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Abstract

It is common in wireless communications to perform some form of linear precoding operation on the source signal prior to
transmission over a channel. Although the traditional reason for precoding is to improve the performance of the communication
system, this paper draws attention to the fact that the receiver can identify the impulse response of the channel without any
prior knowledge of the transmitted signal simply by solving a system of polynomial equations. Since different precoders lead
to different systems of equations, this paper addresses the fundamental issue of determining which classes of linear precoders
lead to a system of equations having a unique solution. In doing so, basic properties of polynomial equations which are
useful for studying other identifiability issues commonly encountered in engineering and the applied sciences are presented.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction where{x; }7° __ is the transmitted signaly; }7° _ the
received signal andw;}°__ an unobserved noise
The need often arises for the estimation of the signal, typically assumed to be white Gaussian.
impulse responség, ..., h;} of the noise-corrupted  Since the transmitted signal is unknown to the
convolutive channel receiver, this channel identification problem can
/ only be solved if the receiver knows some prop-
i :Z hixik +wi, i=...,—1,01,.... (1) e_rty about the transmitted _si_gnal, such as a sta-
=0 tistical property [7,18] or finite alphabet prop-

erty [5,9,19] of {x;}7°__ . This paper studies a

rC g h I +61.3.83446791 fax +613. W method of identifying the channel based
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The motivation for this work is that the use of
linear precoders in wireless transmission systems is
quite common; sef,11-13,15,20&nd the references
therein. As noted ir{10,15,20] linear precoders in-
troduce an algebraic structure which can be exploited
at the receiver to estimate (or refine a previously ob-
tained estimate of) the channel. Estimating the chan-
nel in this way is called algebraic channel identifica-
tion because no statistical, finite alphabet or any other
properties besides the algebraic structure of the trans-
mitted signal are assumed.

The main contribution of this paper is to further the
understanding of what classes of linear precoders in-
troduce sufficient algebraic structure to make it feasi-
ble for the receiver to identify the channel

This paper differs from others in two important
respects. Often the main mathematical tools used
to study precoders are linear algebra andomain
analysis, hence only a restricted class of precoders
can be studied20]. The present paper uses results
from algebraic geometry to study arbitrary linear pre-
coders. Moreover, the definition of identifiability is
often based on whether or not a specific algorithm can
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channel depends only on the size of the precoder ma-
trix and not on its elements. Section 6 concludes with
a summary of the main results.

2. System model

The linearly precoded communication system con-
sidered in this paper is as follows. Assumeomplex
valued source symbols are transmitted over a finite im-
pulse response channel of ordday first linearly pre-
coding them to forme +1 symbols. Lets € C” denote
the p source symbols and=[x1_;, ..., x,]" € C"*!
the linearly precoded symbols; by definition= Ps
for some precoder matrik € C"+)*P_|f x is trans-
mitted through a channel whose impulse response is
h = [ho,..., 1" € C?T then the received vector
yY=1[y1, ..., yal" € C" of lengthn is related tox by
the convolution

!
inthxifk‘Fwi, i=1...,n, (2)
k=0

identify the channel whereas the present paper takes

the definition to be whether or not it is theoretically
possible to identify the channel.

As will be shown in subsequent sections, the al-
gebraic channel identifiability problem reduces to
determining if a system of polynomial equations is
invertible. This fundamental problem is known to be
non-trivial [17]. Therefore,the secondary contribu-
tion of this paper is to review a number of results
from algebraic geometry which facilitate the determi-
nation of the invertibility of a system of polynomial
equations

The paper is organised as follows. Section 2
states the algebraic identifiability problem. Section 3
sketches fundamental properties of polynomial maps
required in later sections. Section 4 derives the first
main result, Theorem 7, which states the original
identifiability problem (complete with additive noise
and scale ambiguity) can be reduced, without any loss
of generality, to a significantly simpler identifiability
problem (one without ambiguity and without noise).
The second main result, Proposition 8 and Theorem
9, is presented in Section 5. It is proved that, with the
exception of some non-generic precoders, the ability
of a precoder to enable the receiver to identify the

where w; denotes a sequence of random variables
modelling the additive noise. The actual distribution
of the noise is relatively unimportant in this paper; it
suffices for the distribution to be absolutely contin-
uous with respect to Lebesgue measure (see Section
3.3). Note that Gaussian noise satisfies this condition.

Remark. The reason for the tilde is that the vector
h = [h1,...,]" is introduced in Section 4 since it
suffices later to assume thiag = 1 in (2).

It is assumed throughout that the precoder matrix
P has full column rank and that> p. This is always
the case in practice for otherwise the source vestor
could not be recovered from the outpueven if the
channelh were known.

In the literature[18], (2) is often written in ma-
trix form asy = AX + W= HPs+ w where H ¢
C"* @+ is the upper triangular Toeplitz matrix hav-
ing [A;, hi—1, ..., ho,0,...,0] as its first row.

Since it is assumed that only is known to the
receiver, the equatioy = H Ps + W is not a linear
equation but a bilinear equation mands. To make
this distinction explicit, the functior (s, h) = A Ps
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is introduced, so that Theorem 1. Let F : C" — C" be a polynomial map
L and letV = F(C™) c C" denote the closure of its
y=F(s.h+w. ©) image. There exists a unique numBérpossibly infi-
Given onlyy, the channeh can be estimated in the  nite, and a polynomiah: C* — C used to define the
setW ={y € V: h(y) # 0}, which satisfies the follow-
) .2 ) _ o ing. (1) The set W is open and dense in(¥) For any
infg]ly — F (5 h)|1% an algorithm for doing sois given ¢ 1 there are precisely N pre-imagesyfinder F
in [10]. Roughly speaking, the channel will be said (3) i N is finite, let z; € C" be such that(z;) € W
to be algebraically identifiable if the least-squares es- anq letz,, ..., zy be the otherN — 1 pre-images
timate is unique. However, there are two refinements 5 is F(z)) = --- = F(zy). Then for anye>0
that must be made to this definition. The first refine- here exists a3 > 0 such that for anyz € B(z; )

ment is to allow for an unknown scaling factor in the ihere are precisely N pre-images #%2), and more-

channel estimate; ff is a least-squares estimate then over, each setB(z; ¢) contains a pre-image of (2)
fori=1...,N.

least-squares sense by finding favhich minimises

so too isAh for any non-zerol € C, a consequence

of the equalityF (1s, .~*h) = F(s, h). The second re-
finement is to take into account the dependence on the
actual symbols transmitted. For instancesiis the
zero vector then it is impossible to identify the chan-
nel. These refinements are made in Section 4 since the
results of Section 3 are required.

Remark. Part 3 of Theorem 1 can be replaced by the
stronger requirement that the restriction Bfto the
sefz F(2) € W} is a covering map; sed, Section
10.4] for the definition of a covering map.

Pre-images ofF (z2) under F for a given pointz €
C™ feature prominently in this paper. Defidé and
3. Polynomial maps h as in Theorem 1, it follows that the polynomial
g: C" — C defined byg(2) = h(F(2)) is not the zero

SinceF in (3) is a bilinear map, and hence a poly- polynomial, and moreover, if(2) # 0 thenF(2) has
nomial map, the study of such maps is the key to un- preciselyN pre-images. This motivates the following
derstanding the intricacies of channel identification.  definitions.

Although the results in this section are known in A property which holds for alt for which g(z) # 0
the algebraic geometry community and are thus statedfor some non-zero polynomigl is said to hold for
here without proof, it is not easy to find explicit state- genericz note that{z € C": g(2) # 0} is open and
ments of them in the literature. The reader is referred dense inC™. The numbe®V in Theorem 1 is called the
to [4,6,14,16]for more information. generic number of pre-imaged F. Any z for which

Throughout,|| - || denotes the Euclidean norm and there exists &V defined as in Theorem 1 and such that
B(z r) denotes the open ball centredzawith radius F(2 € W is called ageneric pointof F. A generic
r. Topological concepts such as openness and densepoint should be thought of as a well-behaved point
ness are with respect to the usual topology (and not in the sense that part 3 of Theorem 1 holds about a
with respect to the Zariski topolodi] often used in generic point.

algebraic geometry). Sometimes, it is convenient to partitionas z =
(21, 22). If a property holds for generiz; andz, then

3.1. Generic number of pre-images and generic it clearly holds for generiz. Lemma 2 states the con-

points verse; if a property holds for genericthen, for a

genericz, it holds for generiz, (and, for a generic
Let F : C" — C" be a polynomial map. The pre- 2z, it holds for generi).
images of a poiny € C" underF are the elements of
the set{z € C" : y= F(2}. Theorem 1 states that, Lemma?2. Let g: C" x C* — C be a non-zero
for mosty, the number of pre-images is constant, and polynomial There exists a non-zero polynomial
moreover, that the pre-images behave in a predictablegi: C" — C such that for all zz € C” satisfy-
way if y is perturbed slightly. ing g1(z1) # O, there exists a non-zero polynomial
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g2: C" — C (possibly depending om) such that
82(22) # O impliesg(z, ) # 0.

3.2. Invertible, rationally invertible and full rank
maps

A polynomial mapfF is invertibleif, for all z, F(2)
has one pre-image. It istionally invertibleif F(z)
has one pre-image for genedclt hasfull rank if the
generic number of pre-images &f(2) is finite. It is
known thatF is invertible if and only if there exists a
polynomial mapG such thatG o F, the composition
of G and F, is the identity map. SimilarlyF' is ra-
tionally invertible if and only if there exists a rational
function G such thatG o F is the identity map over
its domain of definition[3,14]. Proposition 3 below
justifies the term full rank; it requires the following
definitions.

Let f1,..., fu be polynomials fromC" to C and
define the polynomial mag: C" — C" so that
F@=(f1(2,..., fn(@) € C"forze C". TheJaco-
bian matrix Jof F is a polynomial matrix whosgth
entry is the polynomiad f; /0z;. It has a well-defined
rank as a matrix over the ring of polynomials.

Proposition 3. Let J be the Jacobian matrix of the
polynomial map F. The generic number of pre-images
of F is finite if and only if J has full column rank

Remark. Proposition 3 is a consequence of the
stronger result that the rank df equals the largest
number of algebraically independent polynomials in
the set{ f1, ..., f»}; see[14].

The evaluation of the Jacobian matrix at a point
z is denoted byJ; and is a complex valued ma-
trix. The rank of J; never exceeds the rank of,
and for genericz, the ranks are equal. Thus, has
full rank if and only if there exists & such thatJ;
has full column rank. Another practical test is the
following.

Proposition 4. Let F: C" — C" be a polynomial
map and assume there exists a pogine C" such
that the number of pre-images Nyf#inder F satisfies
1< N <oo. Then F has full rankand moreoverif

m = n then the generic number of pre-images of F is
greater than or equal to N
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Unfortunately, testing for rational invertibility is
harder{14,17]because it does not suffice to show that
there is a single pre-image df(2) for a particular
z One complication is the possibility of a pre-image
hiding at infinity! Later, in Proposition 12, a suffi-
cient condition for a map to be rationally invertible is
derived.

Remark. Testing for invertibility is also non-trivial;

it has long been conjectured that a polynomial map
F: C" — C" is invertible if and only if the determi-
nant of its Jacobian matrix is a non-zero consfat

3.3. Randomness and least-squares solutions

In the presence of additive noige the polynomial
equationy = F(2) + w is often solved in the least-
squares sense: firfitto minimise|ly — F(2)||2. A fun-
damental question is whether or not there is a unique
minimum. Proposition 5 implies that provides is
chosen at random, the number of minimising points
is equal to the generic number of pre-imagesrof
almost surely. As will be seen later, this means that
it suffices to ignore the additive noise when studying
identifiability issues.

A vectorw € C" is chosen at randonif the vec-
tor [Rw" 3w']T formed from the real and imaginary
components ofv is a realisation of a/2Zdimensional
real random vector whose probability distribution is
absolutely continuous with respect te-dimensional
Lebesgue measure.

Proposition 5. Let F: C" — C" be a polynomial
map let ze C™ be chosen arbitrarily and letv € C"
be chosen at randonbefine ® c C™ to be the set of
all pointsz € C™ which minimise| F(2) +W— F(2) 2.
Then with probability onethere exists & in the image
of F such that® = {2 € C": y= F(2)}. Furthermore
for any polynomiah: C* — C which is notidentically
zero on the image df, h(y) # 0with probability one

1By definition, F(2) has a pre-image at infinity if there is a
sequencezk},‘jil which divergeg||z; || — oo0) yet F(z,) — F(2).
For instance,F(z1, z) = (122, Z2(Zp — 1)) generically has two
pre-images buf'(z;, z) = (1, 0) has only one solution. The other
solution is hiding at infinity; F(k, 1/k) = (1, 1/k(1/k — 1)) —
1, 0).
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Remark. In fact, they in Proposition 5 is the Eu-
clidean projection ofy onto theclosure of the image
of F.

4. Algebraic channel identifiability

This section uses the results of the previous section
to define precisely the concept of algebraic identifia-
bility introduced in Section 2. A technique for convert-
ing the original identifiability problem into a simpler
one without scale ambiguity or additive noise is given.

As in Section 2, ley= F (s, ﬁ) + w be the received
vector. For a givery, define® c C'*! to be the set
of all least-squares estimates of the channel. That is,

h € @ if and only if there exists a8 € C” such that
@, h) is a global minimum of the cost function

ly — F& Ry2. )

Note that uniqueness &fis not required.

Sinceh € @ implies /h € O for any non-zerol €
C (see Section 2), it is more interesting to study equiv-
alence classes @, wherehy, h; € O are equivalent
if there exists a non-zerd € C such thath; = ih,.
(Such equivalence classes 6f ! with the origin
omitted form/-dimensional complex projective space
[3,10].) Define N(s, h, w) to be the number of ele-
ments up to equivalence 61, here the dependence of
© ony, and hence os, h andw, is made explicit.

Observe that, for a given source vec®rchannel
vector h and noise vectow, if N(s,h,w) = 1 then
the receiver can identify the chanrfeliniquely up to
an unknown complex valued scaling factor based only
on the received vector= F (s, h) + w by computing
the least-squares estimatefofit is important then to
study howN (s, h, w) depends os, h andw. Theorem
7 below proves thadV (s, h, w) is constant for almost
all s, h andw, and moreover, that this constant value
can be determined by studying a related but simpler
identifiability problem.

The statement of the theorem requires the polyno-
mial mapF: C**' — C" defined as

F(shy=F(s[1 h"]")=HPs,

seCP, h=[hy,....,h)" e C, (5)
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whereH € C"™"*) s the upper triangular Toeplitz
matrix with first row [h;, hj—1,...,h1,1,0,...,0].
Note thaty = F (s, h) is simply (2) withig = 1.

To motivate the theorem, consider the four sets

X1(y) = {(s, h): F(s h)y =y},

Xo(y) = {h: 3s, F(s, h) =y}, (6)
X3(y) ={(s, h): F(s h) =y},
X4(y) ={h: 3s, F(s,h) =y}, (7)

wheres € C”,h € C!** andh e C'. Observe that,
in the noise free casev = 0), X»(y) equals the set
of least-squares channel estimatsWhen noise is
present then Proposition 5 implies that, with proba-
bility one, there exists & such that the set of global
minima of (4) equalsY1(y), hence® = X ().
DefineN2(y) to be the number of elementsify(y)
up to equivalence and definés(y) and N4(y) to be
the number of elements iX3(y) and X4(y) respec-
tively. As is reasonable to expect, Lemma 6 proves
that for mosty, N3(y) = N4(y). Moreover, provided

none of the channel estimatbse X2(y) have their
first element equal to zerd/2(y) = Na(h). Theorem 7
proves that this is almost always the case; the number
of least-squares channel estimates up to equivalence
almost surely equals the number of pre-imagey of
underF.

Lemma 6. Define F (s, h), X3(y), N3(y) and Na(y)

as aboveDefine N to be the generic number of pre-
images of FThere exists a polynomial h which is not
identically zero on the image of F and such thatr
anyy in the closure of the image of k(y) # 0implies
that N3(y)=N4(h)=N. Furthermoreif F has full rank
then it suffices to choose h as in Theorgénn which
case both thes-coordinates and th&-coordinates of
the points inX3(y) are distinct ifa(y) #£ 0.

Proof. Assume first tha¥' has full rank and choose

as in Theorem 1, so tha{y) # 0 impliesN3(y) = N.
Assume to the contrary that there exist distinct points
(s1, h1), (2, h2) € X3(y) with eithers; = s or hy =
h,.Due to the bi-affine structure df, if hy = hs then
F(s1,h)=F(S1+A(—91), hy) forall 4 € C. Simi-
larly, if s;=s thenF (s, h1)=F(s1, h1+A(ha—hy))

for all 4 € C. Both cases contradiétz(y) = N < oo,
proving that thes and h coordinates are distinct, in
turn proving thatNz(y) = Na(y).
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Assume now thaf’ does not have full rank. Define  such thati1(y) # 0 impliesN2(y) = N4(y). Definehs
the varietyW ={(s, h): rank{H P} < p} and note that  as in Lemma 6 so that,(y) # 0 implies N4(y) = N.
dimW < p +1 because it is assumed in Section 2 that Thus,z(y) = h1(Y)h2(y) # O implies N2(y) = N, as
P has full column rank. Definé as in Corollary 16 required.

(Appendix A) so that:(y) # 0 implies that there are To prove dimF (W) < dim F(CPH+1) if N is finite,
an infinite number of pre-images gflying outside define the sets

W. Let (s1, h1) and(sp, ho) be two such pre-images, - T 1
thatis, F (s, hy) = Hi PS1 = HaPS; = F(Sp, hp) with ~ U1={y:Yy=F(S[00h']"), se C”,he C77},
both H1 P and H, P having full column rank. Clearly, (8)
if hy =hy thens; = . ThusNg(y) =co=N. O Up=1{y:y=F(s[01 h'T), se C”, h e CI-1),

Theorem 7. As abovelet N (s, h, w) denote the num- )
ber of least-squares estimates of the channel up to ;; _ y:y=F(s[0hT), seC’.heC), (10)
equivalence Define N to be the generic number of

pre-images of the polynomial map F defined(%). V={yy=F([1h"]"), seC’ heC}. (11)
If there is no noisgw = 0) then for generics and
h, N(s, h,0) = N. If additive noise is present then
for w chosen at random and for arbitrarg and h,
N(s, h,w) = N with probability one

SinceV is the image of the full rank map, Lemma 15
implies that dimV = p+/. Lemma 15 also implies that
dim Uy < p+1 and dimUs < p+1. Sincell =U,UU»,
dimU < p+I too. In particular, dinl/ < dim V. Since

Proof. The proof continues on from the discussion F(CP™*h=vuv, FCrHh =00V =V, the
preceeding Lemma 6. It is proved below that there last equality a consequence AfC”*'*1) being an
exists a polynomiak which is not identically zero irreducible variety (Lemma 15) and dith<dim V.
on the image ofF" such that, f(_)r anyy in the clo- Thus dimF (W) =dim U < dim V =dim F(CP*+1),
sure of the image of’, h(y) # 0 impliesN2(y) = N. as required. [J

This proves the theorem in the noise free case because

N(s.h, 0)=N>(F(s ), and moreover, Lemma 2im-  Remark. Theorem 7 considered the noise free case

plies that, for generis andh, 2(F (s, h)) # 0.ltalso 45 well as the additive noise case because, on its own,
proves the theorem when noise is present becausene statement tha¥ (s, h, w)= N with probability one

with probability one,N (s, h, w) = Na(y) wherey is  for arbitrarys andh hides the need for a persistence

defined in Proposition 5, and moreover, Proposition 5 4t excitation condition ors and a regularity condition

proves thati(y) # O with probability one. on h if the resulting channel estimate is to be mean-
Consider first the cas¥ = oo. DefineW to be the jngfyl. Specifically, assume that the precoder is such

set of all points(s, h) with the first element oh zero.  hat ¥ — 1 in Theorem 7. Ifs—= 0 and/orh — O then
Corollary 16 applied toF proves that there exists @  he channel output is just noisg= w. Even though
polynomial 21 such thata(y) # O implies thaty is (4) will almost surely have a unique minimum up to
contained in the image of’. Lemma 6 proves that  gcale ifw is chosen at random (that i&(0, 0, w) = 1
there exists an; such that, providegtis in the image  gimost surely), it is clearly not possible to identify the

of F, ha(y) # O implies Na(y) = oo. Defineh(y) = channel in any sensible way. This is reflected in the
h1(y)h2(y). Thenh(y) # 0 implies Na(y) = oo which noise free statement thai(s, h, 0) =oo if s=0 and/or
in turn implies N2(y) = oo becauseVa(y) > Na(y). h=0. The importance of the noise free result is that it

The case ofN finite is similar but requires the  spows that the persistence of excitation and regularity
stronger condition in Corollary 16. Itis proved below  conditions are very mild; for genericand generidh,
that dimF (W) < dim F(CP*+1) if N is finite. (Note  N(s, h, 0) = 1 in this example.
that theN in Corollary 16 is still infinite becausé
cannot have full rank due to the scale ambiguity.) Thus, The implication of Theorem 7, irrespective of
sinceNa(Y) = Na(y) if no element ofX1(y) liesin W, whether or not additive noise is present, is that the
Corollary 16 shows that there exists a polynonial following three cases are exhaustive. The channel is
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identifiableif F in (5) generically has one pre-image,
it is weakly identifiableéf F generically has more than
one but a finite number of pre-images, and inist
identifiableif F generically has an infinite number of
solutions. The physical meaning of these definitions
follows from Theorem 7; in the noise free case, un-
der mild conditions on the source symbols and the
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Remark. The strength of a specific precoder can be
determined by using symbolic techniqu@$ to cal-
culate the generic number of pre-imagesfof

A property holds for a generic precoder if there
exists a non-zero polynomial: C*+*? — C in
the elements of such that the property holds for all

channel, the receiver can determine the channel, up toprecodersP satisfyingg(P) # 0. If a property holds

an unknown scaling factor, if and only if the channel
is identifiable. If additive noise is present, the least-
squares estimate will be unique up to an unknown
scaling factor with probability one if and only if the
channel is identifiable. Similarly, if the channel is
weakly identifiable then there is more than one but
a finite number of possibilities for the channel up to
scale.

Remark. Weak identifiability is still a useful prop-
erty; the finite number of possible channel estimates
might be reduced to a single one by exploiting extra
knowledge gained from a finite alphabet constraint on
the elements aof or, in an adaptive environment, from
an old estimate of the channkl (In the latter case,

for a generic precoder then it holds with probability
one for a precoder chosen at random.

Proposition 8 and Theorem 9 are the main results
of this section and are proved in Section 5.1. Propo-
sition 8 states that the strength of a generic precoder
depends only on its size and the channel order. The-
orem 9 gives necessary and sufficient conditions for
a generic precoder to be strong, weak or inept. The
section concludes with two examples showing that
non-generic precoders not obeying these rules do
exist.

Proposition 8. For any triple (n, p,[) there exists a
numberN, , , such thatfor a generic precodeP e
C+DxP  the resulting system,Rlefined in(5), has

choose the current estimate to be the one closest to then, , ; pre-images generically

old estimate.) Note too that since the Jacobian matrix

of F is linear ins andh, Proposition 3 is a straight-
forward test for weak identifiability.

5. Generic linear precoders

Rather than consider individual precoders, this sec-

The function F consists ofn equations inp + [
variables. Excluding the trivial case = 1, it might
be anticipated that it = p + I, a generic precoder is
strong. Theorem 9 shows that this is not the case; if
n = p +1 then a generic precoder is weak. Only if the
number of equations exceeds the number of variables
(n> p + 1) is a generic precoder strong. This is due

tion considers whole families of precoders and makes to the special structure df.

statements about almost all members of each family.

This enables the big picture to be seen. Itis proved that Theorem 9. DefineN(, , ;) as in Propositior8. Then
the amount of redundancy that must be introduced to N, , =00 ifn < p+I; 1< N, py <ooif n=p+I

enable the identification of the channel almost always

depends on the size of the precoder matrix and not on

its individual elements.

The following definitions are introduced for con-
ciseness. For a given channel ortland precoder ma-
trix P e C"*tD*P define F(s, h) = HPs as in (5).
Let N denote the generic number of pre-imageg of
Then P is said to bestrongif N =1, it is weakif
1< N <o0, and it isineptif N = co. From Theorem

andp>1,0r N pn=1ifn>p+1.

The following exceptions to the rule illustrate the
need for considering generic precoders.

Example 10. Choosep and! arbitrarily but setn =
p + [. Consider the precodeP which mapss to
[0,...,0,51,0,...,0,52,...,5,] where there aré
zeros both before and aftef. The elements of the

7, itis clear that a strong precoder enables the receiveroutput vector (given by (2) witthg = 1) satisfyy; =
to identify the channel while a weak precoder enables s1, y2 = h1s1, y3 = h2s1 and so forth. Thereforep is

the receiver to identify weakly the channel.

strong.
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Adding an extra equation to a weak precoder does G(s, I, p’) = G(s, h, p) is equivalent toF (s, h") =

not necessarily make it strong.

Example 11. Set/=1,n=4 andp =3. The precoder
which mapssto [0, s3, s1, s2, s3] can be shown to be
weak; the systenF generically has 3 pre-images. It
might be expected that the precoder of size- 5
which mapss to [0, sp, 53, 51, 52, s3] IS Strong now
sincen > p + [. However, the systenf still has 3
pre-images generically.

5.1. Proofs of Proposition 8 and Theorem 9

If a systemF has full rank then adding an extra
equation will often make the enlarged system ratio-
nally invertible (see Example 11 though). Proposition
12 makes this precise.

Proposition 12. Let G(z, v) be a polynomial map de-
composable a6/ (z v) = (G1(2), G2(z Vv)) whereG1
has full rank If there exists a pointz V) such that
Z is a generic point ofG1 and G(z V) has a single
pre-image then G is rationally invertible

Proof. A consequence of parts 1 and 2 of Theorem 1
is that it suffices to find open sesand® such that
forallve Qandz € ©, G(z v) has a single pre-
image. Letz, ..., zy be theN pre-images 0fG1(2)
with z; = Z. For ¢, &2 > 0 define the sets

Y; ={G2(z V): Z€ B(7; ¢1),V € B(V; £2)},
i=1,...,N. (12)

The continuity of G2 ensures there exist, e >0
such thatr1 NY; = ¢ for j > 1. Choose) as in part
3 of Theorem 1 so that a change Zrof less thano
will change each of the pre-imagesby less tharz;.
Taking Q = B(V; ¢2) and ©® = B(z ) completes the
proof. [

Define p € C”"*Y? to be the vector rep-
resentation of the precoder matri®, that is,
P =vec 1p. The mapF in (5) can thus be written as
F (s, h; p) = H(vec 1p)s. Define the polynomial map
G: G:p+l+(n+l)p — Cn+(n+l)p to be
G(s h,p) = (F(s h;p), p). (13)

Proof of Proposition 8. Define N, ,; to be
the generic number of pre-images @f. Since

F(s,h) and P’ = P, apply Lemma 2 to conclude
that, for genericP, F(s,h’) = F(s h) has N, p.1
solutions for generi¢s, h). O

Lemma 13. Forany/>1, p>landn=p +1, there
exists a weak precode? € C"+)xP,

Proof. ChooseP so as to maps to [0, ...,0, s1,
$2,0,...,0,53,...,5,] where there aré zeros both
before s1 and betweerns, and s3. The elements of
the output vector (2) thus satisfy the equatigns=

§1, y2 =52+ h1s1, y3="hys2 +hos1 Up toy; 10 = hys2.
These represeitt 2 equations i + 2 unknowns. By
Proposition 4, it suffices to find a single output vec-
tor for which there is more than one solution. Choose
y1=—1then. Repeated substitution shows thahust
satisfy sé+1 — ygsl2 — ygsé_l — -+ — y12 =0. For
generic(yz, ..., y;+2) there ard + 1 > 1 solutions of
this equation, and it can be verified that each leads to
exactly one solution of the full systeya=F (s, h). O

Proof of Theorem 9. DefineG as in (13) and observe
from the proof of Proposition 8 tha¥,_ , ;) is simply

the generic number of pre-images@f If n < p +1
thenG has fewer equations than unknowns and hence
an infinite number of pre-imagesy, ,; = oo if
n<p+I.

Assumen = p + [ and p>1. Lemma 13 proves
that there exists a poiris, h, p) such thatG(s, h, p)
has more than one but less than an infinite num-
ber of pre-images. Thus, Proposition 4 implies that
1< N, p,1y < 00.

Assumen > p + [. The following proof thatG is
rationally invertible exploits the fact that the last ele-
mentx, of the encoded vector= Ps affects only the
last element, of the output vectoy = Hx. Partition
the matrices”H and P as follows:

HyPis

| H1 O|[P|_
HPs= [uT 1} |:VTi|S_ [uTPler VTSi|’ (14)

whereu” =[0---0 h; - - - h1] andV' is the last row of
P. Let p; be the vector representation 8f, that is,
Py = vec 1p;. Decompose the ma@ accordingly

G(s, h,p) = (Gi(s, h, py), Ga(s, h, p, V), (15)

G1 = (Hi(vecipy)s, py), (16)
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G2 = ((u'(vecpps+V's), v). (17) Remark. Whether or nowznpp )y =Niu.p.1y holds for
all (n, p, 1), where N, , ) is defined in Proposition
Notice thatG is identical toG in (13) if the precoder 8, IS not investigated here.
Py were used instead df. Proposition 4 implies that
G1 has full rank since for any > p 4 [ there exists a
Py € CH=DxP which is a weak precoder (take for 6. Conclusion
instance the precoder in Example 10 with(p+1)—1
Zerps appended)_ In order to app|y Proposition 12, let This paper drew attention to the fact that, in a lin-

(s, h, p;) be a generic point o1 and defings;, h;) early precoded wireless communication system, the

so that impulse response of channel (1) can often be deter-
mined by solving a system of noise-corrupted poly-

{(s1, 1), ..., (Sv, hy)} nomial equations. In Section 4 it was proved that the
= {(s.h): G1(s. h, py) = G1(5. h, py)}. (18) number of channel estimates obtained by solving this

system of equations in the least-squares sense can be

Note that the last sentence of Lemma 6 ensures thatdetermined by studying the generic number of solu-
s #s; fori # j. For each(s, h;) the first compo- tions of a related polynomial equation. Standard re-

nent of G, takes the value.liTﬁls- +VTs (whereu; sults_ from algebraic geometry were then applleq in
depends only om;). These values can be made dis- Secnpq 5 to prove that .the feasibility c_)f thg receiver
tinct by a judicious choice of. By Proposition 12G identifying the channel is governed primarily by the

is rationally invertible. O size of the precoder matrix and not, in general, on the

individual elements of the precoder matrix.
5.2. Generic zero prefix precoders

A zero prefix precoder is a precodere C+Dx? Appendix A. Technical results on polynomial

whose first/ rows are zero. Such a precoder sets the Maps
initial state of the channel to zero, thatis, ;=---= ] )
xo=0in (2). This is arguably a nice thing to do. Since The following known results on polynomial maps
arandomly chosen precoder will not have a zero prefix @€ not included in Section 3 because knowledge of
with probability one, there is no reason for Proposition these results is not essential on a first reading. These
8 and Theorem 9 to hold for zero prefix precoders. 'esults require the definitions of a variétyan irre-
Moreover, it is plausible that the conditian> p -+ I duqble variety, and Fhe dimension of a variety, all of
in Theorem 9 can be relaxed for zero prefix precoders. Which can be found if3].
However, this is not the case. This is formalised below. .

A property holds for a generic zero prefix precoder Leémma 15. Let F: C" — C" be a polynomial map

if there exists a non-zero polynomigd C*+)*7 — and letW c C" be a variety ThenU = F(W),
C such that the property holds for all precodets ~ the closure of the image ofV, is also a variety
satisfyingg(P) # 0 and whose first rows are zero. Moreover if W is irreducible then so too i&/. Also,

dimU<dimWw. If W =C™ thendimU = m if and
Theorem 14. For any triple (n, p, 1) there exists a  Only if F has full rank
numberN(Zn'fN) such thatfor a generic zero prefix pre-

(n+l)xp H P
coderp € € , the system F defined %5) has be deduced from Lemma 15. Note thitis allowed

Corollary 16 is an extension of Theorem 1 and can

zp o : zZ _
N(n.,p,l) pre-images generlcallWoreover N o= to be infinite.
ooifn < p+I; 1<N(nppl) <ooifn=p+landp > 1,
or NP =1ifn>p+lL.

(n.p.l) — 2The word variety is used here to mean an algebraic set and
. . L is consistent with the usage [8]. However, the reader should be
Proof. By design, only a minor modification of the  aware that this differs from the modern terminology which defines

proofs in Section 5.1 is required.(] a variety to be an irreducible algebraic set.
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Corollary 16. Let F: C" — C”" be a polynomial
map which generically hagv pre-images and let
W c C™ be a variety withdim W < m. There exists
a polynomialis: C" — C which is not identically
zero on F(C™) and such thatfor anyy € F(C™),
h(y) # 0 implies that there are N pre-images gf
under F that lie outside WThis can be strengthened
ifdim F(W) <dim F(C™) (which is always the case
if N is finite), in which caseh(y) # 0 also implies
there are no pre-images gfunder F contained in \W

References

[1] M.A. Armstrong, Basic Topology, Springer, Berlin, 1983.

[2] H. Bass, E.H. Connell, D. Wright, The Jacobian conjecture:
reduction of degree and formal expansion of the inverse, Bull.
Amer. Math. Soc. 7 (1982) 287-330.

[3] D.A. Cox, J.B. Little, D. O’'Shea, Ideals, Varieties, and
Algorithms: An Introduction to Computational Algebraic
Geometry and Commutative Algebra, second ed., Springer,
Berlin, 1996.

[4] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley,
New York, 1978.

[5] F. Gustafsson, B. Wahlberg, Blind equalization by direct
examination of the input sequences, IEEE Trans. Comm. 43
(7) (1995) 2213-2222.

[6] J. Harris, Algebraic Geometry: A First Course, Springer,
Berlin, 1992.

[7] H. Liu, G. Xu, L. Tong, T. Kailath, Recent developments
in blind channel equalization: from cyclostationarity to
subspaces, Signal Process. 50 (1996) 83-99.

[8] J.H. Manton, Dissecting OFDM: the independent roles of the
cyclic prefix and the IDFT operation, IEEE Comm. Lett. 5
(12) (2001) 474-476.

J.H. Manton et al. / Systems & Control Letters 54 (2005) 125-134

[9] J.H. Manton, Finite alphabet source recovery in polynomial
systems, Systems Control Lett. 47 (4) (2002) 279-286.

[10] J.H. Manton, An improved least-squares blind channel
identification algorithm for linearly and affinely precoded
communication systems, |IEEE Signal Process. Lett. 9 (9)
(2002) 282-285.

[11] J.H. Manton, An OFDM interpretation of zero padded block
transmissions, Systems Control Lett. 47 (5) (2002) 393-399.

[12] J.H. Manton, Design and analysis of linear precoders under
a mean square error criterion, part I: foundations and worst
case designs, Systems Control Lett. 49 (2) (2003) 121-130.

[13] J.H. Manton, Design and analysis of linear precoders under
a mean square error criterion, part Il: MMSE designs and
conclusions, Systems Control Lett. 49 (2) (2003) 131-140.

[14] J.H. Manton, J.R.J. Groves, Y. Hua, On properties of the
solutions of systems of polynomial equations, in:The Third
Asian Control Conference, Shanghai, China, July 2000.

[15] J.H. Manton, Y. Hua, A frequency domain deterministic
approach to channel identification, IEEE Signal Process. Lett.
6 (12) (1999) 323-326.

[16] I.R. Shafarevich, Basic Algebraic Geometry:Varieties in
Projective Space, vol. 1, second ed., Springer, Berlin, 1994.

[17] E.D. Sontag, On the observability of polynomial systems, I:
finite-time problems, SIAM J. Control Optim. 17 (1) (1979)
139-151.

[18] L. Tong, S. Perreau, Multichannel blind identification: from
subspace to maximum likelihood methods, Proc. IEEE 86
(10) (1998) 1951-1968.

[19] A. van der Veen, S. Talwar, A. Paulraj, A subspace
approach to blind space—time signal processing for wireless
communication systems, |IEEE Trans. Signal Process. 45 (1)
(1997) 173-190.

[20] G. Zhou, X.-G. Xia, Ambiguity resistant polynomial matrices,
Linear Algebra Appl. 286 (1999) 19-35.



	On the algebraic identifiability of finite impulse response channels driven by linearly precoded signals
	Introduction
	System model
	Polynomial maps
	Generic number of pre-images and generic points
	Invertible, rationally invertible and full rank maps
	Randomness and least-squares solutions

	Algebraic channel identifiability
	Generic linear precoders
	Proofs of Proposition 8 and Theorem 9
	Generic zero prefix precoders

	Conclusion
	Appendix A. Technical results on polynomial maps
	References


