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ABSTRACT. We define a collection Θg,n ∈ H4g−4+2n(Mg,n, Q) for 2g− 2 + n > 0
of cohomology classes that restrict naturally to boundary divisors. We prove that
the intersection numbers

∫
Mg,n

Θg,n ∏n
i=1 ψ

mi
i can be recursively calculated. We

conjecture that a generating function for these intersection numbers is a tau function
of the KdV hierarchy. This is analogous to the conjecture of Witten proven by
Kontsevich that a generating function for the intersection numbers

∫
Mg,n

∏n
i=1 ψ

mi
i

is a tau function of the KdV hierarchy.
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1. INTRODUCTION

LetMg,n be the moduli space of genus g stable curves—curves with only nodal
singularities and finite automorphism group—with n labeled points disjoint from
nodes. Define ψi = c1(Li) ∈ H2(Mg,n, Q) to be the first Chern class of the line
bundle Li →Mg,n with fibre above [(C, p1, . . . , pn)] given by T∗pi

C. Consider the
natural maps given by the forgetful map which forgets the last point

(1) Mg,n+1
π−→Mg,n

and the gluing maps which glue the last two points

(2) Mg−1,n+2
φirr−→Mg,n, Mh,|I|+1 ×Mg−h,|J|+1

φh,I−→Mg,n, I t J = {1, ..., n}
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In this paper we construct cohomology classes Θg,n ∈ H∗(Mg,n, Q) for g ≥ 0,
n ≥ 0 and 2g− 2 + n > 0 satisfying the following four properties:

(i) Θg,n ∈ H∗(Mg,n, Q) is of pure degree,
(ii) φ∗irrΘg,n = Θg−1,n+2, φ∗h,IΘg,n = π∗1 Θh,|I|+1 · π∗2 Θg−h,|J|+1,

(iii) Θg,n+1 = ψn+1 · π∗Θg,n,
(iv) Θ1,1 6= 0

where πi is projection onto the ith factor ofMh,|I|+1 ×Mg−h,|J|+1. We prove below
that the properties (ii)-(iviv) uniquely define intersection numbers of the classes
Θg,n with the classes ψi and more generally with classes in the tautological ring
RH∗(Mg,n) ⊂ H2∗(Mg,n, Q).

Remark 1.1. One can replace (iiii) by the equivalent property

φ∗ΓΘg,n = ΘΓ.

for any stable graph Γ, defined in Section 33, of genus g with n external edges. Here

φΓ :MΓ = ∏
v∈V(Γ)

Mg(v),n(v) →Mg,n, ΘΓ = ∏
v∈V(Γ)

π∗v Θg(v),n(v) ∈ H∗(MΓ, Q)

where πv is projection onto the factorMg(v),n(v). This generalises (iiii) from 1-edge
stable graphs given by φΓirr = φirr and φΓh,I = φh,I .

Remark 1.2. The sequence of classes Θg,n satisfies many properties of a cohomo-
logical field theory (CohFT). It is essentially a 1-dimensional CohFT with vanishing
genus zero classes, not to be confused with Hodge classes which are trivial in
genus zero but do not vanish there. The trivial cohomology class 1 ∈ H0(Mg,n, Q),
which is a trivial example of a CohFT known as a topological field theory, sat-
isfies conditions (ii) and (iiii), while the forgetful map property (iiiiii) is replaced by
Θg,n+1 = π∗Θg,n.

Theorem 1. There exists a class Θg,n satisfying (ii) - (iviv) and furthermore any such class
satisfies the following properties.

(I) Θg,n ∈ H4g−4+2n(Mg,n, Q).
(II) Θ0,n = 0 for all n and φ∗ΓΘg,n = 0 for any Γ with a genus 0 vertex.

(III) Θg,n ∈ H∗(Mg,n, Q)Sn , i.e. it is symmetric under the Sn action.
(IV) Θ1,1 = 3ψ1.
(V) For any η ∈ RHg−1(Mg,n), the intersection number

∫
Mg,n

Θg,nη ∈ Q is uniquely
determined by (ii) - (iiiiii) and (IVIV).

The main content of Theorem 11 is the existence of Θg,n, the rigidity property (IVIV)
and the uniqueness property (VV). The existence of Θg,n is constructed via the push-
forward of a class over the moduli space of spin curves in Section 22. The rigidity
property (IVIV) is proven in Section 33 by starting with Θ1,1 = λψ1 and determining
constraints on λ to arrive at λ = 3, which does occur due to the construction of Θg,n.
The uniqueness result (VV) involving classes in the tautological ring RH∗(Mg,n) is
non-constructive since it relies on the existence of non-explicit tautological relations.
The proofs of properties (II) - (IIIIII) are straightforward and presented in Section 33.
Section 44 describes how the classes Θg,n naturally combine with any cohomological
field theory.
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Remark 1.3. Properties (ii) - (iviv) uniquely define the classes Θg,n for g ≤ 4 and all n,
but it is not known if they uniquely define the classes Θg,n in general. Uniqueness
would follow from injectivity of the pull-back map to the boundary

RH2g−2(Mg)→ RH2g−2(∂Mg)

which holds for g = 2, 3 and 4. It would show that Θg ∈ RH2g−2(Mg) is uniquely
determined from its restriction, and consequently Θg,n would coincide with the
classes constructed in Section 22 for all n ≥ 0.

The following conjecture allows one to recursively calculate all intersection
numbers

∫
Mg,n

Θg,n ∏n
i=1 ψ

mi
i via relations coming out of the KdV hierarchy. Such

a recursive calculation would strengthen property (VV) since intersections of Θg,n
with ψ classes determine all tautological intersections with Θg,n algorithmically.

Conjecture 1. The function

ZΘ(h̄, t0, t1, ...) = exp ∑
g,n,~k

h̄g−1

n!

∫
Mg,n

Θg,n ·
n

∏
j=1

ψ
kj
j ∏ tkj

is the Brézin-Gross-Witten tau function of the KdV hierarchy.

The Brézin-Gross-Witten KdV tau function ZBGW was defined in [66, 3030]. Con-
jecture 11 has been verified up to g = 7, i.e. the coefficients of the expansion of
the logarithm of the Brézin-Gross-Witten tau function are given by intersection
numbers of the classes Θg,n for g ≤ 7 and all n. Progress towards Conjecture 11,
including a purely combinatorial formulation that can be stated without reference
to the moduli space of stable curves or the KdV hierarchy is discussed in Section 66.

Acknowledgements. I would like to thank Dimitri Zvonkine for his ongoing interest in
this work which benefited immensely from many conversations together. I would
also like to thank Vincent Bouchard, Alessandro Chiodo, Alessandro Giacchetto,
Oliver Leigh, Danilo Lewanksi, Rahul Pandharipande, Johannes Schmitt, Mehdi
Tavakol, Ran Tessler, Ravi Vakil and Edward Witten for useful conversations, the
anonymous referee for comments which improved the paper, and the Institut Henri
Poincaré where part of this work was carried out.

2. EXISTENCE

The existence of a cohomology class Θg,n ∈ H∗(Mg,n, Q) satisfying (ii) - (iviv) is

proven here using the moduli space of stable twisted spin curves Mspin
g,n which

consist of pairs (Σ, θ) given by a twisted stable curve Σ equipped with an orbifold
line bundle θ together with an isomorphism θ⊗2 ∼= ω

log
Σ . See precise definitions

below. We first construct a cohomology class onMspin
g,n and then push it forward to

a cohomology class onMg,n.
A stable twisted curve, with group Z2, is a 1-dimensional orbifold, or stack, C

such that generic points of C have trivial isotropy group and non-trivial orbifold
points have isotropy group Z2. A stable twisted curve is equipped with a map
which forgets the orbifold structure ρ : C → C where C is a stable curve known
as the coarse curve of C. We say that C is smooth if its coarse curve C is smooth.
Each nodal point of C (corresponding to a nodal point of C) has non-trivial isotropy
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group, the local picture at each node is {xy = 0}/Z2 with Z2-action given by
(−1) · (x, y) = (−x,−y), and all other points of C with non-trivial isotropy group
are labeled points of C.

A line bundle L over C is a locally equivariant bundle over the local charts, such
that at each nodal point there is an equivariant isomorphism of fibres. Hence each
orbifold point p associates a representation of Z2 on L|p acting by multiplication
by exp(2πiλp) for λp = 0 or 1

2 . One says L is banded at p by λp. The equivariant
isomorphism at nodes guarantees that the representations agree on each local
irreducible component at the node.

The canonical bundle ωC of C is generated by dz for any local coordinate z. At
an orbifold point x = z2 the canonical bundle ωC is generated by dz hence it is
banded by 1

2 i.e. dz 7→ −dz under z 7→ −z. Over the coarse curve ωC is generated
by dx = 2zdz. In other words ρ∗ωC 6∼= ωC however ωC ∼= ρ∗ωC . Moreover,
deg ωC = 2g− 2 and

deg ωC = 2g− 2 +
1
2

n.

For ω
log
C = ωC(p1, ..., pn), locally dx

x = 2 dz
z so ρ∗ω

log
C
∼= ω

log
C and deg ω

log
C =

2g− 2 + n = deg ω
log
C .

Following [11], define the moduli space of stable twisted spin curves by

Mspin
g,n = {(C, θ, p1, ..., pn, φ) | φ : θ2 ∼=−→ ω

log
C }.

Here ω
log
C and θ are line bundles over the stable twisted curve C with labeled

orbifold points pj and deg θ = g− 1 + 1
2 n. The pair (θ, φ) is a spin structure on C.

The relation θ2 ∼=−→ ω
log
C is possible because the representation associated to ω

log
C at

pi is trivial—dz/z z 7→−z−→ dz/z. The equivariant isomorphism of fibres over nodal
points forces the balanced condition λp+ = λp− for p± corresponding to p on each
irreducible component.

We can now define a vector bundle overMspin
g,n using the dual bundle θ∨ on each

stable twisted curve. Denote by E the universal spin structure on the universal
stable twisted spin curve overMspin

g,n . Given a map S → Mspin
g,n , E pulls back to

θ giving a family (C, θ, p1, ..., pn, φ) where π : C → S has stable twisted curve

fibres, pi : S → C are sections with orbifold isotropy Z2 and φ : θ2 ∼=−→ ω
log
C/S =

ωC/S(p1, .., pn). Consider the push-forward sheaf π∗E∨ overMspin
g,n . We have

deg θ∨ = 1− g− 1
2

n < 0.

Furthermore, for any irreducible component C ′ i→ C, the pole structure on sections

of the log canonical bundle at nodes yields i∗ωlog
C/S = ω

log
C ′/S. Hence φ′ : (θ|C ′)2 ∼=−→

ω
log
C ′/S, where φ′ = i∗ ◦ φ|C ′ . Since the irreducible component C ′ is stable its log

canonical bundle has negative degree and

deg θ∨|C ′ < 0.

Negative degree of θ∨ restricted to any irreducible component implies R0π∗E∨ = 0
and the following definition makes sense.
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Definition 2.1. Define a bundle Eg,n = −Rπ∗E∨ overMspin
g,n with fibre H1(θ∨).

Represent the band of θ at the labeled points by~σ = (σ1, ..., σn) ∈ {0, 1}n so that
at each labeled point pi the representation of Z2 on θ|pi is given by multiplication
by exp(2πiλpi ) for λpi = 1

2 σi ∈ {0, 1
2}. The number of pi with λpi = 0 is even

due to evenness of the degree of the push-forward sheaf |θ| := ρ∗OC(θ) on the
coarse curve C, [3131]. In the smooth case, the boundary type of a spin structure is
determined by an associated quadratic form applied to each of the n boundary
classes which vanishes since it is a homological invariant, again implying that the
number of pi with λpi = 0 is even. The moduli space of stable twisted spin curves
decomposes into components determined by the band~σ:

Mspin
g,n =

⊔
σ

Mspin
g,n,~σ

whereMspin
g,n,~σ consists of those spin curves with θ banded by~σ, and the union is

over the 2n−1 functions~σ satisfying |~σ|+ n =
n

∑
i=1

(σi + 1) ∈ 2Z. Each component

Mspin
g,n,~σ is connected except when |~σ| = n, in which case there are two connected

components determined by their Arf invariant, and known as even and odd spin
structures. This follows from the case of smooth spin curves proven in [4343].

Restricted toMspin
g,n,~σ, the bundle Eg,n has rank

(3) rank Eg,n = 2g− 2 + 1
2 (n + |~σ|)

by the following Riemann-Roch calculation. Orbifold Riemann-Roch takes into
account the representation information

h0(θ∨)− h1(θ∨) = 1− g + deg θ∨ −
n

∑
i=1

λpi = 1− g + 1− g− 1
2 n− 1

2 |~σ|

= 2− 2g− 1
2 (n + |~σ|).

Alternatively, one can use the usual Riemann-Roch calculation on the push-forward
of θ to the underlying coarse curve C as follows. The sheaf of local sections OC(L)
of any line bundle L on C pushes forward to a sheaf |L| := ρ∗OC(L) on C which
can be identified with the local sections of L invariant under the Z2 action. Away
from nodal points |L| is locally free, hence a line bundle. At nodal points, the
push-forward |L| is locally free when L is banded by the trivial representation, and
|L| is a torsion-free sheaf that is not locally free when L is banded by the non-trivial
representation—see [2525]. The pull-back bundle is given by

ρ∗(|θ∨|) = θ∨ ⊗
⊗
i∈I
O(−σi pi)

since locally invariant sections must vanish when the representation is non-trivial.
Hence deg |θ∨| = deg θ∨ − 1

2 |~σ|. Hence Riemann-Roch on the coarse curve yields
the same result as above: h0(|θ∨|)− h1(|θ∨|) = 2− 2g− 1

2 (n + |~σ|). It is proven in
[2525] that Hi(θ∨) = Hi(|θ∨|) so the calculations agree.

We have h0(θ∨) = 0 since deg θ∨ = 1− g− 1
2 n < 0, and the restriction of θ∨

to any irreducible component C′, say of type (g′, n′), also has negative degree,
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deg θ∨|C′ = 1− g′ − 1
2 n′ < 0. Hence h1(θ∨) = 2g− 2 + 1

2 (n + |~σ|). Thus H1(θ∨)

gives fibres of a rank 2g− 2 + 1
2 (n + |~σ|) vector bundle.

The analogue of the boundary maps φirr and φh,I defined in (22) are multivalued

maps defined as follows. Consider a node p ∈ C for (C, θ, p1, ..., pn, φ) ∈ Mspin
g,n .

Denote the normalisation by ν : C̃ → C with points p± ∈ C̃ that map to the node
p = ν(p±). When C̃ is not connected, the spin structure ν∗θ decomposes into two
spin structures θ1 and θ2. Any two spin structures θ1 and θ2 with bands at p+ and
p− that agree can glue, but not uniquely, to give a spin structure on C. This gives
rise to a multivalued map, as described in [2626, p.27], which uses the fibre product:(

Mh,|I|+1 ×Mg−h,|J|+1

)
×Mg,n

Mspin
g,n → Mspin

g,n

↓ ↓
Mh,|I|+1 ×Mg−h,|J|+1 → Mg,n

and is given by (
Mh,|I|+1 ×Mg−h,|J|+1

)
×Mg,n

Mspin
g,n

↙ ν̂ φh,I ↘
Mspin

h,|I|+1 ×M
spin
g−h,|J|+1 99K Mspin

g,n

where I t J = {1, ..., n}. The map ν̂ is given by the pull back of the spin structure
obtained fromMspin

g,n to the normalisation defined by the points ofMh,|I|+1 and
Mg−h,|J|+1. The broken arrow 99K represents the multiply-defined map φh,I ◦ ν̂−1.

The multivalued map φh,I ◦ ν̂−1 naturally restricts to components Mspin
h,|I|+1,σ1

×

Mspin
g−h,|J|+1,σ2

99K Mspin
g,n,~σ where ~σ and I uniquely determine σ1 and σ2 since θ

must be banded by λp = 0 at an even number of orbifold points, which uniquely
determines the band λp+ = λp− at the separating node.

When C̃ is connected, a spin structure θ on C pulls back to a spin structure
θ̃ = ν∗θ on C̃. As above, any spin structure θ̃ with bands at p+ and p− that agree
glues non-uniquely, to give a spin structure on C, and defines a multiply-defined
map which uses the fibre product:

Mg−1,n+2 ×Mg,n
Mspin

g,n → Mspin
g,n

↓ ↓
Mg−1,n+2 → Mg,n

and is given by

Mg−1,n+2 ×Mg,n
Mspin

g,n

↙ ν̂ φirr ↘
Mspin

g−1,n+2 99K Mspin
g,n

Again, φirr ◦ ν̂−1 naturally restricts to components Mspin
g−1,n+2,~σ′ 99K M

spin
g,n,~σ but

unlike the case of φh,I ◦ ν̂−1 above,~σ does not uniquely determine~σ′. The map ν̂
now depends on θ and there are two cases corresponding to the decomposition of
the fibre productMg−1,n+2 ×Mg,n

Mspin
g,n,~σ into two components which depend on
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the behaviour of θ at the nodal point p±. Either θ is banded by λp± = 1
2 , or it is

banded by λp± = 0, corresponding to~σ′ = (~σ, 1, 1), respectively~σ′ = (~σ, 0, 0).
The bundle Eg,n behaves naturally with respect to the boundary divisors.

Lemma 2.2. On components where θ is banded by λp± = 1
2 at the node:

φ∗irrEg,n ∼= ν̂∗Eg−1,n+2, φ∗h,I Eg,n ∼= ν̂∗
(

π∗1 Eh,|I|+1 ⊕ π∗2 Eg−h,|J|+1

)
where πi is projection fromMspin

h,|I|+1 ×M
spin
g−h,|J|+1 onto the ith factor, i = 1, 2.

Proof. A spin structure θ̃ on a connected normalisation C̃ has

deg θ̃∨ = 1− (g− 1)− 1
2
(n + 2) < 0

and also negative degree on all irreducible components, hence H0(θ̃∨) = 0. By
Riemann-Roch

h0(θ̃∨)− h1(θ̃∨) = 1− (g− 1) + deg θ̃∨ − 1
2
(n + 2) = 2− 2g− n.

Hence dim H1(θ̃∨) = dim H1(θ∨) and the natural map

0→ H1(C, θ∨)→ H1(C̃, θ̃∨)

is an isomorphism. In other words φ∗irrEg,n ∼= ν∗Eg−1,n+2.
The argument is analogous when C̃ is not connected and λp± = 1

2 . Again
deg θ∨i < 0, and it has negative degree on all irreducible components, hence
H0(θ∨i ) = 0 for i = 1, 2. By Riemann-Roch

dim H1(θ∨1 ) + dim H1(θ∨2 ) = dim H1(θ∨)

so the natural map

0→ H1(C, θ∨)→ H1(C̃1, θ∨1 )⊕ H1(C̃2, θ∨2 )

is an isomorphism. In other words φ∗h,I Eg,n ∼= ν̂∗
(

π∗1 Eh,|I|+1 ⊕ π∗2 Eg−h,|J|+1

)
. �

The pull-back of Eg,n to boundary divisors with trivial isotropy at the node is
described in the following lemma.

Lemma 2.3. On components where θ is banded by λp± = 0 at the node:

(4) 0→ OXh,I → φ∗h,I Eg,n → ν̂∗
(

π∗1 Eh,|I|+1 ⊕ π∗2 Eg−h,|J|+1

)
→ 0

for Xh,I =
(
Mh,|I|+1 ×Mg−h,|J|+1

)
×Mg,n

Mspin
g,n and

(5) 0→ OXirr → φ∗irrEg,n → ν̂∗Eg−1,n+2 → 0

for Xirr =Mg−1,n+2 ×Mg,n
Mspin

g,n .

Proof. When the bundle θ is banded by λp± = 0, the map between sheaves of local
holomorphic sections

OC(θ, U)→ OC̃(ν
∗θ, ν−1U)
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is not surjective whenever U 3 p. The image consists of local sections that agree,
under an identification of fibres, at p+ and p−. Hence the dual bundle θ∨ on C is a
quotient sheaf

(6) 0→ I → ν∗θ∨ → θ∨ → 0

(7) 0→ θ∨ → ν∗ν
∗θ∨ → Cp → 0

where OC̃(I, U) is generated by the element of the dual that sends a local section
s ∈ OC̃(ν

∗θ, ν−1U) to s(p+)− s(p−). Note that evaluation s(p±) only makes sense
after a choice of trivialisation of ν∗θ at p+ and p−, but the ideal I is independent
of this choice. The complex (66) splits as follows. We can choose a representative φ
upstairs of any element from the quotient space so that φ(p+) = 0, i.e. OC(θ

∨, U)
corresponds to elements of OC̃(ν

∗θ∨, ν−1U) that vanish at p+. This is achieved by
adding the appropriate multiple of s(p+)− s(p−) to a given φ ∈ OC̃(ν

∗θ∨, ν−1U).
(Note that φ(p−) is arbitrary. One could instead arrange φ(p−) = 0 with φ(p+)
arbitrary.) In other words we can identify θ∨ with ν∗θ∨(−p+) in the complex:

0→ ν∗θ∨(−p+)→ ν∗θ∨ → ν∗θ∨|p+ → 0.

In a family π : C → S, R0π∗(ν∗θ∨) = 0 = R0π∗(ν∗θ∨(−p+)) since deg ν∗θ∨ < 0,
and it has negative degree on all irreducible components. Also R1π∗(ν∗θ∨|p+) = 0
since p+ has relative dimension 0. Thus

(8) 0→ R0π∗(ν
∗θ∨|p+)→ R1π∗(ν

∗θ∨(−p+))→ R1π∗(ν
∗θ∨)→ 0.

We can identify the dual of the sequence (88) with the sequences (44) and (55) as
follows. For the first term of (88), we have ν∗θ∨|p+ ∼= C canonically via evaluation,
hence R0π∗(ν∗θ∨|p+) ∼= OS. The second and third terms of (88) are identified with
the corresponding terms of (44), respectively the second and third terms of (55), by
ν̂∗
(

π∗1 Eh,|I|+1 ⊕ π∗2 Eg−h,|J|+1

)
= R1π∗(ν∗θ∨) and φ∗h,I Eg,n = R1π∗(ν∗θ∨(−p+)),

respectively ν̂∗Eg−1,n+2 = R1π∗(ν∗θ∨) and φ∗irrEg,n = R1π∗(ν∗θ∨(−p+)). �

Remark 2.4. In Lemma 2.22.2, the nodal band is λp± = 1
2 and we have λp+ + λp− = 1.

We see from Lemma 2.32.3 that λp± = 0 really wants one of λp± to be 1 to preserve
λp+ + λp− = 1.

Definition 2.5. For 2g− 2 + n > 0 define the Chern class

Ωg,n := c2g−2+n(Eg,n) ∈ H4g−4+2n(Mspin
g,n , Q).

On the componentMspin
g,n,~σ ofMspin

g,n for |~σ| = n this defines the top Chern class,
or Euler class. The Chern class vanishes on all other components because by (33) the
rank of Eg,n = 2g− 2 + 1

2 (|~σ|+ n) < 2g− 2 + n when |~σ| < n. Note that Ω0,n = 0

for n ≥ 3 because rank(E0,n) = n− 2 is greater than dimMspin
0,n = n− 3 so its top

Chern class vanishes.
The cohomology classes Ωg,n behave well with respect to inclusion of strata.

Lemma 2.6.

φ∗irrΩg,n = ν̂∗Ωg−1,n+2, φ∗h,IΩg,n = ν̂∗
(

π∗1 Ωh,|I|+1 · π∗2 Ωg−h,|J|+1

)
.
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Proof. When |~σ| = n and θ is banded by 1
2 at the nodal point then this is an

immediate application of Lemma 2.22.2:

φ∗irrEg,n ≡ ν̂∗Eg−1,n+2, φ∗h,I Eg,n ∼= ν̂∗
(

π∗1 Eh,|I|+1 ⊕ π∗2 Eg−h,|J|+1

)
and the naturality of c2g−2+n = ctop. We have

φ∗irrctop(Eg,n) = ν̂∗ctop(Eg−1,n+2),

φ∗h,Ictop(Eg,n) = ν̂∗
(

π∗1 ctop(Eh,|I|+1) · π∗2 ctop(Eg−h,|J|+1)
)

.

When |~σ| = n and θ is banded by 0 at the nodal point then the nodal point
is necessarily non-separating and we must consider the restriction of Ωg,n to the

componentMspin
g−1,n+2,~σ′ ofMspin

g−1,n+2 with |~σ′| = n. On this component we have
the exact sequence of Lemma 2.32.3

0→ Eg−1,n+2 → φ∗irrEg,n → OMspin
g−1,n+2,~σ′

→ 0

which implies φ∗irrc2g−2+n(Eg,n) = c2g−3+n(Eg−1,n+2,~σ′) · c1(OMspin
g−1,n+2,~σ′

) = 0. This

vanishing result is a special case of the pull-back by φ∗irr since Ωg−1,n+2 vanishes on

Mspin
g−1,n+2,~σ′ for |~σ′| = n.
Finally, when |~σ| < n this is simply the pull-back of the trivial class being trivial,

since in each case the restriction to an irreducible component has at least one labeled
point with band = 0 so that the right hand side vanishes. �

The cohomology classes Ωg,n also behave well with respect to the forgetful map

π :Mspin
g,n+1 →M

spin
g,n

which is defined on components with θ banded by 1
2 at pn+1 as follows. Define

π(C, θ, p1, ..., pn+1, φ) = (ρ(C), ρ∗θ, p1, ..., pn, ρ∗φ)

where ρ(C) forgets the orbifold structure at pn+1. The push-forward sheaf ρ∗θ
consists of local sections invariant under the Z2 action. Since the representation at
pn+1 is given by multiplication by −1, any invariant local section must vanish at
pn+1. In terms of a local orbifold coordinate x = z2, an invariant section is of the
form z f (x)s for s a generator of θ and its square

(z f (x)s)2 = z2 f (x)2s2 = x f (x)2 dx
x = f (x)2dx

has no pole. In other words its square is a section of ω
log
C with no pole at pn+1

and hence a section of ω
log
ρ(C) = ωρ(C)(p1 + p2 + ... + pn). Furthermore, we have

ρ∗θ = ρ∗{θ(−pn+1)}, ρ∗ρ∗θ = θ(−pn+1) and deg ρ∗θ = deg θ − 1
2 . The forgetful

map π is used to denote any family π : C → S since Mspin
g,n+1 is essentially the

universal curve ofMspin
g,n .

Tautological line bundles Lpi → M
spin
g,n , i = 1, ..., n are defined analogously to

those defined overMg,n as follows. Consider a family π : C → S with sections
pi : S→ C, i = 1, ..., n, and define

Lpi := p∗i (ωC/S), ψi = c1(Lpi ) ∈ H∗(Mspin
g,n , Q).
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Lemma 2.7.
Ωg,n+1 = −ψpn+1 · π

∗Ωg,n.

Proof. Over a family π : C → S where S→Mspin
g,n+1 and θ → C is the universal spin

structure (also denoted by E ), tensor the exact sequence of sheaves

0→ OC(−pn+1)→ OC → OC |pn+1 → 0

with θ∨(pn+1) to get:

0→ θ∨ → θ∨(pn+1)→ θ∨(pn+1)|pn+1 → 0.

This induces a long exact sequence which simplifies to the following short exact
sequence:

0→ R0π∗
(
θ∨(pn+1)|pn+1

)
→ R1π∗θ

∨ → R1π∗
(
θ∨(pn+1)

)
→ 0

due to the vanishing R0π∗ (θ∨(pn+1)) = 0 = R1π∗
(
θ∨(pn+1)|pn+1

)
. The first of

these vanishing results uses the identification θ∨(pn+1) = π∗θ∨ described below
together with the vanishing R0π∗θ∨ = 0 due to negative degree on each irreducible
component described earlier. The second of these vanishing results uses the simple
dimension argument that R1π∗ vanishes on the image of pn+1 which has relative
dimension 0.

Recall that the forgetful map (C, θ, p1, ..., pn+1, φ) 7→ (π(C), π∗θ, p1, ..., pn, π∗φ)
pushes forward θ via π which forgets the orbifold structure at pn+1. As described
earlier, π∗π∗θ = θ(−pn+1) since the push-forward gives the sheaf of locally invari-
ant sections which necessarily vanish as the isotropy group acts by multiplication
by −1. Hence θ∨(pn+1) = π∗θ∨, which is used to calculate R0 above, and also to
give R1π∗ (θ∨(pn+1)) = R1π∗ (π∗θ∨) = π∗R1π∗ (θ∨). Thus the last two terms of
the short exact sequence become Eg,n+1 → π∗Eg,n.

For the first term of the short exact sequence, the residue map produces a
canonical isomorphism

π∗ω
log
C/S|pn+1 = OS.

Thus π∗
(
θ|pn+1

)
and π∗

(
θ∨|pn+1

)
define line bundles over S with square OS and

hence trivial Chern class c(π∗
(
θ|pn+1

)
) = 1 = c(π∗

(
θ∨|pn+1

)
). The first term of the

short exact sequence R0π∗
(
θ∨(pn+1)|pn+1

)
defines a line bundle ξ → S with Chern

class
c(ξ) = c(R0π∗

(
OC(pn+1)|pn+1

)
)

that fits into the short exact sequence:

0→ ξ → Eg,n+1 → π∗Eg,n → 0.

The triviality of π∗
(

ω
log
C/S|pn+1

)
implies

Lpn+1 = R0π∗
(
ωC/S|pn+1

)
= −R0π∗

(
OC(pn+1)|pn+1

)
hence

c(ξ) =
1

c(Lpn+1)
= 1− ψpn+1 .

The short exact sequence then gives c2g−2+n+1(Eg,n+1) = −ψpn+1 · π∗c2g−2+n(Eg,n)
as required. �
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Definition 2.8. For p :Mspin
g,n →Mg,n define

Θg,n = (−1)n2g−1+n p∗Ωg,n ∈ H4g−4+2n(Mg,n, Q).

Lemma 2.72.7 and the relation

ψn+1 =
1
2

p∗ψn+1

proven in [2626, Prop. 2.4.1], together with the factor of 2n in the definition of Ωg,n,
immediately gives property (iiiiii) of Θg,n

Θg,n+1 = ψn+1 · π∗Θg,n.

Property (iviv) of Θg,n is given by the following calculation.

Proposition 2.9. Θ1,1 = 3ψ1 ∈ H2(M1,1, Q).

Proof. A one-pointed twisted elliptic curve (E , p) is a one-pointed elliptic curve
(E, p) such that p has isotropy Z2. The degree of the divisor p in E is 1

2 and the
degree of every other point in E is 1. If dz is a holomorphic differential on E (where
E = C/Λ and z is the identity function on the universal cover C) then locally near
p we have z = t2 so dz = 2tdt vanishes at p. In particular, the canonical divisor
(ωE ) = p has degree 1

2 and (ω
log
E ) = (ωE (p)) = 2p has degree 1.

A spin structure on E is a degree 1
2 line bundle L satisfying L2 = ω

log
E . Line

bundles on E correspond to divisors on E up to linear equivalence. Note that
meromorphic functions on E are exactly the meromorphic functions on E. The four
spin structures on E are given by the divisors θ0 = p and θi = qi − p, i = 1, 2, 3,
where qi is a non-trivial order 2 element in the group E with identity p. Clearly
θ2

0 = 2p = ω
log
E . For i = 1, 2, 3, θ2

i = 2qi − 2p ∼ 2p since there is a meromorphic
function ℘(z) − ℘(qi) on E with a double pole at p and a double zero at qi. Its
divisor on E is 2qi − 4p, since p has isotropy Z2, hence 2qi − 2p ∼ 2p.

Since H2(M1,1, Q) is generated by ψ1 it is enough to calculate
∫
M1,1

Θ1,1. The
Chern character of the push-forward bundle E1,1 is calculated via the Grothendieck-
Riemann-Roch theorem

Ch(Rπ∗E∨) = π∗(Ch(E∨)Td(ω∨π)).

In fact we need to use the orbifold Grothendieck-Riemann-Roch theorem [5454]. The
calculation we need is a variant of the calculation in [2626, Theorem 6.3.3] which
applies to E such that E2 = ω

log
C instead of E∨. Importantly, this means that the

Todd class has been worked out, and it remains to adjust the Ch(E∨) term. We get∫
M1,1

p∗c1(E1,1) = −Ch(Rπ∗E∨)

= −2
∫
M1,1

[
11
24

κ1 +
1

24
ψ1 +

1
2

(
− 1

24
+

1
12

)
(iΓ)∗(1)

]
= −2

(
11
242 +

1
242 +

1
2
· 1

24
· 1

2

)
= − 1

16

which agrees with

−
∫
M1,1

3
2

ψ1 = −3
2
· 1

24
= − 1

16
.
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Hence p∗c1(E1,1) = − 3
2 ψ1 and Θ1,1 = −2p∗c1(E1,1) = 3ψ1. One can also calculate

this using Chiodo’s formula [1010] given by (4242) in Section 55. �

Proposition 2.10. The classes Θg,n ∈ H4g−4+2n(Mg,n, Q) satisfy property (iiii).

Proof. The two properties (iiii) of Θg,n, follow from the analogous properties for Ωg,n.
This uses the relationship between compositions of pull-backs and push-forwards
in the following diagrams:

Mspin
g−1,n+2

φirr ◦ ν̂−1

φirr

Mspin
g,n

p

Mg−1,n+2 Mg,n

p

Mspin
h,|I|+1 ×M

spin
g−h,|J|+1

φh,I ◦ ν̂−1

φh,I

Mspin
g,n

p

Mh,|I|+1 ×Mg−h,|J|+1 Mg,n

p

where the broken arrows signify multiply-defined maps which are defined above
using fibre products.

On cohomology, we have φ∗irr p∗ = 2p∗ν̂∗φ∗irr and φ∗h,I p∗ = 2p∗ν̂∗φ∗h,I where the
factor of 2 is due to the degree of ν̂ ramification of p and the isotropy of the orbifold
divisor—see (39) in [3131]. Hence

φ∗irrΘg,n = φ∗irr p∗(−1)n2g−1+nΩg,n = 2p∗ν̂∗φ∗irr(−1)n2g−1+nΩg,n

= p∗(−1)n+22g+nΩg−1,n+2 = Θg−1,n+2

and similarly φ∗h,IΘg,n = π∗1 Θh,|I|+1 · π∗2 Θg−h,|J|+1 which uses

2 · (−1)n2g−1+n = (−1)n2g+n = (−1)|I|+12h−1+|I|+1(−1)|J|+12g−h−1+|J|+1.

�

Remark 2.11. The construction of Ωg,n should also follow from the cosection con-
struction in [77] using the moduli space of spin curves with fields

Mg,n(Z2)
p = {(C, θ, ρ) | (C, θ) ∈ Mspin

g,n , ρ ∈ H0(θ)}.

A cosection of the pull-back of Eg,n to Mg,n(Z2)
p is given by ρ−3 since it pairs

well with H1(θ)—we have ρ−3 ∈ H0((θ∨)3) while H1(θ) ∼= H0(ω ⊗ θ∨)∨ =
H0((θ∨)3)∨. Using the cosection ρ−3 a virtual fundamental class is constructed in
[77] that likely gives rise to Ωg,n ∈ H4g−4+2n(Mspin

g,n , Q). The virtual fundamental
class is constructed away from the zero set of ρ.
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3. UNIQUENESS

The degree property (II) of Theorem 11, Θg,n ∈ H4g−4+2n(Mg,n, Q), proven below,
implies the initial value

Θ1,1 = λψ, λ ∈ Q.

It leads leads to uniqueness of intersection numbers
∫
Mg,n

Θg,n

n

∏
i=1

ψ
mi
i

N

∏
j=1

κ`j
via

a reduction argument, and consequently property (VV) of Theorem 11. The proofs
in this section of properties (IIII), (IIIIII) and (VV) apply for any λ 6= 0. We finish the
section with a rigidity result given by Theorem 22 proving that necessarily λ = 3.

We first prove the following lemma which will be needed later.

Lemma 3.1. Properties (ii)-(iviv) imply that Θg,n 6= 0 for g > 0 and all n.

Proof. We have Θ1,1 = a or Θ1,1 = aψ1 for a 6= 0 by (ii) and (iviv). Using the
pull-back property (iiiiii) together with the equality ψnψi = ψnπ∗ψi for i < n, we
have Θ1,n = aψ2...ψn or Θ1,n = aψ1ψ2...ψn hence (1 + ψ1)Θ1,n = aψ1ψ2...ψn and∫
Mg,n

(1 + ψ1)Θ1,n = a(n− 1)!/24, proving Θ1,n 6= 0.
Now we proceed by induction on g. For the base case of g = 1, we have Θ1,n 6= 0

for all n > 0. Assume Θh,n 6= 0 for 0 < h < g and all n. For g > 1, let Γ be the
stable graph consisting of a genus g− 1 vertex attached by a single edge to a genus
1 vertex with n labeled leaves (denoted ordinary leaves in Section 5.0.55.0.5). Then by (iiii)

φ∗ΓΘg,n = Θg−1,1 ⊗Θ1,n+1

which is non-zero since Θg−1,1 6= 0 by the inductive hypothesis and Θ1,n+1 6= 0 by
the calculation above. �

Proof of (II). Write
d(g, n) = degree(Θg,n)

which exists by (ii). Note that the degree here is half the cohomological degree so
Θg,n ∈ H2d(g,n)(Mg,n, Q). Using (iiii), φ∗irrΘg,n = Θg−1,n+2 implies that

d(g, n) = d(g− 1, n + 2)

since Θg−1,n+2 6= 0 by Lemma 3.13.1. Hence d(g, n) = f (2g− 2 + n) is a function
of 2g − 2 + n. Similarly, using (iiii), φ∗h,IΘg,n = Θh,|I|+1 ⊗ Θg−h,|J|+1 implies that
f (a + b) = f (a) + f (b) = (a + b) f (1) since Θh,|I|+1 6= 0 and Θg−h,|J|+1 6= 0 again
by Lemma 3.13.1. Hence

d(g, n) = (2g− 2 + n)k

for an integer k. But d(g, n) ≤ 3g− 3 + n implies k ≤ 1. When k = 0, this gives
deg Θg,n = 0 which contradicts (iiiiii) together with Lemma 3.13.1 hence k = 1 and
deg Θg,n = 2g− 2 + n. �

Proof of (IIII). This is an immediate consequence of (II) since

deg Θ0,n = n− 2 > n− 3 = dimM0,n

hence Θ0,n = 0. For any stable graph Γ with a genus 0 vertex, Remark 1.11.1 gives
φ∗ΓΘg,n = ΘΓ = ∏v∈V(Γ) π∗v Θg(v),n(v) = 0 since the genus 0 vertex contributes a
factor of 0 to the product. �
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Proof of (IIIIII). Property (iiiiii) implies that

Θg,n =
n

∏
i=1

ψi · π∗Θg

where π : Mg,n → Mg is the forgetful map. Since π∗ω ∈ H∗(Mg,n, Q)Sn for
any class ω ∈ H∗(Mg, Q) and clearly ∏n

i=1 ψi ∈ H∗(Mg,n, Q)Sn we have Θg,n ∈
H∗(Mg,n, Q)Sn as required. �

The proof of (VV) follows from the special case of the intersection of Θg,n with a
polynomial in κ and ψ classes.

Proposition 3.2. For any Θg,n satisfying properties (ii) - (iiiiii), the intersection numbers

(9)
∫
Mg,n

Θg,n

n

∏
i=1

ψ
mi
i

N

∏
j=1

κ`j

are uniquely determined from the initial condition Θ1,1 = λψ1 for λ ∈ Q.

Proof. For n > 0, we will push forward the integral (99) via the forgetful map
π :Mg,n →Mg,n−1 as follows. Consider first the case when there are no κ classes.
The presence of ψn in Θg,n = ψn · π∗Θg,n−1 gives

Θg,nψk = Θg,nπ∗ψk, k < n

since ψnψk = ψnπ∗ψk for k < n. Hence∫
Mg,n

Θg,n

n

∏
i=1

ψ
mi
i =

∫
Mg,n

π∗
(

Θg,n−1

n−1

∏
i=1

ψ
mi
i

)
ψmn+1

n

=
∫
Mg,n−1

π∗

{
π∗
(

Θg,n−1

n−1

∏
i=1

ψ
mi
i

)
ψmn+1

n

}
=
∫
Mg,n−1

Θg,n−1

n−1

∏
i=1

ψ
mi
i κmn

so we have reduced an intersection number overMg,n to an intersection number

over Mg,n−1. In the presence of κ classes, replace κ`j
by κ`j

= π∗κ`j
+ ψ

`j
n and

repeat the push-forward as above on all summands. By induction, we see that for
g > 1 ∫

Mg,n
Θg,n

n

∏
i=1

ψ
mi
i

N

∏
j=1

κ`j
=
∫
Mg

Θg · p(κ1, κ2, ..., κ3g−3)

i.e. the intersection number (99) reduces to an intersection number overMg of Θg
times a polynomial in the κ classes. When g = 1, the right hand side is instead∫
M1,1

Θ1,1 · p for p ∈ Q a constant.
For g > 1, by (II) deg Θg = 2g− 2, so we may assume the polynomial p consists

only of terms of homogeneous degree g− 1 (where deg κr = r). But by a result
of Faber and Pandharipande [2424, Proposition 2], which strengthens Looijenga’s
theorem [3939], a homogeneous degree g− 1 monomial in the κ classes is equal in
the tautological ring to the sum of boundary terms, i.e. the sum of push-forwards
of polynomials in ψ and κ classes by the the maps (φΓ)∗. Such relations arise from
Pixton’s relations and are described algorithmically in [1111]. Now property (iiii) of
Θg, shows that the pull-back of Θg to these boundary terms is Θg′ ,n′ for g′ < g so
we have expressed (99) as a sum of integrals of Θg′ ,n′ against ψ and κ classes. By
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induction, one can reduce to the integral
∫
M1,1

Θ1,1 = λ
24 and the proposition is

proven. �

A consequence of Proposition 3.23.2 is property (VV) of Theorem 11 stated as Corol-
lary 3.33.3 below. Let us first recall the definition of tautological classes in H∗(Mg,n, Q).
Dual to any point (C, p1, ..., pn) ∈ Mg,n is its stable graph Γ with vertices V(Γ)
representing irreducible components of C, internal edges representing nodal singu-
larities and a (labeled) external edge for each pi. Each vertex is labeled by a genus
g(v) and has valency n(v). The genus of a stable graph is g(Γ) = b1(Γ) +∑

v∈V(Γ)
g(v).

The strata algebra Sg,n is a finite-dimensional vector space over Q with basis
given by isomorphism classes of pairs (Γ, ω), for Γ a stable graph of genus g with n
external edges and ω ∈ H∗(MΓ, Q) a product of κ and ψ classes in eachMg(v),n(v)
for each vertex v ∈ V(Γ). There is a natural map

q : Sg,n → H∗(Mg,n, Q)

defined by the push-forward q(Γ, ω) = φ∗Γ(ω) ∈ H∗(Mg,n, Q). The map q al-
lows one to define a multiplication on Sg,n, essentially coming from intersec-
tion theory in Mg,n, which can be described purely graphically. The image
q(Sg,n) ⊂ H∗(Mg,n, Q) is the tautological ring RH∗(Mg,n) and an element of the
kernel of q is a tautological relation. See [4848, Section 0.3] for a detailed description
of Sg,n.

Corollary 3.3. For all η ∈ RH∗(Mg,n),
∫
Mg,n

Θg,nη ∈ Q is uniquely determined by

properties (ii) - (iiiiii) and (IVIV).

Proof. The tautological ring RH∗(Mg,n) consists of polynomials in the classes κi,
ψi and boundary classes, which are pushforwards under (φΓ)∗ of polynomials in κi
and ψi. By the natural restriction property (iiii) satisfied by Θg,n, given a monomial
in κ and ψ classes ω ∈ H∗(MΓ, Q),∫

Mg,n
Θg,n · (φΓ)∗(ω) =

∫
MΓ

φ∗Γ(Θg,n) ·ω =
∫
MΓ

ΘΓ ·ω =
1

|AutΓ| ∏v∈Γ
w(v)

The final term is a product over the vertices of Γ of intersections Θ classes with
monomials in κ and ψ classes w(v) =

∫
Mg(v),n(v)

Θg(v),n(v) ·∏
n(v)
i=1 Pv({ψi, κj}) which

by Proposition 3.23.2 are uniquely determined by (ii) - (iiiiii) and (IVIV). �

Remark 3.4. The intersection numbers
∫
Mg,n

Θg,n ∏n
i=1 ψ

mi
i ∏N

j=1 κ`j
can be calcu-

lated algorithmically from the intersection numbers
∫
Mg,n

Θg,n ∏n
i=1 ψ

mi
i with no κ

classes. This essentially reverses the reduction shown in the proof of Proposition 3.23.2.
Explicitly, for π :Mg,n+N →Mg,n and m = (m1, ..., mN) define a polynomial in κ
classes by

Rm(κ1, κ2, ...) = π∗
(

ψm1+1
n+1 ...ψmN+1

n+N

)
so, for example, R(m1,m2)

= κm1 κm1 + κm1+m2 . Then

Θg,n · Rm = Θg,n · π∗
(

ψm1+1
n+1 ...ψmN+1

n+N

)
= π∗

(
π∗Θg,n · ψm1+1

n+1 ...ψmN+1
n+N

)
(10)
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= π∗
(

Θg,n+N · ψm1
n+1...ψmN

n+N

)
.

The polynomials Rm(κ1, κ2, ...) generate all polynomials in the κi so (1010) can be used
to remove any κ class.

The following example demonstrates Proposition 3.23.2 with an explicit genus 2
relation.

Example 3.5. A genus two relation proven by Mumford [4242, equation (8.5)], relating κ1
and the divisors defined by the double coversM1,1 ×M1,1 →MΓ1 andM1,2 →MΓ2

inM2, labeled by stable graphs Γi is given by

κ1 −
7
5
[MΓ1 ]−

1
5
[MΓ2 ] = 0

which induces the relation

Θ2 · κ1 −
7
5

Θ2 · [MΓ1 ]−
1
5

Θ2 · [MΓ2 ] = 0.

Property (iiii) of Θg,n yields∫
M2

Θ2 · [MΓ1 ] =
∫
MΓ1

φ∗Γ1
Θ2 =

∫
M1,1

Θ1,1 ·
∫
M1,1

Θ1,1 ·
1

|Aut(Γ1)|∫
M2

Θ2 · [MΓ2 ] =
∫
MΓ2

φ∗Γ2
Θ2 =

∫
M1,2

Θ1,2 ·
1

|Aut(Γ2)|
hence the relation on the level of intersection numbers is given by∫
M2

Θ2 · κ1 −
7
5
·
∫
M1,1

Θ1,1 ·
∫
M1,1

Θ1,1 ·
1

|Aut(Γ1)|
− 1

5
·
∫
M1,2

Θ1,2 ·
1

|Aut(Γ2)|
= 0.

We have
∫
M1,1

Θ1,1 = λ
24 =

∫
M1,2

Θ1,2 from (iiiiii), and |Aut(Γ1)| = 2= |Aut(Γ2)|. Hence∫
M2

Θ2 · κ1 =
7
5
·
∫
M1,1

Θ1,1 ·
∫
M1,1

Θ1,1 ·
1

|Aut(Γ1)|
+

1
5
·
∫
M1,2

Θ1,2 ·
1

|Aut(Γ2)|

=
7
5
·
(

λ

24

)2
· 1

2
+

1
5
· λ

24
· 1

2
=

7λ2 + 24λ

5760
.

Until now Θ1,1 = λψ1 for any non-zero λ ∈ Q. The following theorem proves
the rigidity condition (IVIV) that λ = 3. The proof of the theorem relies on the fact
that for low genus and small n, the cohomology is tautological. This allows us to
work in the tautological ring in order to construct Θg,n from properties (ii) - (iviv).

Theorem 2. Let Θg,n ∈ H∗(Mg,n, Q) satisfy (ii) - (iviv) and set the initial condition to be
Θ1,1 = λψ1 6= 0. Then λ = 3.

Proof. The existence proof in Section 22 shows that λ = 3 is possible but it does not
exclude other values. The strategy of proof of this theorem is to attempt to construct
classes, beginning with the initial condition Θ1,1 = λψ1. Importantly, condition
(iiiiii) determines Θg,n for all n > 0 uniquely from Θg so the main calculation occurs
over Mg. We consider classes in RH2g−2(Mg) since for small values of g it is
known that H2∗(M)g = RH∗(Mg). The essential idea is as follows. A class
Θg ∈ H2g−2(Mg, Q) pulls back under boundary maps to Θg−1,2 and Θg−1,1 ⊗Θ1,1.
The relationship

Θg−1,2 = ψ2π∗Θg−1,1
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constrains the class Θg. We find that Θ2 exists (and hence also Θ2,n exists for all
n) for all λ ∈ Q, but that Θ3 (and Θ3,n) exists only for λ = 3 or λ = −11/15. The
existence of Θ4 constrains λ further, allowing only λ = 3.

g = 1. From Θ1,1 = λψ1, condition (iiiiii) yields

Θ1,n = λψ1ψ2...ψn

since ψnψj = ψnπ∗ψj for any j < n.

g = 2. The cohomology group H4(M2, Q) has basis {κ2
1, κ2}. Set Θ2 = a11κ2

1 + a2κ2

and deduce a11 and a2 from restriction to MΓi ⊂ M2 for i = 1, 2 defined in
Example 3.53.5. Since κ2 ·MΓ1 = 0 we deduce that a11 = 1

2 λ2 and restriction toMΓ2
then uniquely determines

Θ2 = 1
2 λ2κ2

1 + (λ− 3
2 λ2)κ2.

Commutativity of the boundary maps with the forgetful map shown in the dia-
grams below implies that the classes Θ2,n = ψ1...ψnπ∗Θ2 restrict consistently to the
boundary to give the correct genus 1 classes Θ1,n′ for all λ ∈ Q.

Mg−1,n+2
φirr

φirr

Mg,n

π

Mg−1,2 Mg

π

Mh,|I|+1 ×Mg−h,|J|+1
φh,I

φh

Mg,n

π

Mh,1 ×Mg−h,1 Mg

π

g = 3. In genus 3, H2∗(M3, Q) = RH∗(M3) due to the calculation of the co-
homology H∗(M3, Q), for example by using the calculation of H∗(M3,1, Q) in
[2828], together with the calculation of the tautological ring RH∗(M3, Q) via Pix-
ton’s relations [4848] implemented using the Sage package admcycles [1212]. We have
dim RH4(M3, Q) = 7 and we write Θ3 as a general linear combination of basis
vectors in RH4(M3):

Θ3 = a1111κ4
1 + a112κ2

1κ2 + a13κ1κ3 + a22κ2
2 + a4κ4 + b1B1 + b2B2

where Bi ∈ RH4(M3) are given by B1 = 1 2

κ1 κ2

and B2 = 1 2

κ3

. The
following pull-back map is injective

RH4(M3)→ RH4(M2,2)⊕ RH3(M2,1)⊗ RH1(M1,1)

(which implies that the map from RH4(M3) to the boundary is injective). The
restriction map

RH4(M3)→ RH4(M2,2)

has 2-dimensional kernel and is surjective onto the S2-invariant part of RH4(M2,2).
Hence the condition

φ∗irrΘ3 = Θ2,2 = ψ1ψ2π∗Θ2

determines Θ3 up to parameters s, t ∈ Q:

a1111 = s
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a112 = 11
10 λ + 17

15 λ2 − 18s + 4
3 t

a13 = −12λ− 12λ2 + 104s− 13t

a22 = − 33
10 λ− 29

10 λ2 + 27s− 5t

a4 = 376
5 λ + 1933

30 λ2 − 426s + 250
3 t

b1 = t

b2 = 2
5 λ(3− λ)

The pull-back map

RH4(M3)→ RH3(M2,1)⊗ RH1(M1,1)

has three dimensional image, and the condition

φ∗ΓΘ3 = Θ2,1 ⊗Θ1,1 = (ψ1π∗Θ2)⊗ (λψ1)

is a linear system which cannot be satisfied for a general choice of the two parame-
ters s and t defining Θ3 for general λ, forcing λ to satisfy a polynomial relation. We
find that

a1111 = 5
24 λ3 − 19

120 λ2 − 11
40 λ

a112 = 5
4 λ3 − 147

20 λ2 − 99
20 λ

a13 = 403
24 λ3 − 209

12 λ2 − 239
8 λ = a13 − 3108

53 b1

a22 = − 3867
212 λ3 + 99471

2120 λ2 + 22143
530 λ = a22 + 12b1

a4 = − 115
2 λ3 + 1221

20 λ2 + 618
5 λ

b1 = 1
40 λ(λ− 3)(15λ + 11)

b2 = 2
5 λ(3− λ).

The expressions for a13 and a22 are consistent only when b1 = 0 hence

λ(λ− 3)(15λ + 11) = 0.

g = 4. In genus 4, H2∗(M4) = RH∗(M4) is due to the calculation by Bergström
and Tommasi [44] of the Hodge polynomial ofM4 together with the calculation
of the tautological ring RH∗(M4) via Pixton’s relations using admcycles [1212]. We
choose a general element Θ4 ∈ RH6(M4) which is a linear combination of basis
vectors for the 32 dimensional space RH6(M4). The pull-back map of RH6(M4)
to the boundary can be shown to be injective using admcycles.

The main purpose of the g = 4 calculation is to prove that λ = − 11
15 is impossible,

so we substitute λ = − 11
15 into Θ3 above to get

Θ3 = 2783
81000 κ4

1 − 11011
13500 κ2

1κ2 +
59939
10125 κ1κ3 +

16093
9000 κ2

2 − 474287
13500 κ4 − 1232

1125 B2

As in the g = 3 case above we consider the pull-back map

RH6(M4)→ RH6(M3,2)

which has a six dimensional kernel. The S2-invariant part of H12(M3,2) is proven
in [33] to be 31 dimensional, and using admcycles it can be shown to be tautological.
The condition φ∗irrΘ4 = Θ3,2 = ψ1ψ2π∗Θ3 produces a system of 31 equations in 32
unknowns. Using admcycles, we find that Θ3,2 lies in the image of the pull-back



A NEW COHOMOLOGY CLASS ON THE MODULI SPACE OF CURVES 19

map, and constrains Θ4 to depend linearly on 6 parameters. The pull-back map
composed with projection

RH6(M4)→ RH5(M3,1)⊗ RH1(M1,1)

uniquely determines the 6 parameters and finally the resulting class Θ4 is shown
under pull-back map composed with projection

RH6(M4)→ RH3(M2,1)⊗ RH3(M2,1)

to disagree with Θ2,1 ⊗Θ2,1. We conclude that λ = −11/15 is impossible, leaving
λ = 3.

�

4. COHOMOLOGICAL FIELD THEORIES

The class Θg,n combines with known enumerative invariants, such as Gromov-
Witten invariants, to give rise to new invariants. More generally, Θg,n pairs with
any cohomological field theory, which is fundamentally related to the moduli space
of curvesMg,n, retaining many of the properties of the cohomological field theory,
and is in particular often calculable.

A cohomological field theory is a pair (H, η) composed of a finite-dimensional
complex vector space H equipped with a symmetric, bilinear, nondegenerate form,
or metric, η and a sequence of Sn-equivariant maps. Many CohFTs are naturally
defined on H defined over Q, nevertheless we use C in order to relate them to
Frobenius manifolds, and to use normalised canonical coordinates, defined later.

Ωg,n : H⊗n → H∗(Mg,n, C)

that satisfy compatibility conditions from inclusion of strata:

φirr :Mg−1,n+2 →Mg,n, φh,I :Mh,|I|+1×Mg−h,|J|+1 →Mg,n, I t J = {1, ..., n}
given by

φ∗irrΩg,n(v1 ⊗ ...⊗ vn) = Ωg−1,n+2(v1 ⊗ ...⊗ vn ⊗ ∆)(11)

φ∗h,IΩg,n(v1 ⊗ ...⊗ vn) = Ωh,|I|+1 ⊗Ωg−h,|J|+1
(⊗

i∈I
vi ⊗ ∆⊗

⊗
j∈J

vj
)

(12)

where ∆ ∈ H ⊗ H is dual to η ∈ H∗ ⊗ H∗. When n = 0, Ωg := Ωg,0 ∈ H∗(Mg, C).
There exists a unit vector 11 ∈ H which satisfies

Ω0,3(11⊗ v1 ⊗ v2) = η(v1, v2).

The CohFT has flat unit if 11 ∈ H is compatible with the forgetful map π :Mg,n+1 →
Mg,n by

(13) Ωg,n+1(11⊗ v1 ⊗ ...⊗ vn) = π∗Ωg,n(v1 ⊗ ...⊗ vn)

for 2g− 2 + n > 0.
For a one-dimensional CohFT, i.e. dim H = 1, identify Ωg,n with the image

Ωg,n(11⊗n), so we write Ωg,n ∈ H∗(Mg,n, C). A trivial example of a CohFT is
Ωg,n = 1 ∈ H0(Mg,n, C) which is a topological field theory as we now describe.

A two-dimensional topological field theory (TFT) is a vector space H and a
sequence of symmetric linear maps

Ω0
g,n : H⊗n → C
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for integers g ≥ 0 and n > 0 satisfying the following conditions. The map Ω0
0,2 = η

defines a symmetric, bilinear, nondegenerate form η, and together with Ω0
0,3 it

defines a product · on H via

(14) η(v1·v2, v3) = Ω0
0,3(v1, v2, v3)

with identity element 11 given by the dual of Ω0
0,1 = 11∗ = η(11, ·). It satisfies

Ω0
g,n+1(11⊗ v1 ⊗ ...⊗ vn) = Ω0

g,n(v1 ⊗ ...⊗ vn)

and the gluing conditions

Ω0
g,n(v1 ⊗ ...⊗ vn) = Ω0

g−1,n+2(v1 ⊗ ...⊗ vn ⊗ ∆)

Ω0
g,n(v1 ⊗ ...⊗ vn) = Ω0

g1,|I|+1 ⊗Ω0
g2,|J|+1

(⊗
i∈I

vi ⊗ ∆⊗
⊗
j∈J

vj
)

for g = g1 + g2 and I t J = {1, ..., n}.
Consider the natural isomorphism H0(Mg,n) ∼= C. The degree zero part of a

CohFT Ωg,n is a TFT:

Ω0
g,n : H⊗n Ωg,n→ H∗(Mg,n, C)→ H0(Mg,n, C).

We often write Ω0,3 = Ω0
0,3 interchangeably. Associated to Ωg,n is the product (1414)

built from η and Ω0,3.

Remark 4.1. The classes Θg,n satisfy properties (1111) and (1212) of a one-dimensional
CohFT. In place of property (1313), they satisfy Θg,n+1(11⊗ v1 ⊗ ...⊗ vn) = ψn+1 ·
π∗Θg,n(v1 ⊗ ...⊗ vn) and Θ0,3 = 0.

The product defined in (1414) is semisimple if it is diagonal H ∼= C⊕C⊕ ...⊕C, i.e.
there is a canonical basis {u1, ..., uN} ⊂ H such that ui · uj = δijui. The metric is
then necessarily diagonal with respect to the same basis, η(ui, uj) = δijηi for some
ηi ∈ C \ {0}, i = 1, ..., N. The Givental-Teleman theorem described in Section 55
gives a construction of semisimple CohFTs.

4.1. Cohomological field theories coupled to Θg,n.

Definition 4.2. For any CohFT Ω defined on (H, η) define ΩΘ = {ΩΘ
g,n} to be the

sequence of Sn-equivariant maps ΩΘ
g,n : H⊗n → H∗(Mg,n, C) given by

ΩΘ
g,n(v1 ⊗ ...⊗ vn) := Θg,n ·Ωg,n(v1 ⊗ ...⊗ vn).

This is essentially the tensor products of CohFTs, albeit involving Θg,n. The
tensor products of CohFTs is obtained as above by cup product on H∗(Mg,n, C),
generalising Gromov-Witten invariants of target products and the Künneth formula
H∗(X1 × X2) ∼= H∗X1 ⊗ H∗X2.

Generalising Remark 4.14.1, ΩΘ
g,n satisfies properties (1111) and (1212) of a CohFT on

(H, η). In place of property (1313), it satisfies

ΩΘ
g,n+1(11⊗ v1 ⊗ ...⊗ vn) = ψn+1 · π∗ΩΘ

g,n(v1 ⊗ ...⊗ vn)

and ΩΘ
0,3 = 0.
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Given a CohFT Ω = {Ωg,n}, or a more general collection of classes such as
Ω = {ΩΘ

g,n}, and a basis {e1, ..., eN} of H, the partition function of Ω is defined by:

(15) ZΩ(h̄, {tα
k}) = exp ∑

g,n,~k

h̄g−1

n!

∫
Mg,n

Ωg,n(eα1 ⊗ ...⊗ eαn) ·
n

∏
j=1

ψ
kj
j ∏ t

αj
kj

for αi ∈ {1, ..., N} and k j ∈ N. For dim H = 1 and Ωg,n = 1 ∈ H∗(Mg,n, C), its
partition function is ZΩ(h̄, {tk}) = ZKW(h̄, {tk}) which is defined in Section 5.15.1.

For Ωg,n = Θg,n ∈ H∗(Mg,n, C), ZΩ(h̄, {tk}) = ZΘ(h̄, {tk}) gives its partition
function. Property (iiiiii) is realised by the following homogeneity property:

(16)
∂

∂t0
ZΘ(h̄, t0, t1, ...) =

∞

∑
i=0

(2i + 1)ti
∂

∂ti
ZΘ(h̄, t0, t1, ...) +

1
8

ZΘ(h̄, t0, t1, ...)

proven in the following proposition.

Proposition 4.3. The function ZΘ(h̄, t0, t1, ...) is homogeneous of degree − 1
8 with respect

to {q = 1− t0, t1, t2, ...} with deg q = 1 and deg ti = 2i + 1 for i > 0. Equivalently it
satisfies the dilaton equation (1616).

Proof. We have∫
Mg,n+1

Θg,n+1 ·
n

∏
j=1

ψ
kj
j =

∫
Mg,n+1

π∗Θg,n · ψn+1 ·
n

∏
j=1

ψ
kj
j

=
∫
Mg,n+1

π∗Θg,n · ψn+1 ·
n

∏
j=1

π∗ψ
kj
j =

∫
Mg,n

Θg,n ·
n

∏
j=1

ψ
kj
j · π∗ψn+1

= (2g− 2 + n)
∫
Mg,n

Θg,n ·
n

∏
j=1

ψ
kj
j .

which uses ψn+1 ·ψj = ψn+1 ·π∗ψj for j = 1, ..., n and π∗(π∗ω ·ψn+1) = ω ·π∗ψn+1.
In terms of the partition function ZΘ(h̄, t0, t1, ...), this is realised by the equation
(1616). �

4.1.1. Gromov-Witten invariants. Let X be a projective algebraic variety and consider
(C, x1, . . . , xn) a connected smooth curve of genus g with n distinct marked points.
For β ∈ H2(X, Z) the moduli space of stable mapsMg,n(X, β) is defined by:

Mg,n(X, β) = {(C, x1, . . . , xn)
π→ X | π∗[C] = β}/ ∼

where π is a morphism from a connected nodal curve C containing distinct points
{x1, . . . , xn} that avoid the nodes. Any genus zero irreducible component of C with
fewer than three distinguished points (nodal or marked), or genus one irreducible
component of C with no distinguished point, must not be collapsed to a point. We
quotient by isomorphisms of the domain C that fix each xi. The moduli space of
stable maps has irreducible components of different dimensions but it has a virtual
class of dimension

(17) dim[Mg,n(X, β)]virt = (dim X− 3)(1− g) + 〈c1(X), β〉+ n.

For i = 1, . . . , n there exist evaluation maps:

(18) evi :Mg,n(X, β) −→ X, evi(π) = π(xi)
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and classes γ ∈ H∗(X, Z) pull back to classes in H∗(Mg,n(X, β), C)

(19) ev∗i : H∗(X, Z) −→ H∗(Mg,n(X, β), C).

The forgetful map p : Mg,n(X, β) → Mg,n maps a stable map to its domain
curve followed by contraction of unstable components. The push-forward map
p∗ on cohomology defines a CohFT ΩX on the even part of the cohomology H =
Heven(X, C) (and a generalisation of a CohFT on H∗(X, C)) equipped with the
symmetric, bilinear, nondegenerate form

η(α, β) =
∫

X
α ∧ β.

We have (ΩX)g,n : Heven(X, C)⊗n → H∗(Mg,n, C) defined by

(ΩX)g,n(α1, ...αn) = ∑
β

p∗

(
n

∏
i=1

ev∗i (αi) ∩ [Mg,n(X, β)]virt

)
∈ H∗(Mg,n, C).

Note that it is the dependence of p = p(g, n, β) on β (which is suppressed) that
allows (ΩX)g,n(α1, ...αn) to be composed of different degree terms. The partition
function of the CohFT ΩX with respect to a chosen basis eα of Heven(X; C) is

ZΩX (h̄, {tα
k}) = exp ∑

g, n,~k
~α, β

h̄g−1

n!

∫
Mg,n

p∗

(
n

∏
i=1

ev∗i (eαi ) ∩ [Mg,n(X, β)]virt

)
n

∏
j=1

ψ
kj
j ∏ t

αj
kj

.

It stores ancestor invariants. These are different to descendant invariants which use
in place of ψj = c1(Lj), Ψj = c1(Lj) for line bundles Lj → Mg,n(X, β) defined
similarly as the cotangent bundle over the ith marked point on the domain curve.

Following Definition 4.24.2, we define ΩΘ
X by

(ΩΘ
X)g,n(α1, ...αn) = Θg,n ·∑

β

p∗

(
n

∏
i=1

ev∗i (αi)

)
∈ H∗(Mg,n, C).

and

ZΘ
ΩX

(h̄, {tα
k}) = exp ∑

g, n,~k
~α, β

h̄g−1

n!

∫
Mg,n

Θg,n · p∗

(
n

∏
i=1

ev∗i (eαi )

)
·

n

∏
j=1

ψ
kj
j ∏ t

αj
kj

.

Let ΘPD
g,n ⊂ Ag−1(Mg,n, C) be the (g − 1)-dimensional Chow class given by the

push-forward of the top Chern class of the bundle Eg,n defined in Definition 2.12.1.
The virtual dimension of the pull-back of ΘPD

g,n is:

(20) dim
{
[Mg,n(X, d)]vir ∩ p−1(ΘPD

g,n)
}
= (dim X− 1)(1− g) + 〈c1(X), β〉.

Comparing the dimension formulae (1717) and (2020) we see that elliptic curves now
take the place of Calabi-Yau 3-folds to give virtual dimension zero moduli spaces,
independent of genus and degree. The invariants of a target curve X are trivial
when the genus of X is greater than 1 and computable when X = P1, [4545], produc-
ing results analogous to the usual Gromov-Witten invariants in [4646]. For c1(X) = 0
and dim X > 1, the invariants vanish for g > 1, while for g = 1 it seems to predict
an invariant associated to maps of elliptic curves to X.
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4.1.2. Weil-Petersson volumes. A fundamental example of a 1-dimensional CohFT is
given by

Ωg,n = exp(2π2κ1) ∈ H∗(Mg,n, R).

Its partition function stores Weil-Petersson volumes

Vg,n =
(2π2)3g−3+n

(3g− 3 + n)!

∫
Mg,n

κ
3g−3+n
1

and deformed Weil-Petersson volumes studied by Mirzakhani [4040]. Weil-Petersson
volumes of the subvariety ofMg,n dual to Θg,n make sense even before we find
such a subvariety. They are given by

VΘ
g,n =

(2π2)g−1

(g− 1)!

∫
Mg,n

Θg,n · κg−1
1

which are calculable since they are given by a translation of ZBGW. If we include
ψ classes, we get polynomials VΘ

g,n(L1, ..., Ln) which give the deformed volumes
analogous to Mirzakhani’s volumes. In [4444, 5252] the polynomials VΘ

g,n(L1, ..., Ln) are
related to the volume of the moduli space of Super Riemann surfaces.

4.1.3. ELSV formula. Another example of a 1-dimensional CohFT is given by

Ωg,n = c(E∨) = 1− λ1 + ... + (−1)gλg ∈ H∗(Mg,n, C)

where λi = ci(E) is the ith Chern class of the Hodge bundle E→Mg,n defined to
have fibres H0(ωC) over a nodal curve C.

Hurwitz [3232] studied the problem of connected curves Σ of genus g covering
P1, branched over r + 1 fixed points {p1, p2, ..., pr, pr+1} with arbitrary profile
µ = (µ1, ..., µn) over pr+1. Over the other r branch points one specifies simple rami-
fication, i.e. the partition (2, 1, 1, ....). The Riemann-Hurwitz formula determines
the number r of simple branch points via 2− 2g− n = |µ| − r.

Definition 4.4. Define the simple Hurwitz number Hg,µ to be the weighted count
of genus g connected covers of P1 with ramification µ = (µ1, ..., µn) over ∞ and
simple ramification elsewhere. Each cover π is counted with weight 1/|Aut(π)|.

Coefficients of the partition function of the CohFT Ωg,n = c(E∨) appear naturally
in the ELSV formula [2020] which relates the Hurwitz numbers Hg,µ to the Hodge
classes. The ELSV formula is:

Hg,µ =
r(g, µ)!
|Aut µ|

n

∏
i=1

µ
µi
i

µi!

∫
Mg,n

1− λ1 + ... + (−1)gλg

(1− µ1ψ1)...(1− µnψn)

where µ = (µ1, ..., µn) and r(g, µ) = 2g− 2 + n + |µ|.
Using ΩΘ

g,n = Θ · c(E∨) we can define an analogue of the ELSV formula:

HΘ
g,µ =

(2g− 2 + n + |µ|)!
|Aut µ|

n

∏
i=1

µ
µi
i

µi!

∫
Mg,n

Θg,n ·
1− λ1 + ... + (−1)g−1λg−1

(1− µ1ψ1)...(1− µnψn)
.

It may be that HΘ
g,µ has an interpretation of enumerating a new type of Hurwitz

covers. Note that it makes sense to set all µi = 0, and in particular there are
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non-trivial primary invariants overMg, unlike for simple Hurwitz numbers. An
example calculation:∫

M2

Θ2λ1 =
1
5
· 1

8
· 1

8
· 1

2
+

1
10
· 1

8
· 1

2
=

1
128

⇐ λ1 =
1
10

(2δ1,1 + δirr).

4.1.4. The versal deformation space of the A2 singularity. The A2 singularity has a
two-dimensional versal deformation space M ∼= C2 = {(t1, t2)} parametrising the
family

Wt(z) = z3 − t2z + t1

that admits a semisimple Frobenius manifold structure. Dubrovin [1515] associated a
family of linear systems, defined in (2121) below, depending on the canonical coordi-
nates (u1, ..., uN) of any semisimple Frobenius manifold M. This produces a CohFT
ΩA2 defined on C2 from the A2 singularity using Definition 5.25.2 in Section 55. More
generally, to any point of a Frobenius manifold one can associate a cohomological
field theory and conversely the genus zero part of a cohomological field theory
defines a Frobenius manifold [1515].

Recall that a Frobenius manifold is a complex manifold M equipped with an
associative product on its tangent bundle compatible with a flat metric—a non-
degenerate symmetric bilinear form—on the manifold. It is encoded by a single
function F(t1, ..., tN), known as the prepotential, that satisfies a nonlinear partial
differential equation known as the Witten-Dijkgraaf-Verlinde-Verlinde equation:

FijmηmnFk`n = Fi`mηmnFjkn, ηij = F1ij

where ηikηkj = δij, Fi =
∂

∂ti
F, ∂

∂t1
= 11 corresponds to the flat unit vector field for the

product, and {t1, ..., tN} are (flat) local coordinates on M. The Frobenius manifold
is conformal if it comes equipped with an Euler vector field E which describes
symmetries of the Frobenius manifold, neatly encoded by

E · F(t1, ..., tN) = c · F(t1, ..., tN) + quadratic polynomial, c ∈ C.

For a semisimple conformal Frobenius manifold, multiplication by the Euler vector
field E produces an endomorphism U with eigenvalues {u1, ..., uN} known as
canonical coordinates on M. They give rise to vector fields ∂/∂ui with respect to
which the metric η, product · and Euler vector field E are diagonal:

∂

∂ui
· ∂

∂uj
= δij

∂

∂ui
, η

(
∂

∂ui
,

∂

∂uj

)
= δij∆i, E = ∑ ui

∂

∂ui
.

At any point of the Frobenius manifold, the endomorphism U defined by mul-
tiplication by the Euler vector field E, and the endomorphism V = [Γ, U] where

Γij =
∂ui ∆j

2
√

∆i∆j
for i 6= j are the so-called rotation coefficients of the metric η in the

normalised canonical basis, produce the differential equation

(21)
(

d
dz
−U − V

z

)
Y = 0.

Choose a solution of (2121) of the form Y = R(z−1)ezU and substitute z 7→ z−1 to get

0 =

(
d
dz

+
U
z2 +

V
z

)
R(z)eU/z =

(
d
dz

R(z) +
1
z2 [U, R(z)] +

1
z

VR(z)
)

eU/z.
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This associates an element R(z) = ∑ Rkzk to each point of the Frobenius manifold.
Teleman [5353] defined the endomorphisms Rk of H = Tp M recursively from R0 = I
by

(22) [Rk+1, U] = (k + V)Rk, k = 0, 1, ...

It is useful to consider three natural bases of the tangent space H = Tp M ∼= CN at
any point p of a semisimple Frobenius manifold. The flat basis {∂/∂ti} which gives
a constant metric η, the canonical basis {∂/∂ui} which gives a trivial product ·,
and the normalised canonical basis {vi}, for vi = ∆−1/2

i ∂/∂ui, which gives a trivial
metric η. (A different choice of square root of ∆i would simply give a different
choice of normalised canonical basis.) The transition matrix Ψ from flat coordinates
to normalised canonical coordinates sends the metric η to the dot product, i.e.
ΨTΨ = η. The topological field theory structure on H induced from η and · is
diagonal in the normalised canonical basis. It is given by

Ωg,n(v⊗n
i ) = ∆1−g− 1

2 n
i

and vanishes on mixed products of vi and vj, i 6= j. In the normalised canonical
basis, the unit vector is given by

11 = (∆
1
2
1 , ..., ∆

1
2
N)

hence it uniquely determines the topological field theory. We find the normalised
canonical basis most useful for comparisons with topological recursion—see Sec-
tion 5.2.15.2.1.

The Frobenius manifold structure on the versal deformation space M of the A2
singularity was constructed in [1515, 4949]. The product on tangent spaces of the family
Wt(z) = z3 − t2z + t1 is induced from the isomorphism

Tt M ∼= C[z]/W ′t (z)

given by ∂
∂tk
7→ ∂

∂tk
Wt = (−z)k−1 producing

∂

∂t1
· ∂

∂t1
=

∂

∂t1
,

∂

∂t1
· ∂

∂t2
=

∂

∂t2
,

∂

∂t2
· ∂

∂t2
=

1
3

t2
∂

∂t1
.

The metric is given by

η(p(z), q(z)) = −3 Res
∞

p(z)q(z)dz
W ′t (z)

.

With respect to the basis { ∂
∂t1

, ∂
∂t2
} it is constant hence flat:

η =

(
0 1
1 0

)
.

The Frobenius manifold structure on M is conformal. The unit and Euler vector
fields are 11 = ∂

∂t1
and E = t1

∂
∂t1

+ 2
3 t2

∂
∂t2

, which correspond respectively to the
images of 1 and Wt(z) in C[z]/W ′t (z).

The prepotential is produced via ηij = F1ij and η(∂/∂ti·∂/∂tj, ∂/∂tk) = Fijk

F(t1, t2) =
1
2

t2
1t2 +

1
72

t4
2.
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and satisfies E · F(t1, t2) =
8
3 F(t1, t2). The canonical coordinates are

u1 = t1 +
2

3
√

3
t3/2
2 , u2 = t1 −

2
3
√

3
t3/2
2 .

In the normalised canonical basis, the rotation coefficients Γ12 =
−i
√

3
8

t−3/2
2 = Γ21

give rise to V = [Γ, U] = i
√

3
2 t−3/2

2

(
0 −1
1 0

)
. In canonical coordinates we have

(23) U =

(
u1 0
0 u2

)
, V =

2i
3(u1 − u2)

(
0 1
−1 0

)
.

The metric η applied to the vector fields ∂
∂ui

= 1
2

(
∂

∂t1
− (−1)i

(
3
t2

)1/2
∂

∂t2

)
is

η
(

∂
∂ui

, ∂
∂uj

)
= δij∆i where ∆1 =

√
3

2 t−1/2
2 = −∆2. Restrict to the point of M

with coordinates (u1, u2) = (2,−2), or equivalently (t1, t2) = (0, 3). Then ∆1 =
1/2 = −∆2 determines the TFT and

U =

(
2 0
0 −2

)
, V =

1
6

(
0 i
−i 0

)
determines R(z) ∈ L(2)GL(2, C) and T(z) ∈ z2C2[[z]] via (2222) to get:

R(z) = ∑
m

(6m)!
(6m− 1)(3m)!(2m)!

(
−1 (−1)m6mi
−6mi (−1)m−1

)( z
1728

)m
(24)

T(z) = z(11− R−1(z)(11)), 11 =
1√
2

(
1
i

)
.

The triple (R(z), T(z), 11) ∈ L(2)GL(N, C) × z2CN [[z]] × CN in (2424) produces
the cohomological field theory ΩA2 associated to the A2 singularity at the point
(t1, t2) = (0, 3) via Definition 5.25.2 in the next section.

Remark 4.5. The matrix R(z) defined in (2424)—which uses the normalised canonical
basis for H so that η is the dot product—is related to the matrix R(z) in [4848] by
conjugation by the transition matrix Ψ from flat coordinates to normalised canonical
coordinates

R(z) = Ψ ∑
m

(6m)!
(3m)!(2m)!

( 1+6m
1−6m 0

0 1

)(
0 1
1 0

)m ( z
1728

)m
Ψ−1

for

Ψ =
1√
2

(
1 1
i −i

)
.

5. GIVENTAL CONSTRUCTION OF COHOMOLOGICAL FIELD THEORIES.

Givental produced a construction of partition functions of cohomological field
theories in [2929]. He defined an action of the twisted loop group, and elements
of z2CN [[z]] known as translations, on partition functions of cohomological field
theories and used this to build partition functions of semisimple cohomological field
theories out of the basic building block ZKW(h̄, t0, t1, ...) combined with the vector
11 ∈ CN which represents the topological field theory. This action was interpreted



A NEW COHOMOLOGY CLASS ON THE MODULI SPACE OF CURVES 27

as an action on the actual cohomology classes in H∗(Mg,n, C) independently, by
Katzarkov-Kontsevich-Pantev, Kazarian and Teleman—see [4848, 5050].

The Givental action is defined on more general sequences of cohomology classes
in H∗(Mg,n, C) such as the collection of classes Θg,n or ΩΘ

g,n defined from any
CohFT Ωg,n in Definition 4.24.2. If Ωg,n is semisimple the classes ΩΘ

g,n can be obtained
by applying Givental’s action to the collection Θg,n.

5.0.5. The twisted loop group action. The loop group LGL(N, C) is the group of
formal series

R(z) =
∞

∑
k=0

Rkzk

where Rk are N × N matrices and R0 ∈ GL(N, C). Define the twisted loop group
L(2)GL(N, C) ⊂ LGL(N, C) to be the subgroup of elements satisfying R0 = I and

R(z)R(−z)T = I.

Elements of L(2)GL(N, C) naturally arise out of solutions to the linear system
(2121) given by ( d

dz −U − V
z )Y = 0 where Y(z) ∈ CN , U = diag(u1, ..., uN) for ui

distinct and V is skew symmetric. One can choose a solution of (2121) which behaves
asymptotically for z→ ∞ as

Y(z) = R(z−1)ezU , R(z) = I + R1z + R2z2 + ... .

This defines a power series R(z) with coefficients given by N × N matrices which
is easily shown to satisfy R(z)RT(−z) = I, hence R(z) ∈ L(2)GL(N, C).

Givental [2929] constructed an action on CohFTs using a triple

(R(z), T(z), 11) ∈ L(2)GL(N, C)× z2CN [[z]]×CN

as follows. For a given stable graph Γ of genus g and with n external edges we have

φΓ :MΓ = ∏
v∈V(Γ)

Mg(v),n(v) →Mg,n.

Given (R(z), T(z), 11) ∈ L(2)GL(N, C) × z2CN [[z]] × CN , Givental’s action is de-
fined via weighted sums over stable graphs. For R(z) ∈ L(2)GL(N, C), define

E(z, w) =
I − R−1(z)R−1(w)T

z + w
= ∑

i,j≥0
Eijwizj

which has the power series expansion on the right since R−1(z) is also an element of
the twisted loop group so the numerator I − R−1(z)R−1(w)T vanishes at w = −z.

Definition 5.1. For a stable graph Γ denote by

V(Γ), E(Γ), H(Γ), L(Γ) = L∗(Γ) t L•(Γ)

its set of vertices, edges, half-edges and leaves. The disjoint splitting of L(Γ) into
ordinary leaves L∗ and dilaton leaves L• is part of the structure on Γ. The set
of half-edges consists of leaves and oriented edges so there is an injective map
L(Γ) → H(Γ) and a multiply-defined map E(Γ) → H(Γ) denoted by E(Γ) 3
e 7→ {e+, e−} ⊂ H(Γ). The map sending a half-edge to its vertex is given by
v : H(Γ)→ V(Γ). Decorate Γ by functions:

g : V(Γ)→N
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α : V(Γ)→ {1, ..., N}

p : L∗(Γ)
∼=→ {1, 2, ..., n}

k : H(Γ)→N

such that k|L•(Γ) > 1 and n = |L∗(Γ)|. We write gv = g(v), αv = α(v), α` = α(v(`)),
p` = p(`), k` = k(`). The genus of Γ is g(Γ) = b1(Γ) + ∑

v∈V(Γ)
g(v). We say Γ is stable

if any vertex labeled by g = 0 is of valency ≥ 3 and there are no isolated vertices
labeled by g = 1. We write nv for the valency of the vertex v. Define Gg,n to be the
finite set of all stable, connected, genus g, decorated graphs with n ordinary leaves
and at most 3g− 3 + n dilaton leaves.

Definition 5.2 ([4848, 5050]). Given a CohFT Ω′ = {Ω′g,n} and

(R(z), T(z)) ∈ L(2)GL(N, C)× z2CN [[z]]

define R · T ·Ω′ = Ω = {Ωg,n} by a weighted sum over stable graphs,

(25) Ωg,n := ∑
Γ∈Gg,n

1
|Aut(Γ)| (φΓ)∗π∗ ∏

v∈V(Γ)
w(v)∏

e∈E(Γ)
w(e) ∏

`∈L(Γ)
w(`) ∈ H∗(Mg,n, C)

where π is the map that forgets dilaton leaves. Weights are defined as follows:
(i) Vertex weight: w(v) = Ω′g(v),nv

at each vertex v;
(ii) Edge weight: w(e) = E(ψ′e, ψ′′e ) at each edge e;

(iii) Leaf weight: w(`) =

{
R−1(ψp(`)) at each ordinary leaf ` ∈ L∗

T(ψp(`)) at each dilaton leaf ` ∈ L•.

We consider only the even part of H∗(Mg,n, C) so (2525) is independent of the
order in which we take the product of cohomology classes. If {Ωg,n} is a CohFT
defined on (C, η) for H ∼= CN , then the classes {Ωg,n} in (2525) satisfy the same
restriction conditions and hence define a CohFT on (C, η) with the same degree
zero, or topological field theory, terms as those of Ω′. If we choose T(z) ≡ 0, then
the sum in (2525), which is over stable graphs without dilaton leaves, defines the
action of the twisted loop group on CohFTs. If we choose R(z) ≡ I, then (2525) is a
graphical realisation of the translation action of T(z) ∈ z2H[[z]] on a CohFT Ω′g,n
defined by:

(T ·Ω′)g,n(v1⊗ ..⊗ vn) = ∑
m≥0

1
m!

π∗Ω′g,n+m(v1⊗ ..⊗ vn⊗ T(ψn+1)⊗ ..⊗ T(ψn+m))

where π : Mg,n+m → Mg,n is the forgetful map. The sum over m ∈ N defining
(T ·Ω′)g,n is finite since T(z) ∈ z2H[[z]], so dimMg,n+m = 3g− 3 + n + m grows
more slowly in m than the degree 2m coming from T resulting in at most 3g− 3 + n
terms. We can relax this condition and allow T(z) ∈ zH[[z]] if we control the
growth of the degrees of all terms of Ω′g,n in n to ensure T(z) produces a finite sum.
In particular, Θg,n, and more generally Ω′Θg,n for any CohFT Ω′g,n, is annihilated by
terms of degree > g− 1 hence the sum defining (TΩ′)g,n consists of at most g− 1
terms when T(z) ∈ zH[[z]].

The tensor product Ω 7→ ΩΘ given in Definition 4.24.2 commutes with the action
of R and commutes with the action of T up to rescaling. For a CohFT Ω, and
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R(z) ∈ L(2)GL(N, C) and T(z) ∈ zCN [[z]]

(26) (R ·Ω)Θ = R ·ΩΘ, (zT) ·ΩΘ = T ·ΩΘ.

The first relation in (2626) uses the restriction properties (iiii) of Θg,n and the second of
these uses the forgetful property (iiiiii) of Θg,n as follows:

π∗ΩΘ
g,n+m

(
n⊗

i=1

vi ⊗
m⊗

i=1

T(ψn+i)

)
= π∗Ωg,n+m

(
n⊗

i=1

vi ⊗
m⊗

i=1

T(ψn+i)Θg,n+m

)

=Θg,nπ∗Ωg,n+m

(
n⊗

i=1

vi ⊗
m⊗

i=1

T(ψn+i)
m

∏
i=1

ψn+i

)

=Θg,nπ∗Ωg,n+m

(
n⊗

i=1

vi ⊗
m⊗

i=1

ψn+iT(ψn+i)

)
and sum over m to get T ·ΩΘ = (zT) ·ΩΘ.

The Givental-Teleman theorem [2929, 5353] proves that the action defined in Defi-
nition 5.25.2 is transitive on semisimple CohFTs. In particular, a semisimple CohFT
defined on a vector space of dimension N can be constructed via the Givental action
on N copies of the trivial CohFT. Given a semisimple CohFT Ω, there exists

(R(z), T(z), 11) ∈ L(2)GL(N, C)× z2CN [[z]]×CN

such that Ωg,n is defined by the weighted sum over graphs (2525) using R(z), T(z)
and Ω′g,n given by the topological field theory underlying Ωg,n. Note that a semi-
simple topological field theory of dimension N is equivalent to 11 ∈ CN which gives
the unit vector in terms of a basis in which the product is diagonal and the metric η
is the dot product, known as a normalised canonical basis.

On the level of partition functions, the construction of a semisimple CohFT from
the trivial CohFT is realised via an action of quantised differential operators R̂ and
T̂ on products of ZKW(h̄, t0, t1, ...), a KdV tau function defined in the next section.

Definition 5.3. For R(z)= exp(∑
`>0

r`z`)∈ L(2)GL(N, C), T(z) =∑
k>0

Tα
k zk∈ zCN [[z]],

R̂ := exp

 ∞

∑
`=1

∑
α,β

 ∞

∑
k=0

(rk)
α
βtβ

k
∂

∂tα
k+`

+
h̄
2

`−1

∑
m=0

(−1)m+1(r`)α
β

∂2

∂tα
m∂tβ

`−m−1


T̂ := exp

(
m

∑
α=1

∑
k>0

Tα
k

∂

∂tα
k

)
.

The partition function of (2525) is given in [1919, 2929, 5050] by the following formula:

ZΩ(h̄, {tα
k}) = R̂ · T̂ · 1̂1 · ZKW(h̄, {t1

k}) · · · Z
KW(h̄, {tN

k })(27)

= exp
{

∑
g,n

h̄g−1 ∑
Γ∈Gg,n

1
|Aut(Γ)| ∏

v∈V(Γ)
ŵ(v) ∏

e∈E(Γ)
ŵ(e) ∏

`∈L(Γ)
ŵ(`)

}
.

The operator 1̂1 rescales the variables ∆̂ · ZKW(h̄, {tα
k}) = ZKW((11α)2h̄, {11αtα

k}).
Vertex weights ŵ(v) store products of ZKW corresponding to the partition function
of a topological field theory, edge weights ŵ(e) store coefficients of the series E(w, z),
and leaf weights ŵ(`) store the variables tα

k in a series weighted by coefficients of
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the series R−1(−z). We do not give explicit formulae for the weights, see [1919, 2929, 5050],
and instead use an equivalent elegant formulation given by topological recursion,
defined in Section 5.25.2.

A consequence of the relations (2626) is the following proposition which modifies
the construction of a semisimple CohFT Ω to produce ΩΘ.

Proposition 5.4. Given a semisimple CohFT Ω defined via (2525) using

(R(z), T(z), 11) ∈ L(2)GL(N, C)× z2CN [[z]]×CN

then the collection of classes ΩΘ is defined via (2525) using

(R(z),
1
z

T(z), 11) ∈ L(2)GL(N, C)× zCN [[z]]×CN

and
Ω′g,n = Θg,n ⊗Ω(0)

g,n : H⊗n → H4g−4+2n(Mg,n, C)

for Ω(0)
g,n the degree 0 part of Ωg,n determined by the vector 11 ∈ CN . Its partition function

ZΩΘ(h̄, {tα
k}) is obtained by replacing each copy of ZKW(h̄, {tk}) in (2727) by a copy of

ZΘ(h̄, {tk}) and shifting the operator T̂.

5.1. KdV tau functions. The KdV hierarchy is a sequence of partial differential
equations beginning with the KdV equation.

(28) Ut1 = UUt0 +
h̄

12
Ut0t0t0 , U(t0, 0, 0, ...) = f (t0).

A tau function Z(t0, t1, ...) of the KdV hierarchy (equivalently the KP hierarchy in
odd times p2m+1 = tm/(2m + 1)!!) gives rise to a solution U = h̄ ∂2

∂t2
0

log Z of the

KdV hierarchy. The first equation in the hierarchy is the KdV equation (2828), and
later equations Utk = Pk(U, Ut0 , Ut0t0 , ...) for k > 1 determine U uniquely from
U(t0, 0, 0, ...). See [4141] for the full definition.

The Kontsevich-Witten tau function ZKW is defined by the initial condition
UKW(t0, 0, 0, ...) = t0 for UKW = h̄ ∂2

∂t2
0

log ZKW. The low genus terms of log ZKW are

log ZKW(h̄, t0, t1, ...) = h̄−1(
t3
0

3!
+

t3
0t1

3!
+

t4
0t2

4!
+ ...) +

t1

24
+ ...

Theorem 3 (Witten-Kontsevich 1992 [3636, 5555]).

ZKW(h̄, t0, t1, ...) = exp ∑
g,n

h̄g−1 1
n! ∑

~k∈Nn

∫
Mg,n

n

∏
i=1

ψ
mi
i tmi

is a tau function of the KdV hierarchy.

The Brézin-Gross-Witten solution UBGW = h̄ ∂2

∂t2
0

log ZBGW of the KdV hierarchy

arises out of a unitary matrix model studied in [66, 3030]. It is defined by the initial
condition

UBGW(t0, 0, 0, ...) =
h̄

8(1− t0)2 .

The low genus g terms (= coefficient of h̄g−1) of log ZBGW are

log ZBGW =− 1
8

log(1− t0) + h̄
3

128
t1

(1− t0)3 + h̄2 15
1024

t2

(1− t0)5(29)
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+ h̄2 63
1024

t2
1

(1− t0)6 + O(h̄3)

=
1
8

t0+
1

16
t2
0 + .. + h̄(

3
128

t1 +
9

128
t0t1 + ..) + h̄2(

15
1024

t2 +
63

1024
t2
1 + ..)

It satisfies the homogeneity property

∂

∂t0
ZBGW(h̄, t0, t1, ...) =

∞

∑
i=0

(2i + 1)ti
∂

∂ti
ZBGW(h̄, t0, t1, ...) +

1
8

ZBGW(h̄, t0, t1, ...)

which coincides with (1616) satisfied by ZΘ(h̄, t0, t1, ...). A proof of this homogeneity
property for ZBGW can be found in [22, 1414].

The tau function ZBGW(h̄, t0, t1, ...) shares many properties of the famous Kont-
sevich-Witten tau function ZKW(h̄, t0, t1, ...) introduced in [5555]. An analogue of
Theorem 33 is given by Conjecture 11 which postulates that the function

ZΘ(h̄, t0, t1, ...) = exp ∑
g,n,~k

h̄g−1

n!

∫
Mg,n

Θg,n ·
n

∏
j=1

ψ
kj
j ∏ tkj

coincides with ZBGW(h̄, t0, t1, ...). The tau function ZBGW appears in a generalisation
of Givental’s decomposition of CohFTs in [99].

Definition 5.5. Given a semisimple CohFT Ω with partition function ZΩ(h̄, {tα
k})

constructed as a graphical sum via (2727)

ZΩ(h̄, {tα
k}) = R̂ · T̂ · 1̂1 · ZKW(h̄, {t1

k}) · · · Z
KW(h̄, {tN

k })

define

ZBGW
Ω (h̄, {tα

k}) = R̂ · T̂0 · 1̂1 · ZBGW(h̄, {t1
k}) · · · Z

BGW(h̄, {tN
k })

where T0 = 1
z T(z).

The same shift T0 = 1
z T(z) is used by ZBGW(h̄, {tk}) and ZΘ(h̄, {tk}) due to their

common homogeneity property (1616). One can also replace only some copies of
ZKW(h̄, {tk}) in (2727) by copies of ZBGW(h̄, {tk}) and shift components of T̂. For
example, in [1313] the enumeration of bipartite dessins d’enfant is shown to have
partition function

(30) Z(h̄, {tα
k}) = R̂ · T̂ · ZBGW(−1

2
h̄, { i√

2
t1
k})ZKW(32h̄, {4

√
2t2

k})

for R and T determined by the curve xy2 + xy + 1 = 0 as described in Section 5.25.2.

5.2. Topological recursion. Figure 11 summarises the contents of this section.
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R(z) ∈ L(2)GL(N, C)

T(z) ∈ z2CN [[z]], 11 ∈ CN

Givental construction
ZΩ(h̄, {tα

k})

S = (C, x, y, B) ZS(h̄, {tα
k})

topological recursion

FIGURE 1. Constructions of CohFT partition functions

The upper horizontal arrow in the figure represents Givental’s construction
of a partition function defined in (2727) and Definition 5.25.2. Topological recursion
is defined in Section 5.25.2—it produces a partition function from a spectral curve
S = (C, x, y, B) consisting of a Riemann surface C equipped with meromorphic
functions x and y and a bidifferential B. We begin with a description of the left
vertical arrow which represents the construction of an element R(z) ∈ L(2)GL(N, C)
from (C, x, B) in (3131) and T(z) and 11 from (C, x, y) in (3737) and (3636). We then define
topological recursion in 5.2.15.2.1 and state the result of [1818], that topological recursion
encodes the graphical construction in (2727) and gives equality of partition functions,
represented by the right vertical arrow.

An element of the twisted loop group R(z) ∈ L(2)GL(N, C) can be naturally
constructed from a Riemann surface Σ equipped with a bidifferential B(p1, p2)
on Σ× Σ and a meromorphic function x : Σ → C, for N = the number of zeros
of dx. A basic example is the function x = z2 on Σ = C which gives rise to the
constant element R(z) = 1 ∈ GL(1, C). More generally, any function x that looks
like this example locally, i.e. x = s2 + c for s a local coordinate around a zero of
dx and c ∈ C, gives R(z) = I + R1z + ... ∈ L(2)GL(N, C) which is in some sense a
deformation of I ∈ GL(N, C), or N copies of the basic example.

Definition 5.6. On any compact Riemann surface (Σ, {Ai}i=1,...,g) with a choice of
A-cycles, define a fundamental normalised bidifferential of the second kind B(p, p′) to
be a symmetric tensor product of differentials on Σ× Σ, uniquely defined by the
properties that it has a double pole on the diagonal of zero residue, double residue
equal to 1, no further singularities and normalised by

∫
p∈Ai

B(p, p′) = 0, i = 1, ..., g,
[2727]. On a rational curve, which is sufficient for the examples in this paper, B is the
Cauchy kernel

B(z1, z2) =
dz1dz2

(z1 − z2)2 .

The bidifferential B(p, p′) acts as a kernel for producing meromorphic differen-
tials on the Riemann surface Σ via ω(p) =

∫
Λ λ(p′)B(p, p′) where λ is a function

defined along the contour Λ ⊂ Σ. Depending on the choice of (Λ, λ), ω can be
a differential of the 1st kind (holomorphic), 2nd kind (zero residues) or 3rd kind
(simple poles).
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Definition 5.7. For (Σ, x), a Riemann surface equipped with a meromorphic func-
tion, define evaluation of any meromorphic differential ω at a simple zero P of dx
by

ω(P) := Res
p=P

ω(p)√
2(x(p)− x(P))

where we choose a branch of
√

x(p)− x(P) once and for all at P to remove the ±1
ambiguity.

A fundamental example of Definition 5.75.7 required here is B(P , p) which is a
normalised (trivial A-periods) differential of the second kind holomorphic on Σ\P
with a double pole at the simple zero P of dx.

In order to produce an element of the twisted loop group, Shramchenko [5151]
constructed a solution Y(z) of the linear system (2121) using V = [B, U] for Bαβ =
B(Pα,Pβ) (defined for α 6= β) given by

Y(z)α
β = −

√
z√

2π

∫
Γβ

B(Pα, p) · e
−x(p)

z .

The proof in [5151] is indirect, showing that Y(z)i
j satisfies an associated set of PDEs

in ui, and using the Rauch variational formula to calculate ∂uk B(Pα, p). Instead,
here we work directly with the associated element R(z) of the twisted loop group.

Definition 5.8. Define the asymptotic series in the limit z→ 0 by

(31) R−1(z)α
β = −

√
z√

2π

∫
Γβ

B(Pα, p) · e
x(Pβ)−x(p)

z

where Γβ is a path of steepest descent for −x(p)/z containing x(Pβ).

Note that the asymptotic expansion of the contour integral (3131) for z → 0
depends only the intersection of Γβ with a neighbourhood of p = Pβ. When α = β,
the integrand has zero residue at p = Pβ so we deform Γβ to go around Pβ to get
a well-defined integral. Locally, this is the same as defining

∫
R

s−2 exp(−s2)ds =
−2
√

π by integrating the analytic function z−2 exp(−z2) along the real line in C

deformed to avoid 0.

Lemma 5.9 ([5151]). The asymptotic series R(z) defined in (3131) satisfies the twisted loop
group condition

(32) R(z)RT(−z) = Id.

Proof. The proof here is taken from [1717]. We have

N

∑
α=1

Res
q=Pα

B(p, q)B(p′, q)
dx(q)

= − Res
q=p

B(p, q)B(p′, q)
dx(q)

− Res
q=p′

B(p, q)B(p′, q)
dx(q)

(33)

= −dp

(
B(p, p′)
dx(p)

)
− dp′

(
B(p, p′)
dx(p′)

)
where the first equality uses the fact that the only poles of the integrand occur at
{p, p′,Pα, α = 1, ..., N}, and the second equality uses the Cauchy formula satisfied
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by the Bergman kernel. Define the Laplace transform of the Bergman kernel by

B̌α,β(z1, z2) =
e

x(Pα)
z1

+
x(Pβ)

z2

2π
√

z1z2

∫
Γα

∫
Γβ

B(p, p′)e−
x(p)
z1
− x(p′)

z2 .

The Laplace transform of the LHS of (3333) is

e
x(Pα)

z1
+

x(Pβ)

z2

2π
√

z1z2

∫
Γα

∫
Γβ

e−
x(p)
z1
− x(p′)

z2

N

∑
γ=1

Res
q=Pγ

B(p, q)B(p′, q)
dx(q)

=
N

∑
γ=1

e
x(Pα)

z1
+

x(Pβ)

z2

2π
√

z1z2

∫
Γα

e−
x(p)
z1 B(p,Pγ)

∫
Γβ

e−
x(p′)

z2 B(p′,Pγ)

=
N

∑
γ=1

[
R−1(z1)

]γ

α

[
R−1(z2)

]γ

β

z1z2
.

Since the Laplace transform satisfies
∫

Γα

d
(

ω(p)
dx(p)

)
e−

x(p)
z =

1
z

∫
Γα

ω(p)e−
x(p)

z for

any differential ω(p), by integration by parts, then the Laplace transform of the
RHS of (3333) is

− e
x(Pα)

z1
+

x(Pβ)

z2

2π
√

z1z2

∫
Γα

∫
Γβ

e−
x(p)
z1
− x(p′)

z2

{
dp

(
B(p, p′)
dx(p)

)
+ dp′

(
B(p, p′)
dx(p′)

)}
=−

(
1
z1

+
1
z2

)
B̌α,β(z1, z2).

Putting the two sides together yields the following result due to Eynard [2121]

(34) B̌α,β(z1, z2) = −
∑N

γ=1
[
R−1(z1)

]γ

α

[
R−1(z2)

]k
β

z1 + z2
.

Equation (3232) is an immediate consequence of (3434) and the finiteness of B̌α,β(z1, z2)
at z2 = −z1. �

5.2.1. Topological recursion. Topological recursion is a procedure which takes as
input a spectral curve, defined below, and produces a collection of symmetric tensor
products of meromorphic 1-forms ωg,n on Cn. The correlators store enumerative
information in different ways. Periods of the correlators store top intersection
numbers of tautological classes in the moduli space of stable curvesMg,n and local
expansions of the correlators can serve as generating functions for enumerative
problems.

A spectral curve S = (C, x, y, B) is a Riemann surface C equipped with two
meromorphic functions x, y : C → C and a bidifferential B(p1, p2) defined in (5.65.6),
which is the Cauchy kernel in this paper. Topological recursion, as developed by
Chekhov, Eynard, Orantin [88, 2222], is a procedure that produces from a spectral
curve S = (C, x, y, B) a symmetric tensor product of meromorphic 1-forms ωg,n
on Cn for integers g ≥ 0 and n ≥ 1, which we refer to as correlation differentials or
correlators. The correlation differentials ωg,n are defined by

ω0,1(p1) = −y(p1) dx(p1) and ω0,2(p1, p2) = B(p1, p2)
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and for 2g− 2 + n > 0 they are defined recursively via the following equation.

ωg,n(p1, pL)=∑
dx(α)=0

Res
p=α

K(p1, p)

[
ωg−1,n+1(p, p̂, pL)+

◦
∑

g1+g2=g
ItJ=L

ωg1,|I|+1(p, pI)ωg2,|J|+1( p̂, pJ)

]

Here, we use the notation L = {2, 3, . . . , n} and pI = {pi1 , pi2 , . . . , pik} for I =
{i1, i2, . . . , ik}. The outer summation is over the zeroes α of dx and p 7→ p̂ is the
involution defined locally near α satisfying x( p̂) = x(p) and p̂ 6= p. The symbol
◦ over the inner summation means that we exclude any term that involves ω0,1.
Finally, the recursion kernel is given by

K(p1, p) = −1
2

∫ p
p̂ ω0,2(p1, · )

[y(p)− y( p̂)] dx(p)
.

which is well-defined in the vicinity of each zero of dx. It acts on differentials in
p and produces differentials in p1 since the quotient of a differential in p by the
differential dx(p) is a meromorphic function. For 2g− 2 + n > 0, each ωg,n is a
symmetric tensor product of meromorphic 1-forms on Cn with residueless poles at
the zeros of dx and holomorphic elsewhere. A zero α of dx is regular, respectively
irregular, if y is regular, respectively has a simple pole, at α. A spectral curve is
irregular if it contains an irregular zero of dx. The order of the pole in each variable
of ωg,n at a regular, respectively irregular, zero of dx is 6g− 4 + 2n, respectively 2g.
Define Φ(p) up to an additive constant by dΦ(p) = y(p)dx(p). For 2g− 2 + n > 0,
the invariants satisfy the dilaton equation [2222]

∑
α

Res
p=α

Φ(p)ωg,n+1(p, p1, . . . , pn) = (2g− 2 + n)ωg,n(p1, . . . , pn),

where the sum is over the zeros α of dx. This enables the definition of the so-called
symplectic invariants

Fg = ∑
α

Res
p=α

Φ(p)ωg,1(p).

The correlators ωg,n are normalised differentials of the second kind in each variable
since they have zeroA-periods, and poles only at the zeros Pα of dx of zero residue.
Their principal parts are skew-invariant under the local involution p 7→ p̂. A basis
of such normalised differentials of the second kind is constructed from x and B in
the following definition.

Definition 5.10. For a Riemann surface C equipped with a meromorphic function
x : C → C and bidifferential B(p1, p2) define the auxiliary differentials on C as
follows. For each zero Pα of dx, define

(35) Vα
0 (p) = B(Pα, p), Vα

k+1(p) = −d
(

Vα
k (p)

dx(p)

)
, α = 1, ..., N, k = 0, 1, 2, ...

where evaluation B(Pα, p) at Pα is given in Definition 5.75.7.

The correlators ωg,n are polynomials in the auxiliary differentials Vα
k (p). To

any spectral curve S, one can define a partition function ZS by assembling the
polynomials built out of the correlators ωg,n [1818, 2121, 4747].
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Definition 5.11.

ZS(h̄, {uα
k}) := exp ∑

g,n

h̄g−1

n!
ωS

g,n

∣∣∣∣∣
Vα

k (pi)=uα
k

.

As usual define Fg to be the contribution from ωg,n:

log ZS(h̄, {uα
k}) = ∑

g≥0
h̄g−1FS

g ({uα
k}).

5.2.2. From topological recursion to Givental’s construction. The input data for Given-
tal’s construction is a triple (R(z), T(z), 11) ∈ L(2)GL(N, C)× z2CN [[z]]×CN . Its
output is a CohFT Ω, and its partition function ZΩ(h̄, {tα

k}). The input data for
topological recursion is a spectral curve S = (C, x, y, B). Its output is the correlators
ωg,n which can be assembled into a partition function ZS(h̄, {tα

k}).
From a compact spectral curve define a triple

S = (C, x, y, B)→ (R(z), T(z), 11) ∈ L(2)GL(N, C)× zCN [[z]]×CN

by

(C, x, B) 7→ R(z) ∈ L(2)GL(N, C)

via (3131),

(36) 11i =

{
dy(Pα), Pα regular
(ydx)(Pα), Pα irregular

which is the unit in normalised canonical coordinates, and

(37) T(z)α =

 z
(

11α − 1√
2πz

∫
Γα

dy(p) · e
x(Pα)−x(p)

z

)
, Pα regular

11α − 1√
2πz

∫
Γα

y(p)dx(p) · e
x(Pα)−x(p)

z , Pα irregular

Note that

lim
z→0

1√
2πz

∫
Γα

dy(p) · e
x(Pα)−x(p)

z =

{
dy(Pα), Pα regular
(ydx)(Pα), Pα irregular

which defines 11, hence the right hand side of (3737) lives in z2CN [[z]], respectively
zCN [[z]], when Pα is regular, respectively irregular. When Ω is a CohFT with flat
unit—see (1313) in Section 44—given by 11 ∈ CN , then 11 determines the translation
via T(z) = z

(
11− R−1(z)11

)
∈ z2CN [[z]]. In this special case y satisfies

(38) (R−1(z)11)α =
N

∑
k=1

R−1(z)α
k · ∆

1/2
k =

1√
2πz

∫
Γα

dy(p) · e
x(Pα)−x(p)

z

which uniquely determines y from its first order data {dy(Pα)} at each Pα.
The map (C, x, y, B) 7→ (R(z), T(z), 11) produces the left vertical arrow in Figure 11

and its generalisation to irregular spectral curves, i.e. a correspondence between the
input data, and via the graphical construction (2727) this produces the same output
ZΩ(h̄, {tα

k}) = ZS(h̄, {tα
k}) which is the main result of [1818] stated in the following

theorem.
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Theorem 4 ([1818]). Given a CohFT Ω built from

R(z) ∈ L(2)GL(N, C), T(z) ∈ z2CN [[z]], 11 ∈ CN

via Definition 5.25.2, there exists a local spectral curve

S = (C, x, y, B) 7→ (R(z), T(z), 11)

on which x and B correspond to R(z) via Definition 5.85.8 and y corresponds to T(z) and 11
via (3737) and (3636), giving the partition function of the CohFT

ZΩ(h̄, {tα
k}) = ZS(h̄, {tα

k}).

In general, the spectral curve S in Theorem 44 is a local spectral curve which is a
collection of disks neighbourhoods of zeros of dx on which B and y are define locally,
although we only consider compact spectral curves S in this paper. Theorem 44 was
proven only in the case T(z) = z

(
11− R−1(z)11

)
in [1818] but it has been generalised

to allow any T(z) ∈ z2CN [[z]]—see [99, 3838]. We will use the converse of Theorem 44
proven in [1717], beginning instead from S. Theorem 44 was also generalised in [99]
to show that the operators Ψ̂, R̂ and T̂ acting on copies of ZBGW analogous to (2727)
arises by applying topological recursion to an irregular spectral curve. Equivalently,
periods of the correlators of an irregular spectral curve store linear combinations
of coefficients of log ZBGW. The appearance of ZBGW is due to its relationship with
topological recursion applied to the curve x = 1

2 z2, y = 1
z [1414].

5.2.3. Spectral curve examples. We demonstrate Theorem 44 with four key examples
of rational spectral curves equipped with the bidifferential B(p1, p2) given by the
Cauchy kernel. The spectral curves in the Examples 5.125.12 and 5.135.13, denoted SAiry and
SBes, have partition functions ZKW and ZBGW respectively. Any spectral curve at
regular, respectively irregular, zeros of dx is locally isomorphic to SAiry, respectively
SBes. A consequence is that the tau functions ZKW and ZBGW are fundamental to
the correlators produced from topological recursion. Moreover, the topological
recursion partition function ZS is constructed via (2727), using a product of copies of
ZKW and copies of ZBGW, as in (3030), where R and T are obtained from the spectral
curve as described in Section 5.2.25.2.2. The third example, given by Theorem 55, brings
together ZKW and ZΘ and conjecturally ZBGW in the limit. Proposition 5.45.4, which
gives the relationship between the Givental construction of a semisimple CohFT
Ω and its associated ΩBGW, has an elegant consequence for spectral curves. This
is demonstrated explicitly in the fourth example which shows the relationship
between the spectral curves of a CohFT ΩA2 associated to the A2 singularity and
(ΩA2)BGW.

Examples 5.125.12 and 5.135.13 below use the differentials

ξm(z) = (2m + 1)!!z−(2m+2)dz

defined by (3535) for x = 1
2 z2 with respect to a global rational parameter z for the

curve C ∼= C.

Example 5.12. Topological recursion applied to the Airy curve

SAiry =

(
C, x =

1
2

z2, y = z, B =
dzdz′

(z− z′)2

)
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produces correlators which are proven in [2323] to store intersection numbers

ω
Airy
g,n = ∑

~m∈Zn
+

∫
Mg,n

n

∏
i=1

ψ
mi
i (2mi + 1)!!

dzi

z2mi+2
i

and the coefficient is non-zero only for ∑n
i=1 mi = 3g− 3 + n. Hence

ZKW(h̄, t0, t1, ...) = ZSAiry(h̄, t0, t1, ...) = exp ∑
g,n

h̄g−1

n!
ω

Airy
g,n

∣∣∣∣∣
ξm(zi)=tm

= exp ∑
g,n,~m

h̄g−1

n!

∫
Mg,n

n

∏
i=1

(
ψ

mi
i tmi

)
.

Example 5.13. Topological recursion applied to the Bessel curve

SBes =

(
C, x =

1
2

z2, y =
1
z

, B =
dzdz′

(z− z′)2

)
produces correlators

ωBes
g,n = ∑

~k∈Zn
+

bg(m1, ..., mn)
n

∏
i=1

(2mi + 1)!!
dzi

z2mi+2
i

where bg(m1, ..., mn) 6= 0 only for ∑n
i=1 mi = g− 1. It is proven in [1414] that

ZBGW(h̄, t0, t1, ...) = ZSBes(h̄, t0, t1, ...) = exp ∑
g,n

h̄g−1

n!
ωBes

g,n

∣∣∣∣∣
ξm(zi)=tm

.

For the next example define the following collection of differentials ξα
m(z, t) using

x = 1
2 z2 − t · log z by

ξ0
−1(z, t) = t−1/2zdz, ξ1

−1(z, t) = dz,(39)

ξα
m+1(z, t) = −d

(
ξσ

m(z, t)
dx(z)

)
, σ = 0, 1, m = −1, 0, 1, 2, ...

For m ≥ 0, these are linear combinations of the Vi
m(p) defined in (3535). The following

theorem uses the Chern polynomial

c
(

E~σg,n, t
)
= 1 + t · c1(E~σg,n) + t2 · c2(E~σg,n) + ... ∈ H∗(Mspin

g,n,~σ, Q), ~σ ∈ {0, 1}n.

Theorem 5 ([3838]). Topological recursion applied to the spectral curve

(40) x =
1
2

z2 − t · log z, y = z−1, B =
dzdz′

(z− z′)2

produces correlators ωg,n satisfying

(41) ωg,n(t, z1, ..., zn) = ∑
~σ,~m

(−1)nt2g−2+n21−g
∫
Mg,n

p∗c
(

E~σg,n,
2
t

) n

∏
i=1

ψ
mi
i ξ

σi
mi (zi, t).

Proof of Theorem 55. Theorem 55 is a specialisation of a theorem in [3838] which applies
to a generalisation of the moduli space of spin curves to the moduli space of r-spin
curves

M1/r
g,n = {(C, θ, p1, ..., pn, φ) | φ : θr ∼=−→ ω

log
C }.
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For any s ∈ Z, there is a line bundle E on the universal r-spin curve overM1/r
g,n with

fibres given by the universal rth root of
(

ω
log
C

)s
. Its derived push-forward R∗π∗E

defines a virtual bundle overM1/r
g,n . For example, when s = 1 and r = 1, −R∗π∗E

is the Hodge bundle and when s = −1 and r = 2, −R∗π∗E = Eg,n coincides
with Definition 2.12.1 (where E∨ has now become E due to s = −1.) Note that [3838]

considers rth roots of
(

ω
log
C

)s
(
−

n

∑
i=1

σi pi

)
for C the underlying coarse curve of C

with forgetful map ρ : C → C. The rth roots in [3838] coincide with the push-forward
|θ| = ρ∗θ which is the locally free sheaf of Z2-invariant sections of the push-forward
sheaf of θ, and the isotropy representation at pi determines σi as described in
Section 22. For r = 2, i.e. θ2 ∼= ω

log
C , at any point pi banded by 1/2 the push-forward

locally satisfies |θ|2 = ωC(2pi) = ω
log
C (pi) hence (|θ|∨)2 =

(
ω

log
C

)−1
(−pi) which

corresponds to σi = 1. At any point pi banded by 0 the push-forward does not
change local degree and corresponds to σi = 0.

The Chern character of the virtual bundle −R∗π∗E is given by Chiodo’s general-
isation of Mumford’s formula for the Chern character of the Hodge bundle. For

σ ∈ {0, 1, ..., r− 1}, let jσ : Singσ →M
1/r
g,n be the map from the singular set of the

universal spin curve banded by σ/r where now the local isotropy is Zn. Let Bm(x)
be the mth Bernoulli polynomial. Chiodo proved the following formula in [1010]:

ch(R∗π∗E) = ∑
m≥0

(Bm+1(s/r)
(m + 1)!

κm −
n

∑
i=1

Bm+1(mi/r)
(m + 1)!

ψm
i(42)

+
r
2

r−1

∑
σ=0

Bm+1(σ/r)
(m + 1)!

(jσ)∗
ψm
+ + (−1)m−1ψm

−
ψ+ + ψ−

)
The total Chern class of a virtual bundle c(E− F) := c(E)/c(F) can be calculated
from its Chern character and in this case is given by

c(−R∗π∗E) = exp

(
∞

∑
m=1

(−1)m(m− 1)!chm(R∗π∗E)
)

.

The components ofM1/r
g,n are given byM1/r

g,n,~σ for~σ ∈ Zn
r . The push-forward of the

restriction of c(−R∗π∗E) to a component is known as the Chiodo class

Cg,n(r, s;~σ) := p∗c
(
−R∗π∗E|M1/r

g,n,~σ

)
∈ H∗(Mg,n, Q)

The sum of this push-forward over all components of M1/r
g,n is expressed as a

weighted sum over stable graphs in [3333] which encodes a twisted loop group action
as described in Section 55, with edge and vertex weights proven in [3838, Theorem 4.5]
to exactly match the edge and vertex weights arising from the following spectral
curve:

x̂ = zr − log z, ŷ =
r1+ s

r

s
zs, B =

dzdz′

(z− z′)2 .
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In particular, the term exp
(
−∑

m

Bm+1(s/r)
m(m+1) κm

)
which arises from the ∑

m

Bm+1(s/r)
(m+1)! κm

terms in Chiodo’s formula exactly matches the local expansion of dy. More precisely
by [3838, Lemma 4.1]

(43)
1√
2πh̄

∫
Γα

dy(p) · e
x(Pα)−x(p)

h̄ ∼ dy(Pα) exp

(
−∑

m

Bm+1(s/r)
m(m+1) (−h̄)m

)
where ∼means the asymptotic expansion in the limit h̄→ 0.

Hence topological recursion applied to this spectral curve produces correlators
with expansion in terms of the local coordinate e−x̂i = e−x̂(zi) = zie−zr

i around
zi = 0,

(44) ω̂g,n(z1, ..., zn) ∼ ∑
~k∈Zn

+

n

∏
i=1

c(ki)r
(ki)r

r d(e−ki x̂i )
∫
Mg,n

Cg,n(r, s; (−~k)r)

∏n
i=1(1−

ki
r ψi)

where ∼means expansion in a local coordinate, (−~k)r ∈ {0, ..., r− 1}n the residue
class of −~k modulo r, and

c(k) =
kb

k
r c

b k
r c!

.

We have used x̂ = zr − log z and y = r1+ s
r

s zs here, rather than x̂ = −zr + log z and
y = zs used in [3838], because the convention for the kernel K(p1, p) used here differs

by sign from [3838], and also to remove a factor of
(

r1+ s
r

s

)2−2g−n
from the correlators.

Chiodo’s formula and the asymptotic expansion (4343) are true for any s ∈ Z, hence
(4444) holds for any s ∈ Z, although it is stated only for s ≥ 0 in [3838].

In [3838] (−~k)r ∈ {1, ..., r}n, however replacing ki = r by ki = 0 leaves the Chiodo
class invariant since it does not change the component, rather it twists the universal
bundle E over the component resulting in adding a direct summand of a trivial
bundle to the virtual bundle −R∗π∗E which does not affect the total Chern class.
The invariance of the total Chern class, or equivalently the positive degree terms
of the Chern character, can also be seen in Chiodo’s formula via properties of the
Bernoulli polynomials.

We will use (4444) in the case r = 2. Define

ξ̂0
−1 = 2zdz, ξ̂1

−1 = dz, ξ̂σ
m(z) = −d

(
ξ̂σ

m−1(z)
dx̂(z)

)
, σ ∈ {0, 1}, m ∈ {0, 1, 2, ...}

which have local expansion at z = 0 given by

ξ̂σ
m(z) ∼ ∑

k∈Z+

k≡σ(mod 2)

kmc(k)d(e−kx̂).

Each ψi in the denominator of the right hand side of (4444) produces monomials
( 1

2 kiψi)
mi , hence (4444) with r = 2 becomes

ω̂g,n(z1, ..., zn) = ∑
~σ,~m

∫
Mg,n

Cg,n(2, s;~σ)
n

∏
i=1

ψ
mi
i ξ̂

σi
mi (zi)2

1
2 σi−mi .
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Change (x̂, ŷ) 7→ (x, y) by

x = tx̂
(

z√
2t

)
− 1

2
t log(2t) =

1
2

z2 − t · log z, y =
s
2

t
s
2 ŷ
(

z√
2t

)
= zs.

The differentials defined in (3939) using x are given by

ξσ
m(z, t) = t−m− 1

2 2
σ
2 ξ̂σ

m

(
z√
2t

)
.

Hence

ωg,n(t, z1, ...,zn) =
( s

2
t

s
2+1
)2−2g−n

ω̂g,n

(
z1√
2t

, ...,
zn√
2t

)
=
( s

2
t

s
2+1
)2−2g−n

∑
~σ,~m

∫
Mg,n

Cg,n(2, s;~σ)
n

∏
i=1

ψ
mi
i ξ̂

σi
mi

(
zi√
2t

)
2

1
2 σi−mi

=
( s

2
t

s
2+1
)2−2g−n

∑
~σ,~m

∫
Mg,n

Cg,n(2, s;~σ)
n

∏
i=1

tmi+
1
2 ψ

mi
i ξ

σi
mi (zi)2−mi

=
( s

2
t

s
2+1
)2−2g−n

t
n
2 ∑
~σ,~m

∫
Mg,n

Cg,n(2, s;~σ)
n

∏
i=1

(
t
2

)mi

ψ
mi
i ξ

σi
mi (zi)

= ∑
~σ,~m

t
1
2 (1−s)(2g−2+n)21−gs2−2g−n

∫
Mg,n

Cg,n(2, s;~σ,
2
t
)

n

∏
i=1

ψ
mi
i ξ

σi
mi (zi, t)

where the last equality uses (t/2)∑ mi = (t/2)3g−3+n−deg for the degree operator
deg ck(E~σg,n) = k then (t/2)−deg is absorbed into the Chern polynomial. Set s = −1
to get the desired result. �

The classes Θg,n arise in the limit

lim
t→0

ωg,n(t, z1, ..., zn) = ∑
~m

∫
Mg,n

Θg,n

n

∏
i=1

ψ
mi
i ξmi (z)

for ξm(z) = (2m + 1)!!z−(2m+2)dz. We explain the relationship of this limit with
Conjecture 11 in Proposition 6.16.1.

5.2.4. A2 singularity. In this section we calculate the spectral curves of the CohFT
ΩA2 and (ΩA2)Θ. We begin with a general result relating the spectral curve of any
semisimple CohFT Ω with the spectral curve of ΩBGW.

Proposition 5.14. Given a semisimple CohFT Ω with partition function ZΩ(h̄, {tα
k})

encoded by the spectral curve
S = (C, x, y, B)

via Theorem 44 then ZBGW
Ω (h̄, {tα

k})is encoded by the spectral curve

Ŝ = (C, x, ŷ =
dy
dx

, B).

Proof. Note that the spectral curves S and Ŝ share the same (C, x, B) and hence
produce the same operator R̂(z) used in the construction of both ZΩ and ZBGW

Ω .
Proposition 5.45.4 shows that a shift in the translation operator T(z) 7→ 1

z T(z)
combined with replacing each copy of ZKW(h̄, {tk}) in (2727) by a copy of ZΘ(h̄, {tk})
produces the partition function of ΩΘ. It relied upon the homogeneity property
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(1616) satisfied by ZΘ(h̄, {tk}). But ZBGW(h̄, {tk}) also satisfies (1616) hence an identical
argument to that in Proposition 4.34.3 proves that for a semisimple CohFT Ω, the
partition function ZBGW

Ω (h̄, {tα
k}) is obtained by replacing each copy of ZKW(h̄, {tk})

in (2727) by a copy of ZBGW(h̄, {tk}) and replacing the translation operator by T(z) 7→
1
z T(z).

Given an irregular spectral curve, it is proven in [99] that its partition function is
obtained from (2727) with translation operator given by (3737)

T(z)α =

 z
(

11α − 1√
2πz

∫
Γα

dy(p) · e
x(Pα)−x(p)

z

)
, Pα regular

11α − 1√
2πz

∫
Γα

y(p)dx(p) · e
x(Pα)−x(p)

z , Pα irregular

Given a semisimple CohFT Ω encoded by the regular spectral curve S = (C, x, y, B),
define ŷ = dy

dx . Then we see that since dy = ŷdx the translation operator shifts
by T(z)α 7→ 1

z T(z)α which proves that ΩBGW is encoded by the spectral curve
Ŝ = (C, x, ŷ = dy

dx , B). �

Define the spectral curves

(45)
SA2 =

(
C, x = z3 − 3z, y = z

√
−3, B = dzdz′

(z−z′)2

)
SBGW

A2
=

(
C, x = z3 − 3z, ŷ =

√
−3

3z2−3 , B = dzdz′
(z−z′)2

)
.

The partition functions associated to S = SA2 defined in (4.1.44.1.4) and S = SΘ
A2

are
built out of correlators ωS

g,n by

ZS(h̄, {tα
k}) = exp ∑

g,n

h̄g−1

n!
ωS

g,n

∣∣∣∣∣
ξα

k (zi)=tα
k

using the differentials ξα
k (z) defined on C by

(46) ξα
0 =

dz
(1− z)2 −

(−1)αdz
(1 + z)2 , ξα

k+1(p) = d
(

ξα
k (p)

dx(p)

)
, α ∈ {1, 2}, k ∈N.

These are linear combinations of the Vi
k(p) defined in (3535) with x = z3 − 3z. The

Vi
k(p) correspond to normalised canonical coordinates while the ξα

k (p) correspond
to flat coordinates. We have

ZΩA2 = ZSA2 , Z(ΩA2 )Θ = ZSΘ
A2 .

The equality ZA2 = ZSA2 was proven in [1616] hence Z(ΩA2 )Θ = ZSΘ
A2 by Proposi-

tion 5.145.14. We verify this by giving the local expansions of B and ŷ for SA2 which
helps to deal with different normalisations in the references. Choose a local coordi-
nate t around z = −1 = P1 so that x(t) = 1

2 t2 + 2. Then

B(P1, t) =
−i√

6
dz

(z + 1)2 = dt
(

t−2 − 1
144

+
35

41472
t2 + ... + odd terms

)
B(P2, t) =

1√
6

dz
(z− 1)2 = dt

(
− i

24
+

35i
3456

t2 + ... + odd terms
)
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Around z = 1 = P2 the local expansions of B(Pα, z) are the same as those above,
up to sign. The odd terms are annihilated by the Laplace transform, and we get

R−1(z)α
α = −

√
z√

2π

∫
Γα

B(Pα, t) · e
− 1

2 t2

z = 1− (−1)α 1
144

z− 35
41472

z2 + ...

R−1(z)α
3−α = −

√
z√

2π

∫
Γα

B(P3−α, t) · e
− 1

2 t2

z =
i

24
z + (−1)α 35i

3456
z2 + ...

Hence R−1(z) = I − R1z + (R2
1 − R2)z2 + ... = I − RT

1 z + RT
2 z2 + ... gives

R1 =
1

144

(
−1 −6i
−6i 1

)
, R2 =

35
41472

(
−1 12i
−12i −1

)
which determines all other Rk via (2222) and agrees with (2424) for ΩA2 .

The topological field theory is defined by {dy(Pα)}, i = 1, 2. The translation
operator T(z) is determined by the (Laplace transform of the) local expansion of
y given by (3737). Moreover, ΩA2 has flat unit, so in this case the odd expansions
of dy is determined by R−1(z)11 via (3838), hence uniquely determined by the terms
dy(Pα), α = 1, 2. This is visible on the spectral curve by the fact that the poles of dy
are dominated by the poles of dx, i.e. dy/dx has poles only at the zeros P1 and P2
of dx, hence by the Cauchy formula dy satisfies

(47) d
(

dy
dx

(p)
)
= −

N

∑
α=1

Res
p′=Pα

dy
dx

(p′)B(p′, p)

which is proven in [1616] to imply (3838). Thus, it remains to show that y defines the
correct topological field theory, representing 11 in normalised canonical coordinates.
The local expansion of dy =

√
−3dz around P1 = −1 in the local coordinate

x(t) = 1
2 t2 + 2 is:

dy =
√
−3dz =

(
1√
2
− 5

144
√

2
t2 +

385
124416

√
2

t4 + ... + odd terms
)

dt

and around P2 = 1 replace t by it. Hence the Laplace transform is:{
1√
2πz

∫
Γα

dy(p) · e
(x(Pk)−x(p))

z

}
= R−1(z)11

=
1√
2

(
1
i

)
+

5
144
√

2

(
−1

i

)
z +

385
41472

√
2

(
1
i

)
z2 + ...

Note that dy(P1) =
1√
2
=
√

111 and dy(P2) =
i√
2
=
√

112 gives the unit 11, hence

the TFT. Thus SA2 7→ (R(z), T(z), 11) for ΩA2 as required.

6. PROGRESS TOWARDS A PROOF OF CONJECTURE 11

A consequence of the homogeneity property (1616) satisfied by both partition
functions ZΘ(h̄, t0, t1, ...) and ZBGW(h̄, t0, t1, ...) is that for g > 1 the coefficient of
h̄g−1 of the logarithm of the partition function, i.e. its genus g part, is a finite sum of
rational functions. They are both of the form:

log Z(h̄, t0, t1, ...) = −1
8

log(1− t0) +
∞

∑
g=2

h̄g−1 ∑
µ`g−1

cµtµ

(1− t0)2g−2+n
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where tµ := ∏ tµi for a partition µ = (µ1, ..., µn). Hence for each g one needs only
match the finite set of coefficients cµ, parametrised by partitions µ of g − 1, of
log ZΘ(h̄, t0, t1, ...) with those of log ZBGW(h̄, t0, t1, ...), to determine equality.

The initial value
∫
M1,1

Θ1,1 = 1
8 and (1616) produces all genus 1 terms of log ZΘ,

and the calculation
∫
M2,1

Θ2,1 · ψ1 = 3
128 from Example 3.53.5 together with (1616) pro-

duces all genus 2 terms giving:

log ZΘ = −1
8

log(1− t0) + h̄
3

128
t1

(1− t0)3 + O(h̄2).

Further calculations, such as the genus 3 calculation in Appendix AA and calculations
up to g = 7 and n = 6 using admcycles [1212] prove

(48) log ZΘ(h̄, t0, t1, ...) = log ZBGW(h̄, t0, t1, ...) + O(h̄8).

Conjecture 11 is reduced to a purely combinatorial or analytic problem in the
following proposition. Recall the spectral curve (4040) given by

x =
1
2

z2 − t · log z, y = z−1, B =
dzdz′

(z− z′)2

with correlators ωg,n(t, z1, ..., zn).

Proposition 6.1. Conjecture 11 is equivalent to

(49) lim
t→0

ωg,n(t, z1, ..., zn) = ωBes
g,n(z1, ..., zn).

Proof. By Theorem 55

ωg,n(t, z1, ..., zn) = ∑
~σ,~m

(−1)nt2g−2+n21−g
∫
Mg,n

p∗c
(

E~σg,n,
2
t

) n

∏
i=1

ψ
mi
i ξ

σi
mi (zi, t)

which is regular in t since

rank E~σg,n = 2g− 2 + 1
2 (n + |~σ|)

so the Chern polynomial has degree at most 2g− 2 + n in t−1. Hence for |~σ| = n

lim
t→0

(−1)nt2g−2+n21−g p∗c
(

E~σg,n,
2
t

)
= (−1)n2g−1+n p∗c2g−2+n

(
E~σg,n

)
= Θg,n

while for |~σ| < n, rank E~σg,n < 2g− 2 + n so

lim
t→0

(−1)nt2g−2+n21−g p∗c
(

E~σg,n,
2
t

)
= 0.

Thus the t→ 0 limit exists to give

lim
t→0

∑
~σ,~m

∫
Mg,n

(−1)nt2g−2+n21−g p∗c
(

E~σg,n,
2
t

) n

∏
i=1

ψ
mi
i ξ

σi
mi = ∑

~m

∫
Mg,n

Θg,n

n

∏
i=1

ψ
mi
i ξmi (z)

for
ξm(z) = lim

t→0
ξ1

m(z, t) = (2m + 1)!!z−(2m+2)dz.
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Also lim
t→0

ξ0
m(z, t) = 0 for m ≥ 0. The t→ 0 limit of the spectral curve (4040) gives the

Bessel spectral curve of Example 5.135.13 with correlators proven in [1414] to be given by

ωBes
g,n (z1, ..., zn) = ∑

~m

∂nFBGW(h̄, {tk})
∂tm1 ...∂tmn

n

∏
i=1

ξmi (z).

Hence the conjectured limit (4949) yields

∑
~m

∫
Mg,n

Θg,n

n

∏
i=1

ψ
mi
i ξmi (z) = ∑

~m

∂nFBGW(h̄, {tk})
∂tm1 ...∂tmn

n

∏
i=1

ξmi (z)

which is equivalent to Conjecture 11. �

The subtlety of the limit (4949), which is known up to g = 7 for all n by the
verification of Conjecture 11 in these cases, can be seen as follows. The correlators
are regular in t, for example

ω0,3(t, z1, z2, z3) = O(t) ⇒ lim
t→0

ω0,3(t, z1, z2, z3) = 0.

However, the coefficients in the recursion can be irregular in t i.e. blow up as
t→ 0. For example, in the following calculation of ω1,2(t, z1, z2) we introduce the
parameter a to keep track of the contribution of ω0,3(t, z1, z2, z3). We can set a = 1
at the end.

ω1,2(t, z1, z2) = ∑
dx(α)=0

Res
z=α

K(z1, z)
[

a ·ω0,3(t, z, σα(z), z2)

+ ω0,2(z, z2)ω1,1(t, σα(z)) + ω0,2(σα(z), z2)ω1,1(t, z)
]

lim
t→0

ω1,2(t, z1, z2) =

(
74a + 61

1080

)
dz1dz2

z2
1z2

2

This gives the expected limit of ωBes
1,2 (z1, z2) when a = 1, and shows the dependence

of lim
t→0

ω1,2(t, z1, z2) on ω0,3(t, z1, z2, z3) due to coefficients in the recursion which

are irregular in t.

6.1. Pixton relations. A collection of relations in the tautological ring RH∗(Mg,n)

was conjectured by Pixton and proven in [4848] using the CohFT ΩA2 . Such tautologi-
cal relations can be used to produce topological recursion relations for CohFTs such
as Gromov-Witten invariants. Similarly, the intersections of Θg,n with Pixton’s rela-
tions produce topological recursion relations satisfied by the intersection numbers∫
Mg,n

Θg,n ∏n
i=1 ψ

mi
i .

The key idea behind the proof of Pixton’s relations in [4848] is a degree bound on
the cohomology classes

deg ΩA2
g,n ≤

1
3
(g− 1 + n) < 3g− 3 + n

combined with Givental’s construction of ΩA2
g,n in Definition 5.25.2 from the triple

(R(z), T(z), 11) ∈ L(2)GL(N, C) × z2CN [[z]] × CN obtained from the Frobenius
manifold structure on the versal deformation space of the A2 singularity, 4.1.44.1.4.
Givental’s construction produces ΩA2

g,n, although it does not know about the degree
bound and produces classes in the degrees where ΩA2

g,n vanishes. This leads to sums
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of tautological classes representing the zero class, i.e. relations given by the degree
d > 1

3 (g− 1 + n) part of the sum over stable graphs in (2525) of the form

ΩA2
g,n = ∑

Γ∈Gg,n

1
|Aut(Γ)| (φΓ)∗ω

R,T,11
Γ .

Since ΩA2 has flat unit, the push-forward classes in (2525) produce κ polynomials,
hence only graphs without dilaton leaves in the sum are required and the classes
ωR,T,11

Γ consist of products of ψ and κ classes associated to each vertex of Γ. The
main result of [4848] is the construction of elements Rd

g,A ∈ Sg,n for A = (a1, ..., an),

aα ∈ {0, 1} satisfying q(Rd
g,A) = 0 which push forward to tautological relations in

H2d(Mg,n, Q). They are defined by Rd
g,A = degree d part of ΩA2

g,n(vA) for a basis

{v0, v1}. The element R1
2 ∈ H2(M2, Q) is given in Example 3.53.5.

When n ≤ g− 1 and g > 1 we have d = g− 1 > 1
3 (g− 1 + n) hence there exist

non-trivial relations Rg−1
g,A . This produces the following sum over graphs

Θg,n · Rg−1
g,A = 0

which defines a relation, for each A, between intersection numbers of ψ classes with
Θg,n, i.e. coefficients of ZΘ(h̄, {tk}). This uses Θg,n · (φΓ)∗ = (φΓ)∗ΘΓ together with
Remark 3.43.4 to replace κ classes by ψ classes. We saw this in Example 3.53.5 arising
from the genus two Pixton relation

(50)
∫
M2,1

Θ2,1 · ψ1 −
7

10
·
∫
M1,1

Θ1,1 ·
∫
M1,1

Θ1,1 −
1
10
·
∫
M1,2

Θ1,2 = 0

which determines
∫
M2,1

Θ2 · ψ2
1 from

∫
M1,1

Θ1,1 and
∫
M1,2

Θ1,2. Similarly, Appen-

dix AA uses genus three relations to deduce
∫
M3,2

Θ3,2 ·ψ2
1 and

∫
M3,2

Θ3,2 ·ψ1ψ2 from

lower genus coefficients of ZΘ(h̄, t0, t1, ...).
The following theorem proves that the coefficients of ZBGW(h̄, t0, t1, ...) also

satisfy (5050), and more generally an infinite set of relations satisfied by coefficients
of ZΘ(h̄, t0, t1, ...) arising from Pixton relations.

Theorem 6. Pixton relations produce infinitely many non-trivial relations satisfied by the
coefficients of both ZΘ(h̄, t0, t1, ...) and ZBGW(h̄, t0, t1, ...).

Proof. For each g > 1, n and b n+1
2 c possible A ∈ {0, 1}n (due to symmetry and

vanishing of half for parity reasons), Rg−1
g,A = 0 defines a non-trivial Pixton relation.

For each of these choices of g, n and A, due to restriction and pull-back properties
of Θg,n as explained above, Θg,n · Rg−1

g,A = 0 defines a relation between coefficients

of ZΘ(h̄, {tk}), such as (5050).
The main aim of the proof is to prove that the corresponding coefficients of

ZBGW(h̄, {tk}) also satisfy this infinite set of relations. To do this, we study the
partition function ZBGW

ΩA2
, defined in Definition 5.55.5 via the spectral curve SBGW

A2
de-

fined in (4545). The relations between coefficients of ZBGW(h̄, {tk}) will be stored
in the spectral curve. This will produce identical relations satisfied by both the
coefficients of ZBGW and ZΘ. To summarise, we have vanishing of certain coeffi-
cients of ZΘ

A2
(h̄, {tα

k}) due to the cohomological viewpoint shown in the upper row
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in Figure 11, and vanishing of corresponding coefficients of ZBGW
ΩA2

(h̄, {tα
k}) due to

Givental’s construction neatly encoded by topological recursion shown in the lower
row in Figure 11.

Pixton relations induce relations between intersection numbers of ψ and κ classes
or ψ classes alone, i.e. coefficients of ZKW(h̄, {tk}). These relations are realised by
unexpected vanishing of coefficients of the partition function ZA2(h̄, {tα

k}). Simi-
larly, unexpected vanishing of coefficients of the partition function ZBGW

A2
(h̄, {tα

k})
correspond to relations between coefficients of ZBGW(h̄, {tk}).

The coefficients of log ZBGW
A2

(h̄, {tα
k}) are obtained from the correlators ωBGW,A2

g,n

of SBGW
A2

by

(51)
∂n

∂tα1
k1

...∂tαn
kn

(FBGW
A2

)g({tα
k})
∣∣∣∣∣
tα
k=0

= Res
z1=∞

... Res
zn=∞

n

∏
i=1

pαi ,ki
(zi)ω

BGW,A2
g,n (z1, ..., zn)

for polynomials pα,k(z) =
√
−3 (−1)α

α z3k+α + lower order terms for α ∈ {1, 2} and
k ∈ N chosen so that the residues are dual to the differentials ξα

k defined in (4646).
The lower order terms (and the top coefficient) will not be important here because
we will only consider vanishing of (5151) arising from high enough order vanishing
of ωA2

g,n(z1, ..., zn) at zi = ∞ so that the integrand in (5151) is holomorphic at zi = ∞.
Equation (5151) is a special case of the more general phenomena, proven in [1717], that
periods of ωg,n are dual to insertions of vectors in a CohFT. Thus we have shown
that relations between coefficients of ZBGW(h̄, {tk}) induced from Pixton relations are
detected by high order vanishing of ωBGW,A2

g,n (z1, ..., zn) at zi = ∞. The same is true
for high order vanishing ωA2

g,n(z1, ..., zn) at zi = ∞ which is shown in the following
calculation:

ωA2
2,1(z) =

35
243

z(11z4 + 14z2 + 2)
(z2 − 1)10 dz ⇒ Res

z=∞
zmωA2

2,1(z) = 0, m ∈ {0, 1, ..., 12}

Hence (5151) vanishes for k1 = 0, 1, 2, 3 and α1 ≡ k1(mod 2) which gives the follow-
ing relations between intersection numbers, or coefficients of ZKW(h̄, {tk}),

(52)
∫
M2,1

Rd
2,d̄ψ4−d

1 = 0, d = 1, 2, 3, 4

where Rd
2,d̄ is a non-trivial Pixton relation, for d̄ ≡ d(mod 2), between cohomology

classes in H2d(M2,1) proven in [4848], such as R2
2,0 = ψ2

1+ boundary terms = 0.

Lemma 6.2.
n

∑
i=1

ordzi=∞ ωBGW,A2
g,n (z1, ..., zn) ≥ 2g− 2

where ordz=∞ η(z) is the order of vanishing of the differential at z = ∞.

Proof. We can make the rational differential

ωA2
g,n(z1, ..., zn) =

pg,n(z1, ...., zn)

∏n
i=1(z

2
i − 1)2g dz1...dzn
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homogeneous by applying topological recursion to x(z) = z3 − 3Q2z and y =√
−3/x′(z) which are homogeneous in z and Q. Then ωA2

g,n(Q, z1, ..., zn) is homoge-
neous in z and Q of degree 2− 2g− n:

ωA2
g,n(Q, z1, ..., zn) = λ2−2g−nωA2

g,n(λQ, λz1, ..., λzn).

The degree of homogeneity uses the fact that (z, Q) 7→ (λz, λQ)⇒ ydx 7→ λydx⇒
ωg,n 7→ λ2−2g−nωg,n because ydx appears in the kernel K(p1, p) with homogeneous
degree −1 which easily leads to degree 2− 2g− n for ωg,n. The degree 2− 2g− n
homogeneity of

ωA2
g,n(Q, z1, ..., zn) =

pg,n(Q, z1, ...., zn)

∏n
i=1(z

2
i −Q2)2g dz1...dzn

implies that deg pg,n(Q, z1, ...., zn) = 4gn− n + 2− 2g− n. But we also know that
ωA2

g,n(Q, z1, ..., zn) is well-defined as Q→ 0—the limit becomes ωg,n of the spectral
curve x(z) = z3 and y =

√
−3/x′(z) using the topological recursion defined by

Bouchard and Eynard [55]—so deg pg,n(z1, ...., zn) ≤ 4gn− n + 2− 2g− n. Note that
dzi is homogeneous of degree 1 but has a pole of order 2 at zi = ∞, hence

n

∑
i=1

ordzi=∞ ωBGW,A2
g,n (z1, ..., zn) = 4gn− deg pg,n(z1, ...., zn)− 2n ≥ 2g− 2.

�

Primary invariants of a partition function are those coefficients of ∏n
i=1 tαi

ki
with

all ki = 0. They correspond to intersections inMg,n with no ψ classes. The primary
invariants of ZΘ

A2
(h̄, {tα

k}) vanish for n < 2g− 2. This uses deg ΩA2
g,n ≤ 1

3 (g− 1 + n)

so deg ΩA2
g,n · Θg,n ≤ 1

3 (g − 1 + n) + 2g − 2 + n < 3g − 3 + n when n < 2g − 2.

These vanishing coefficients correspond to the relations Θg,n · Rg−1
g,A = 0 which, as

discussed above, give relations between coefficients of ZΘ(h̄, {tk}).
The primary coefficients of ZBGW

A2
(h̄, {tα

k}) correspond to

Res
z1=∞

... Res
zn=∞

n

∏
i=1

zεi
i ωA2

g,n(z1, ..., zn)

for εi = 1 or 2. Different choices of εi give different relations (except half which
vanish for parity reasons). By Lemma 6.26.2 the sums of the orders of vanishing of
ωBGW,A2

g,n (z1, ..., zn) at zi = ∞ is bounded below by 2g− 2. For n < 2g− 2, since

∑n
i=1 ordzi=∞ ωBGW,A2

g,n (z1, ..., zn) ≥ 2g− 2 by Lemma 6.26.2, there exists an i such that
ordzi=∞ ωBGW,A2

g,n (z1, ..., zn) ≥ 2. Hence zεi
i ωA2

g,n(z1, ..., zn) is holomorphic at zi = ∞,
so

Res
zi=∞

zεi
i ωA2

g,n(z1, ..., zn) = 0

and we have

(53) n < 2g− 2⇒ Res
z1=∞

... Res
zn=∞

n

∏
i=1

zεi
i ωA2

g,n(z1, ..., zn) = 0.
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Hence the primary coefficients of ZBGW
A2

(h̄, {tα
k}) vanish for n < 2g− 2 yielding

a common set of relations satisfied by both the coefficients of ZΘ(h̄, t0, t1, ...) and
ZBGW(h̄, t0, t1, ...). �

An example, of a genus 2 relation produced by Theorem 66:

ωBGW,A2
2,1 (z) =

−5z2 − 1
16
√
−3(z− 1)4(z + 1)4

dz.

It immediately follows that Res
z=∞

√
−3
2

z · ω2,1(z) = 0 which signifies a relation

between coefficients of ZBGW(h̄, t0, t1, ...). We will write the relations using Θg,n

however the relations are between coefficients of ZBGW(h̄, t0, t1, ...) and what we
are showing here is that these coefficients satisfy the same relations as intersection
numbers involving Θg,n, or equivalently coefficients of ZΘ(h̄, t0, t1, ...). The graphi-
cal expansion encoded by both Givental’s construction and toplogical recursion is
given by:

2 2 1 1 1

(plus graphs containing genus 0 vertices on which Θ2,1 vanishes) which contributes

22 · 60
1728

·
∫
M2,1

Θ2,1 · ψ1 + 22 · −60
1728

·
∫
M2,1

Θ2,1 · κ1

+22 · 84
1728

·
∫
M1,2

Θ1,2 ·
∫
M1,1

Θ1,1 +
2
2
· 84− 60

1728
·
∫
M1,3

Θ1,3

which agrees with the expansion in weighted graphs of Res
z=∞

√
−3
2

z · ω2,1(z) = 0

given by
5

1536
− 15

1536
+

7
2304

+
1

288
= 0.

APPENDIX A. CALCULATIONS

Here we show explicitly the equality ZBGW = ZΘ up to genus 3. The coefficients
of the Brézin-Gross-Witten tau function are calculated recursively since it is a tau
function of the KdV hierarchy. It has low genus g (= coefficient of h̄g−1) terms given
by:

log ZBGW =− 1
8

log(1− t0) + h̄
3

128
t1

(1− t0)3 + h̄2 15
1024

t2

(1− t0)5

+ h̄2 63
1024

t2
1

(1− t0)6 + O(h̄3)

=
1
8

t0+
1

16
t2
0 + .. + h̄(

3
128

t1 +
9

128
t0t1 + ..) + h̄2(

15
1024

t2 +
63

1024
t2
1 + ..)
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The intersection numbers of Θg,n stored in

log ZΘ(h̄, t0, t1, ...) = ∑
g,n,~k

h̄g−1

n!

∫
Mg,n

Θg,n ·
n

∏
j=1

ψ
kj
j ∏ tkj

are calculated recursively via relations among tautological classes in H∗(Mg,n, Q).
The calculation of these intersection numbers up to genus 2 can be found through-
out the text. We assemble them here for convenience, then present the genus 3
calculations.
g = 0 Theorem 11 property (IIII) gives Θ0,n = 0 which agrees with the vanishing of

all genus 0 terms in ZBGW.
g = 1 Proposition 2.92.9 gives Θ1,1 = 3ψ1 hence

∫
M1,1

Θ1,1 = 1
8 . We use this together

with the dilaton equation to get
∫
M1,n

Θ1,n = (n−1)!
8 . This agrees with

− 1
8 log(1− t0) in log ZBGW.

g = 2 Using Mumford’s relation [4242] κ1 = sum of boundary terms inM2 which
coincides with a genus 2 Pixton relation, Example 3.53.5 produced the genus 2
intersection numbers from the genus 1 intersection numbers.∫

M2

Θ2 · κ1 =
7
5
·
∫
M1,1

Θ1,1 ·
∫
M1,1

Θ1,1 ·
1

|Aut(Γ1)|
+

1
5
·
∫
M1,2

Θ1,2 ·
1

|Aut(Γ2)|

=
7
5
· 1

8
· 1

8
· 1

2
+

1
5
· 1

8
· 1

2
=

3
128

.

Note that
∫
M2,1

Θ2,1 · ψ1 =
∫
M2,1

π∗Θ2 · ψ2
1 =

∫
M2

Θ2 · κ1. Using the dila-

ton equation we then get
∫
M2,n

Θ2,n · ψ1 = 3(n+1)!
256 which agrees with the

h̄ 3
128

t1
(1−t0)3 term in log ZBGW.

g = 3 There are two independent genus 3 Pixton relations expressing κ2 and

κ2
1 as sums of boundary terms inM3. The relations correspond to sums

over stable graphs in M3 hence they contain many terms. In place of
these, we use the equivalent relations discovered earlier in [3434, 3535] which
push forward to relations inM3. InM3,1 there is a relation ψ3

1 = sum of
boundary terms, which yields∫

M3,1

Θ3,1 · ψ2
1 =

∫
M3,1

π∗Θ3 · ψ3
1

=
41
21
·
∫
M2,1

Θ2,1 · ψ1 ·
∫
M1,1

Θ1,1 +
5
42
·
∫
M2,2

Θ2,2 · ψ1

− 1
105
·
∫
M1,1

Θ1,1 ·
∫
M1,3

Θ1,3 ·
1
|Aut| +

11
70
·
∫
M1,2

Θ1,2 ·
∫
M1,2

Θ1,2 ·
1
|Aut|

− 4
35
·
∫
M1,1

Θ1,1 ·
∫
M1,2

Θ1,2 ·
∫
M1,1

Θ1,1 −
1

105
·
∫
M1,1

Θ1,1 ·
∫
M1,3

Θ1,3 ·
1
|Aut|

− 1
1260

·
∫
M1,4

Θ1,4 ·
1
|Aut|

=
41
21
· 3

128
· 1

8
+

5
42
· 9

128
− 1

105
· 1

8
· 2

8
· 1

2
+

11
70
· 1

8
· 1

8
· 1

2
− 4

35
· 1

8
· 1

8
· 1

8
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− 1
105
· 1

8
· 2

8
· 1

2
− 1

1260
· 6

8
· 1

4

=
15

1024
InM3,2, there is a relation ψ2

1ψ2 − ψ1ψ2
2 = sum of boundary terms, which

yields

7
∫
M3,2

Θ3,2 · (ψ2
1 − ψ1ψ2) = 7

∫
M3,2

π∗Θ3,1 · (ψ2
1ψ2 − ψ1ψ2

2)

=− 16
3
·
∫
M2,2

Θ2,2 · ψ2 ·
∫
M1,1

Θ1,1 − 5
∫
M2,2

Θ2,2 · ψ1 ·
∫
M1,1

Θ1,1

−40
3
·
∫
M2,1

Θ2,1 · ψ1 ·
∫
M1,2

Θ1,2 −
1
6
·
∫
M2,3

Θ2,3 · ψ1 −
∫
M2,3

Θ2,3 · ψ1 ·
1
|Aut|

− 1
15
·
∫
M1,1

Θ1,1 ·
∫
M1,4

Θ1,4 ·
1
|Aut| −

9
10
·
∫
M1,3

Θ1,3 ·
∫
M1,2

Θ1,2

− 1
15
·
∫
M1,1

Θ1,1 ·
∫
M1,4

Θ1,4 ·
1
|Aut| +

4
15
·
∫
M1,2

Θ1,2 ·
∫
M1,3

Θ1,3 ·
1
|Aut|

− 4
5
·
∫
M1,1

Θ1,1 ·
∫
M1,3

Θ1,3 ·
∫
M1,1

Θ1,1

+
16
5
·
∫
M1,1

Θ1,1 ·
∫
M1,2

Θ1,2 ·
∫
M1,2

Θ1,2 −
1

180
·
∫
M1,5

Θ1,5 ·
1
|Aut|

=− 16
3
· 9

128
· 1

8
− 5

9
128
· 1

8
− 40

3
· 3

128
· 1

8
− 1

6
· 36

128
− 36

128
· 1

2

− 1
15
· 1

8
· 6

8
· 1

2
− 9

10
· 2

8
· 1

8
− 1

15
· 1

8
· 6

8
· 1

2
+

4
15
· 1

8
· 2

8
· 1

2

− 4
5
· 1

8
· 2

8
· 1

8
+

16
5
· 1

8
· 1

8
· 1

8
− 1

180
· 24

8
· 1

4

=− 357
1024

Hence∫
M3,2

Θ3,2 · ψ1ψ2 =
∫
M3,2

Θ3,2 · ψ2
1 +

1
7

357
1024

=
75

1024
+

51
1024

=
63

512

where
∫
M3,2

Θ3,2 · ψ2
1 = 75

1024 is obtained from
∫
M3,1

Θ3,1 · ψ2
1 = 15

1024 via

the dilaton equation. The dilaton equation then yields
∫
M3,n

Θ3,n · ψ2
1 =

75
1024

(n+3)!
5! and

∫
M3,n

Θ3,n · ψ1ψ2 = 63
512

(n+3)!
5! which agree with the terms

h̄2 15
1024

t2
(1−t0)5 +h̄2 63

1024
t2
1

(1−t0)6 in log ZBGW.
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