈
τ0(ω

k1)
s

∏
j=2

τnj(pt)

〉0

+

⌈
n1

N + 1

⌉
× q(n1, ..., nm)

where
〈

τn1−1(pt)τ0(ω
k)
〉0
· cN+1(n1) = 1 from Lemma 11 and q(n1, ..., nm) is quasi-polynomial in n1 from

Theorem 66. The factor
⌈ n1

N+1
⌉

comes from cN+1(n1) =
⌈ n1

N+1
⌉

cN+1(n1 − 1) and is explicit in the proof of
Theorem 66. Dimension considerations yield k1 ≡ m1 + N mod N + 1.

Now apply the genus zero TRR (99) to
〈

τ0(ω
k1)∏s

j=2 τnj(pt)
〉0

and further apply it iteratively to get

(20)

〈
s

∏
j=1

τnj(pt)

〉0

·
s

∏
j=1

cN+1(nj) =

〈
s

∏
j=1

τ0(ω
kj)

〉0

+ ∑
⌈ nj

N + 1

⌉
× qj(n1, ..., nm).

Combine (2020) with ⌈ k j − N
N + 1

⌉
= 0, k j ∈ {0, ..., N}

and

p0
s (n1, ..., ns) =

〈
s

∏
j=1

τnj(pt)

〉0

·
s

∏
j=1

cN+1(nj)

to prove 〈
s

∏
j=1

τ0(ω
kj)

〉0

= p0
s (k1 − N, ..., ks − N)

which is the genus zero n = 0 case.

We now reduce the genus zero n > 0 case to the n = 0 case using induction and the TRR (99).

We need to compare the two expressions
〈

∏s
j=1 τ0(ω

kj)∏n
i=1 τmi (pt)

〉g
and

〈
∏s

j=1 τnj(pt)∏n
i=1 τmi (pt)

〉g
for

nj ≡ k j − N mod N + 1. We can assume m1 > 0 since it is a variable. Since n + s > 2 we can apply the genus
zero TRR (99) to get

(21)

〈
s

∏
j=1

τ0(ω
kj)

n

∏
i=1

τmi (pt)

〉0

= ∑
U

〈
τ0(ω

kU )τm1−1(pt)τU

〉 〈
τ0(ω

N−kU )τa2(ω
b2)τa3(ω

b3)τV

〉
.

(22)

〈
s

∏
j=1

τnj(pt)
n

∏
i=1

τmi (pt)

〉0

= ∑
U

〈
τ0(ω

kU )τm1−1(pt)τ′U
〉 〈

τ0(ω
N−kU )τa2(pt)τa3(pt)τ′V

〉
.

where τm1(pt)τa2(ω
b2)τa3(ω

b3)τUτV = ∏s
j=1 τ0(ω

kj)∏n
i=1 τmi (pt) together with corresponding factorisations

τm1(pt)τa2(pt)τa3(pt)τ′Uτ′V = ∏s
j=1 τnj(pt)∏n

i=1 τmi (pt). By the inductive assumption, corresponding terms
on the right hand sides coincide when we evaluate the quasi-polynomial at nj = k j − N, and remove the
factor 1/c(nj). The condition nj ≡ N − k j mod N + 1 determines which polynomial representative of the
quasi-polynomial to take (and guarantees the kU coincide.)
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The initial conditions for the induction are the case n = 0. Note that the 2-point invariants are not initial con-

ditions, as in the inductive proof of Theorem 66, since they appear here as the same factor
〈

τm1−1(pt)τ0(ω
k)
〉0

trivially equal in the two expressions. Hence we have reduced the case n > 0 to the case n = 0 and the
Theorem is proven for genus zero.

Genus g > 0. From the description of the genus 0 expression
〈

τn1+1−3g(pt)τ0(ω
k)
〉
(β)

in the proof of

Theorem 66 we see that for β = 3g− 2 we have〈
τn1+1−3g(pt)τ0(ω

k)
〉
(3g−2)

=
〈

τn1−1(pt)τ0(ω
N−k1)

〉0
+ 〈τr(pt) · · · 〉0 , r < n1 − 1.

Combining this with the genus g TRR (1010),〈
s

∏
j=1

τnj(pt)

〉g

=
〈

τn1+1−3g(pt)τ0(ω
k)
〉
(3g−2)

〈
τ0(ω

N−k)
s

∏
j=2

τnj(pt)

〉g

+
〈
τn1+1−3g(pt)...

〉
where the RHS contains one summand, which is shown, with τn1+1−3g(pt) in a genus zero 2-point invariant,
and all other summands with τn1+1−3g(pt) in a (g′, n′)-point invariant for 2g′ − 2 + n′ > 0, we get〈

s

∏
j=1

τnj(pt)

〉g

cN+1(n1) =
〈

τn1−1(pt)τ0(ω
N−k1)

〉0
cN+1(n1)

〈
τ0(ω

k1)
s

∏
j=2

τnj(pt)

〉g

+

⌈
n1

N + 1

⌉
q(n1, .., ns)

=

〈
τ0(ω

k1)
s

∏
j=2

τnj(pt)

〉g

+

⌈
n1

N + 1

⌉
× q(n1, ..., ns).

Again we have used
〈

τn1−1(pt)τ0(ω
k)
〉0
· cN+1(n1) = 1 from Lemma 11 and we have q(n1, ..., ns) quasi-

polynomial in n1 from Theorem 66. This iteratively leads to an expression analogous to (2020) for g > 0:〈
s

∏
j=1

τnj(pt)

〉g

·
s

∏
j=1

cN+1(nj) =

〈
s

∏
j=1

τ0(ω
kj)

〉g

+ ∑
⌈ nj

N + 1

⌉
× qj(n1, ..., nm)

and hence 〈
s

∏
j=1

τ0(ω
kj)

〉g

= p(N)
g (k1 − N, ..., ks − N)

as required.

The reduction of the g > 0, n > 0 case to the g > 0, n = 0 uses the genus g TRR (1010 which yield (1414). The
right hand side of (1414) is simpler in the induction—either it is genus 0 or there are fewer than n + s insertions
in each factor, or there are fewer than n descendant insertions. Hence evaluation at negative values reduces
to the proven initial cases of evaluation at negative values for the genus zero quasi-polynomials or to the
n = 0 case. �

Proof of Theorem 33. The genus zero 2-point case can be checked explicitly using Lemma 11 which gives

〈τm(pt)τ0(ω
k)〉 = 1

cN+1(m)
· 1

d
, d =

m + k + 1
N + 1

and
〈τm1(pt)τm2(pt)〉 = 1

cN+1(m1)cN+1(m2)
· 1

d
, d = 1 +

m1 + m2

N + 1
.
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Hence p0
2(m1, m2) =

N+1
m1+m2+N+1 and

〈τm1(pt)τ0(ω
k)〉 · cN+1(m1) = p0

2(m1, k− N)

as required.

The remaining cases of Theorem 33 are proven in Theorem 77 in terms of the quasi-polynomials. �

3. THE PROJECTIVE LINE P1

One of the earliest studies of stationary Gromov-Witten invariants was undertaken by Okounkov and
Pandharipande in their papers [1111, 1212, 1313] on Gromov-Witten theory of target curves. They showed that
considering stationary invariants alone is a natural problem, related to Hurwitz problems and partitions. The
case of target P1 is fundamental to all of their results. In [1010] the stationary Gromov-Witten invariants of P1

were related to Eynard-Orantin invariants which arise out of matrix models but can be defined independently
of matrix models.

3.1. Eynard-Orantin invariants. The Eynard-Orantin invariants are defined for any (C, x, y) consisting of a
rational curve C equipped with two meromorphic functions x and y with the property that the branch points
of x are simple and the map

C → C2

p 7→ (x(p), y(p))

is an immersion. For every (g, n) ∈ Z2 with g ≥ 0 and n > 0 the Eynard-Orantin invariant is a multid-
ifferential ω

g
n(p1, ..., pn), i.e. a tensor product of meromorphic 1-forms on the product Cn, where pi ∈ C.

When 2g− 2 + n > 0, ω
g
n(p1, ..., pn) is defined recursively in terms of local information around the poles of

ω
g′

n′(p1, ..., pn) for 2g′ + 2− n′ < 2g− 2 + n. The ω
g′

n′(p1, ..., pn) are used as kernels on the Riemann surface.
For example, ω0

2(w, z) is the Cauchy kernel dwdz/(w− z)2.

Since each branch point α of x is simple, for any point p ∈ C close to α there is a unique point p̂ 6= p close to
α such that x( p̂) = x(p). The recursive definition of ω

g
n(p1, ..., pn) uses only local information around branch

points of x and makes use of the well-defined map p 7→ p̂ there. The invariants are defined as follows.

ω0
1 = −ydx(z)

ω0
2 =

dz1dz2

(z1 − z2)2

For 2g− 2 + n > 0,

(23) ω
g
n+1(z0, zS) = ∑

α
Res
z=α

K(z0, z)
[

ω
g−1
n+2(z, ẑ, zS) + ∑

g1+g2=g

ItJ=S

ω
g1
|I|+1(z, zI)ω

g2
|J|+1(ẑ, zJ)

]

where the sum is over branch points α of x, S = {1, ..., n}, I and J are non-empty and

K(z0, z) =
−
∫ z

ẑ ω0
2(z0, z′)

2(y(z)− y(ẑ))dx(z)

is well-defined in the vicinity of each branch point of x. Note that the quotient of a differential by the differen-
tial dx(z) is a meromorphic function. The recursion (2323) depends only on the meromorphic differential ydx
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and the map p 7→ p̂ around branch points of x. For 2g− 2 + n > 0, each ω
g
n is a symmetric multidifferential

with poles only at the branch points of x, of order 6g− 4 + 2n, and zero residues.

When y is not a meromorphic function on C and is merely analytic in a domain containing the branch points
of x, we approximate it by a sequence of meromorphic functions y(N) which agree with y at the branch points
of x up to the Nth derivatives. For example, define

(24) C =

x = z + 1/z

y = ln z ∼ ∑ (1−z2)k

−2k

via partial sums yN . The Riemann surface C is defined via the meromorphic function x(z). The function

y(z) = ln z ∼ ∑ (1−z2)k

−2k is to be understood as the sequence of partial sums yN =
N

∑
1

(1−z2)k

−2k . Each invariant

requires only a finite yN—for fixed (g, n) the sequence of invariants ω
g
n of (C, x, yN) stabilises for N ≥

6g − 6 + 2n. As in the introduction assemble the stationary Gromov-Witten invariants of P1 into the
generating function multidifferential

Ωg
n(x1, ..., xn) = ∑

~m

〈
n

∏
i=1

τmi (pt)

〉g

P1

·
n

∏
i=1

(mi + 1)!x−mi−2
i dxi.

Theorem 8 (Norbury-Scott). For g = 0 and 1 and 2g− 2 + n > 0, the Eynard-Orantin invariants of the curve C
defined in (2424) agree with the generating function for the Gromov-Witten invariants of P1:

ω
g
n ∼ Ωg

n(x1, ..., xn).

More precisely, Ωg
n(x1, ..., xn) gives an analytic expansion of ω

g
n around a branch of {xi = ∞}.

In the two exceptional cases (g, n) = (0, 1) and (0, 2), the invariants ω
g
n are not analytic at xi = ∞. We can

again get analytic expansions around a branch of {xi = ∞} by removing their singularities at xi = ∞ as
follows:

(25) ω0
1 + ln x1dx1 ∼ Ω0

1(x1), ω0
2 −

dx1dx2

(x1 − x2)2 ∼ Ω0
2(x1, x2).

Proof of Theorem 55. For I ⊂ {1, ..., n} put

Ωg
n,I(x1, ..., xn) = ∑

mi ≥ 3g− 1, i ∈ I
mi < 3g− 1, i 6∈ I

〈
n

∏
i=1

τmi (pt)

〉g

P1

·
n

∏
i=1

(mi + 1)!x−mi−2
i dxi

so
Ωg

n(x1, ..., xn) = ∑
I⊂{1,...,n}

Ωg
n,I(x1, ..., xn).

Each Ωg
n,I(x1, ..., xn) is polynomial in x−1

i , so in particular meromorphic in xi, for i 6∈ I . For i ∈ I, the

coefficient of x−mi−2
i is (mi + 1)!/c2(mi) times a quasi-polynomial in mi. Put xi = zi + 1/zi. Direct calculation,

see [1010], shows that Ωg
n,I(x1, ..., xn) is a rational function in zi with poles only at zi = ±1, or equivalently

xi = ±2, for i ∈ I. Hence Ωg
n,I(x1, ..., xn) is a rational function in zi for all i ∈ {1, ..., n} and the same is true

for Ωg
n(x1, ..., xn).

The order of the poles at z = ±1 and the asymptotic behaviour there follows from the top degree coefficients of
the quasi-polyniomials given by (44) in Theorem 11. Only the term Ωg

n,I(x1, ..., xn) for I = {1, ..., n} contributes
because a proper subset I ⊂ {1, ..., n} does not have highest degree terms, or equivalently shifts the poles
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from xi = ±2 to xi = 0, for i 6∈ I. Thus (44) immediately gives the asymptotic behaviour for zi = ±1 + s · ti

Ωg
n ∼ s6−6g−3n 1

25g−5+2n ∑
|β|

n

∏
i=1

(2βi + 1)!
βi!

dti

t2βi+2
i

〈τβ1 ...τβn〉g

as required. �

3.2. String and divisor equations. The Eynard-Orantin invariants quite generally satisfy a string equation
for 2g− 2 + n > 0:

(26) ∑
α

Res
z=α

y(z)x(z)mω
g
n+1(zS, z) = −

n

∑
i=1

∂zi

(
x(zi)

mω
g
n(zS)

dx(zi)

)
, m = 0, 1

where the sum is over the branch points α of x, Φ(z) =
∫ z ydx(z′) is an arbitrary antiderivative and

zS = (z1, . . . , zn).

In the case of x = z + 1/z, y = ln z this gives a relationship between the stationary Gromov-Witten of P1. A
priori the string equations satisfies by Eynard-Orantin invariants and Gromov-Witten invariants should not
be related since the latter involves non-stationary terms. The string equations do in fact coincide when we
interpret the non-stationary term in the string equation as a stationary term. Theorem 33 does exactly that
more generally. The following is a generalisation of this observation to projective spaces.

Gromov-Witten invariants satisfy the divisor and string equations which necessarily involve non-stationary
terms. 〈

τ0(ω)
n

∏
i=1

τmi (pt)

〉g

d

= d

〈
n

∏
i=1

τmi (pt)

〉g

d

divisor equation

〈
τ0(1)

n

∏
i=1

τmi (pt)

〉g

d

=
n

∑
i=1

〈
τm1(pt) · · · τmi−1(pt) · · · τmn(pt)

〉g
d string equation.

where the term τmi−1(γ1) vanishes if mi = 0 and d = d(m1, ..., mn) is defined by the dimension constraint
(N + 1)d + (N− 3)(1− g) + n = ∑n

i=1 mi + nN . These give rise to divisor and string equations, respectively,
between the quasi-polynomials:

p(N)
g (1− N, m1, ..., mn) = d · p(N)

g (m1, ..., mn)

and

p(N)
g (−N, m1, ..., mn) =

n

∑
i=1

⌈
mi

N + 1

⌉
p(N)

g (m1, ..., mi − 1, ..., mn).

These are relations between stationary invariants meaning that both sides are determined by stationary
invariants alone. For example, when N = 1 these can be used to uniquely determine the genus 0 stationary
invariants.

The Eynard-Orantin invariants satisfy a dilaton equation

∑
α

Res
z=α

Φ(z)ωg
n+1(zS, z) = (2g− 2 + n)ωg

n(zS)
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where Φ is defined by dΦ = ydx. The Gromov-Witten invariants also satisfy a dilaton equation〈
τ1(1)

n

∏
i=1

τmi (pt)

〉g

d

= (2g− 2 + n)

〈
n

∏
i=1

τmi (pt)

〉g

d

.

Again this involves a non-stationary term, while the Eynard-Orantin recursion suggests it can be expressed
in terms of stationary invariants. Indeed, in the N = 1 case it was shown in [1010] that for g = 0 or 1 and
conjecturally for all g that τ1(1) classes can be evaluated via the derivative of the quasi-polynomial:

(27)

〈
τ1(1)

n

∏
i=1

τmi (pt)

〉g

P1

·
n

∏
i=1

c2(mi) = 2
∂

∂mn+1
pg(m1, . . . , mn, mn+1)

∣∣∣
mn+1=0

.

A similar recursion may hold for general N, or perhaps not and instead this recursion may be indicative of a
relation to Eynard-Orantin invariants which only occurs for N = 1.

4. EXAMPLES

g n p(N)
g (m1, . . . , mn) top degree terms of p(N)

g

0 2
N + 1

(m1 + m2 + N + 1)
N + 1

(m1 + m2)

0 3 1 1

1 1
N + 1

24

⌈
m

N + 1

⌉
+ 〈τ0(ω)〉1 m

24

0 4
4

∑
i=1

⌈
mi

N + 1

⌉
+

〈
4

∏
i=1

τ0(ω
mi )

〉0
1

N + 1

4

∑
i=1

mi

1 2
N + 1

24

2

∑
i=1

⌈
mi

N + 1

⌉ ⌈
mi − 1
N + 1

⌉
+

⌈
m1

N + 1

⌉ ⌈
m2

N + 1

⌉
m2

1 + m2m2 + m2
2

24(N + 1)

+∑
i 6=j

〈
τ0(ω

mi−1)τ1(ω
mj)
〉1
⌈

mi
N + 1

⌉
+

〈
2

∏
i=1

τ0(ω
mi )

〉1

where m ≡ m + N mod N + 1 and 0 ≤ m ≤ N. Explicit formulae for the Gromov-Witten invariants are:

Genus zero 2-point invariants:

〈τm1(pt)τm2(pt)〉g=0 =
1

cN+1(m1)cN+1(m2)
· N + 1
(m1 + m2 + N + 1)

Genus zero 3-point invariants:

〈τm1(pt)τm2(pt)τm3(pt)〉g=0 =
1

cN+1(m1)cN+1(m2)cN+1(m3)

Genus zero 4-point invariants:〈
4

∏
i=1

τmi (pt)

〉g=0

=
4

∏
i=1

1
cN+1(mi)

·
(

1
N + 1

4

∑
i=1

mi + r(m1, m2, m3, m4)

)
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Genus one 1-point invariants:

〈τm(pt)〉1 =
1

cN+1(m)
·
( m

24
+ r(m)

)
Genus one 2-point invariants:

〈τm1(pt)τm2(pt)〉1 =
2

∏
i=1

1
cN+1(mi)

·
(

m2
1 + m2m2 + m2

2
24(N + 1)

+
2

∑
i=1

ri(m1, m2)mi + r(m1, m2)

)
where r(~m) and rj(~m) depend only on the residue class of mi mod N + 1.
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