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Abstract. An embedded curve in a symplectic surface Σ ⊂ X defines a smooth
deformation space B of nearby embedded curves. A key idea of Kontsevich

and Soibelman [KS18KS18] is to equip the symplectic surface X with a foliation in
order to study the deformation space B. The foliation, together with a vector
space VΣ of meromorphic differentials on Σ, endows an embedded curve Σ
with the structure of the initial data of topological recursion, which defines a
collection of symmetric tensors on VΣ. Kontsevich and Soibelman define an

Airy structure on VΣ to be a formal quadratic Lagrangian L ⊂ T ∗(V ∗
Σ ) which

leads to an alternative construction of the tensors of topological recursion. In
this paper we produce a formal series θ on B which takes it values in L, and

use this to produce the Donagi-Markman cubic from a natural cubic tensor on
VΣ, giving a generalisation of a result of Baraglia and Huang [BH17BH17].
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1. Introduction

Consider a smooth algebraic curve Σ embedded in a symplectic algebraic surface X.
The purpose of this paper is to study the relation of the local deformation space of
Σ to topological recursion following Kontsevich and Soibelman [KS18KS18].

The local deformation space B of Σ parametrises embeddings of smooth curves near
to Σ ⊂ X. It is a smooth complex analytic space of dimension equal to the genus
of Σ. Represent Σ ⊂ X by the point [Σ] ∈ B. Over B is a flat symplectic bundle
H → B with fibres H1(Σ;C) and equipped with the Gauss-Manin connection ∇GM.
The natural linear embedding H0(Σ,KΣ) ⊂ H1(Σ;C), that sends a holomorphic
differential to its cohomology class, defines a Lagrangian subbundle of H with fibres
H0(Σ,KΣ). The symplectic structure on X defines the exact sequence

(1) 0→ TΣ→ TX|Σ → KΣ → 0.

In particular, the normal bundle νΣ to Σ ⊂ X is isomorphic to KΣ, hence the
tangent space H0(Σ, νΣ) to B at [Σ] is isomorphic to the vector space of holomorphic
differentials H0(Σ,KΣ). The isomorphism is denoted

φ : T[Σ]B
∼=−→ H0(Σ,KΣ)

which defines an H-valued 1-form φ ∈ Γ(B,Ω1
B⊗H). One can realise φ via variations

of a section
[θ] ∈ Γ(U[Σ],H)

where U[Σ] ⊂ B is a neighbourhood of [Σ], and [θ] is characterised by

(2) φ = ∇GM[θ], [θ]([Σ]) = 0.

A construction of [θ] is given in (1111) in Section 22. Hence for [Σ′] ∈ U[Σ] and any

v ∈ T[Σ′]B, φ(v) = ∇GM
v [θ] ∈ H0(Σ′,KΣ′) which defines [θ] uniquely up to addition

of a constant section, and the ambiguity is removed by setting [θ]([Σ]) = 0. One
can equivalently define [θ] via parallel transport of the flat connection on H given
by ∇GM + φ. The property ∇GM

v [θ] ∈ H0(Σ′,KΣ′) is a cohomological version of the
property of a Seiberg-Witten differential.

Equip X with a Lagrangian foliation F , or equivalently a holomorphic sub-line-
bundle LF ⊂ TX. More generally, the foliation may be singular at finitely many
points so LF ⊂ TX is a subsheaf and Σ is chosen to avoid these singular points.
For example, if the foliation is defined by the fibres of a morphism π : X → C to a
curve C, then LF = kerDπ is not locally free at the critical points of π contained in
the singular fibres. Define R ⊂ Σ to be those points where Σ meets F tangentially,



AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 3

so by (11) LF |Σ ∼= KΣ(−R). Furthermore, we choose Σ so that R ⊂ Σ is finite and
each tangent point is simple. The simple tangency condition is an open condition
hence also true of any nearby curve Σ′ in the family B and defines R′ ⊂ Σ′. A
key idea of Kontsevich and Soibelman in [KS18KS18] is to use the Lagrangian foliation
F to study the deformation space B via lifting cohomology classes in H1(Σ;C)
to meromorphic differentials on Σ with poles at R ⊂ Σ. Define GΣ to be the
vector space of residueless meromorphic differentials on Σ, holomorphic on Σ−R,
and G → B the bundle with fibres GΣ. The map GΣ → H1(Σ,C) which sends a
differential to its cohomology class is surjective and induces the surjective map of
vector bundles G→ H.

Topological recursion, as defined by Eynard and Orantin [EO07EO07], is a recursive
procedure that produces from a spectral curve S = (Σ, u, v, B) a symmetric tensor
product of meromorphic 1-forms ωh,n on Σn for integers h ≥ 0 and n ≥ 1, which we
refer to as correlators. Here, a spectral curve, S = (Σ, u, v, B) is a curve Σ equipped
with two meromorphic functions u, v : Σ→ C holomorphic in a neighbourhood of
points where du = 0 and a bidifferential B(p1, p2) defined in (1515), such that du has
only simple zeros. More generally, u and v need only to be locally defined.

A curve Σ ⊂ (X,F) together with a choice of a and b-cycles that form a Torelli
basis {a1, ..., ag, b1, ..., bg} ⊂ H1(Σ;Z) produces a spectral curve S = (Σ, u, v, B)
and hence the initial data of topological recursion. The a and b-cycles on Σ uniquely
determine a bidifferential B(p1, p2) defined on Σ—see (1515). The locally defined
functions are restrictions to Σ of locally defined coordinates u and v on X chosen
so that the symplectic form on X is ω = du ∧ dv and the leaves of the foliation are
defined via u = constant—denoted foliation-Darboux coordinates in Definition 2.12.1.

The choice of a-cycles defines

VΣ = {η ∈ GΣ |
∮
ai

η = 0, i = 1, ..., g}

which has trivial intersection with H0(Σ,KΣ) since non-trivial holomorphic differen-
tials cannot have zero a-periods. The choice of Torelli basis extends to a well-defined
choice on a neighbourhood U[Σ] ⊂ B of [Σ], hence VΣ defines a subbundle of G on
U[Σ]. The correlator ωh,n(p1, p2, ..., pn) is symmetric in pi and has poles only at
pi ∈ R ⊂ Σ with zero residues and vanishing a-periods. In other words it lives in
the n-th symmetric power

ωh,n(p1, p2, ..., pn) ∈ Sn(VΣ)

where Sn is the n-th symmetric algebra.

For any residueless meromorphic differential η defined on Σ, denote its normalised
periods by:

(3)

∮
b̂k

η := − 1

2πi

∮
bk

η.

For [Σ] ∈ B, the functions

zk =

∮
ak

[θ], k = 1, ..., g
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define coordinates on a neighbourhood U[Σ] ⊂ B and also on a formal neighbourhood

B̂[Σ] of [Σ] ∈ B.

Given a curve Σ ⊂ (X,F) together with a choice of a and b-cycles, which determine
normalised holomorphic differentials ωi ∈ H0(Σ,KΣ) and correlators ωh,n, the
following theorem constructs a formal series of meromorphic differentials that lives
above the local analytic expansion of the section [θ].

Theorem 1. Define a section θ ∈ Γ(B̂[Σ], GΣ) by

(4) θ = ziωi −
1

2
zizj

∮
b̂i

∮
b̂j

ω0,3 −
1

3!
zizjzk

∮
b̂i

∮
b̂j

∮
b̂k

ω0,4 − ...

where we sum over indices in {1, ..., g}. Its cohomology class in Γ(B̂[Σ],H) is analytic

in z1, ..., zg and coincides with the analytic expansion of [θ] defined in (22).

We use the convention of summation over repeated indices throughout the paper,
except when we wish to emphasise the indices. Note that the cohomology class [θ]
can be naturally expressed by its periods

[θ] = (

∮
ai

[θ],

∮
bi

[θ] | i = 1, ..., g) ∈ C2gJz1, ..., zgK.

Properties of the series (44) leads to relations among residues and periods of ω0,h,
such as (4949) and (5050).

The series θ is a formal expansion of the Seiberg-Witten differential in the Seiberg-
Witten family of curves [NO06NO06]. Similarly, in the case X = T ∗C the formal series
θ is a formal expansion of the tautological 1-form on T ∗C—see (4444) in Section 44
for a precise statement. An analytic expansion of the Seiberg-Witten differential or
tautological 1-form would require a natural local trivialisation of the bundle G. The
foliation produces a flat connection on G, defined in Section 44, however this does
not produces a local trivialisation since parallel transport for this connection is not
defined.

The period matrix τij of Σ appears in the first order terms of [θ] via∮
bi

[θ] = zjτij |Σ + higher order terms

which leads to the following corollary.

Corollary 2. The variation of the period matrix of a curve Σ ⊂ X is

∂τij
∂zk

= −2πi

∮
b̂i

∮
b̂j

∮
b̂k

ω0,3

and more generally

∂nτij
∂zi1 ...∂zin

= −2πi

∮
b̂i

∮
b̂j

∮
b̂i1

...

∮
b̂in

ω0,n+2.

When X = T ∗C, Corollary 22 was proven by Baraglia and Huang in [BH17BH17], and
Bertola and Korotkin [BK19BK19].



AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 5

Corollary 22 can be packaged into an expression for an analytic expansion of the pre-
potential F0 : B → C defined in Section 2.12.1, such as the Seiberg-Witten prepotential
[NO06NO06], in terms of periods of the correlators:

(5) F0(z1, ..., zg) = −
∑
I

zI

|I|!

∮
b̂I

ω0,|I|.

The summation is over multi-indices I = (i1, ..., in), for ik ∈ {1, ..., g} and the
integral is

∮
b̂I
ω0,|I| =

∮
b̂i1
...
∮
b̂in

ω0,n(p1, ..., pn).

Note that a choice of a-cycles on Σ ⊂ (X,Ω) determines local coordinates {z1, ..., zg}
on the deformation space B of Σ and the prepotential F0 : B → C, well-defined up
to quadratic terms in zi. Moreover, F0 depends (up to quadratic terms) only on
the linear sub-module La ⊂ H1(Σ;Z) spanned by the a-cycles. This is reflected
clearly in (55) since the difference between two choices of b-cycles is an element of
La. The correlators ω0,|I| in (55) vanish on La for |I| ≥ 3 so only the quadratic term
involving ω0,2 detects a change in b-cycles.

The series θ defined in (44) has a geometric interpretation which we now describe.
Kontsevich and Soibelman [KS18KS18] formulated topological recursion in terms of an
Airy structure which characterises a quadratic Lagrangian L ⊂W in a symplectic
vector space, i.e. a sub-variety defined by polynomials of degree ≤ 2. A basic
example is the plane conic tangent to the line y = 0:

L = {−y + ax2 + 2bxy + cy2 = 0} ⊂ C2.

More generally, consider a finite-dimensional symplectic vector space W ∼= C2N and
a quadratic Lagrangian L ⊂W containing 0, with tangent space L = T0L. Choose
a Lagrangian complement V to L in W

W = L⊕ V.

Note that the exact sequence L→W
ΩW (·,·)→ L∗ produces a canonical isomorphism

V ∼= L∗ hence a canonical isomorphism W ∼= V ∗ ⊕ V = T ∗(V ∗) so that V is a
polarisation of W .

Choose Darboux coordinates {xi, yi}i=1,...,N ∈ W ∗, i.e. ΩW = dxi ∧ dyi, with
xi ∈ V and yi ∈ L which are naturally coordinates on the base V ∗, respectively
fibre V , of T ∗(V ∗). We have L = {yi = 0} and the Lagrangian L is defined by

L = {Hi = 0 | i = 1, ..., N}
for

Hi = −yi + aijkx
jxk + bkijx

jyk + cjki yjyk, i = 1, ..., N.

The coefficients of the Hi are tensors on V .

A = (aijk) ∈ V ⊗ V ⊗ V,

B = (bkij) ∈ V ∗ ⊗ V ⊗ V,

C = (cjki ) ∈ V ∗ ⊗ V ∗ ⊗ V,

where (aijk) := aijkx
ixjxk, (bkij) := bkijx

ixjyk and (cjki ) := cjki x
iyjyk and as usual

we sum over the indices i, j, k.



6 AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES

The defining functions of the Lagrangian submanifold satisfy

(6) {Hi, Hj} = gkijHk

where gkij are functions in general, but numbers here since Hi are quadratic. The
relation (66) implies a collection of conditions on the tensors A, B and C. The linear
term contribution to (66) implies A ∈ S3(V ), whereas a priori A is symmetric only
in its final two arguments, and it also implies gkij = 2bkji − 2bkij . The remaining

conditions, corresponding respectively to vanishing of coefficients xkxm, xkym and
ykym in (66), are homogeneous of degree two in the tensors and given explicitly in
Definition 3.23.2.

Kontsevich and Soibelman define an Airy structure to be a collection of tensors on
a vector space V :

A ∈ Sym3(V ), B ∈ V ∗ ⊗ V ⊗ V, C ∈ Sym2(V ∗)⊗ V,
satisfying the quadratic relationships implied by (66). An Airy structure makes sense
for infinite dimensional V . In finite dimensions an Airy structure is equivalent to a
quadratic Lagrangian submanifold of the symplectic vector space T ∗(V ∗), while in
infinite dimensions it corresponds to a formal Lagrangian submanifold defined by
the ideal generated by a collection of quadratic polynomials Hi, i = 1, 2, ....—see
Section 3.23.2.

A fundamental example of a formal Lagrangian subvariety in an infinite dimensional
symplectic vector space arises from Virasoro relations satisfied by the Kontsevich-
Witten tau function of the KdV hierarchy

ZKW(~, x1, x3, ...) = exp

∑
h,n,~k

~h−1

n!

∫
Mh,n

n∏
i=1

ψkii (2ki + 1)!!x2ki+1


which is a generating function for intersection numbers of tautological classes ψi
on the moduli space of stable curves. Define {L−1, L0, L1, . . .} which satisfy the
Virasoro commutation relations

[Lm, Ln] = (m− n)Lm+n, for m,n ≥ −1

by

Lm = −1

2

∂

∂x2m+3
+

~
4

∑
i+j=2m

i,j odd

∂2

∂xi∂xj
+

1

2

∞∑
i=1
i odd

ixi
∂

∂xi+2m
+

1

16
δm,0 +

(x1)2

4~
δm,−1

where the sum over i+ j = 2m is empty when m = 0 or −1 and ∂
∂x−1 is the zero

operator. Then
LmZ

KW(~, x1, 3x3, ...) = 0, m ≥ −1

which uniquely determines any intersection number recursively from the initial
calculation

∫
M0,3

1 = 1 as conjectured by Witten [Wit91Wit91] and proven by Kontsevich

[Kon92Kon92]. Define the symplectic vector space of residueless Laurent series

(7) WAiry =

{
J =

∑
n∈Z

Jnz
−n dz

z
| J0 = 0,∃N such that Jn = 0, n > N

}
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with symplectic form

ΩW (η1, η2) = Res
z=0

f1η2, df1 = η1, η2 ∈W.

There is a symplectomorphism WAiry
∼= Spf(CJx•, y•K) equipped with the Poisson

bracket {xi, yj} = δij and {xi, xj} = 0 = {yi, yj}, i, j = 1, ...,∞.

Example 1.1. Define the quadratic Lagrangian

LAiry ⊂WAiry = Spf(CJx•, y•K)
via the ideal generated by the linear and quadratic functions

Hk(x•, y•) = −yk, k ∈ Z+
even

Hk(x•, y•) = ~L k−3
2

(
x•, ~

∂

∂x•

)
|~ ∂

∂xi
=yi

k ∈ Z+
odd

= − 1
2yk + 1

4

∑
i+j=k−3

i,j odd

yiyj + 1
2

∞∑
i=1
i odd

ixiyi+k−3 + 1
16δk,3 + 1

4δk,1(x1)2

where y−1 = 0.

The local behaviour of the topological recursion correlators at each point of R ⊂ Σ,
gives rise to the tau function ZKW(~, t0, t1, ...) corresponding to the quadratic
Lagrangian LAiry.

There are natural embeddings VΣ ⊂ GΣ ⊂WR
Airy defined by identifying WAiry with

local residue-free differentials—see (2323) and (2424)—and sending global meromorphic
differentials to their local expansions at each point in R with respect to a given local
coordinate. We have T ∗(V ∗Σ) ∼= WR

Airy as symplectic vector spaces. The (formal)
quadratic Lagrangian submanifold produces an Airy structure on VΣ:

(8) LKS = LRAiry ⊂ T ∗(V ∗Σ) ; (AΣ, BΣ, CΣ).

The dependence of the Airy structure on Σ ⊂ X is through the polarisation of
WR

Airy ⊃ LKS. The embedding GΣ ⊂WR
Airy is coisotropic and the quotient becomes

a symplectic quotient

H1(Σ;C) = GΣ/G
⊥
Σ =: WR

Airy�G
⊥
Σ .

The image under the quotient map of the tensor AΣ ∈ VΣ⊗VΣ⊗VΣ → V Σ⊗V Σ⊗V Σ

is rather natural.

The section θ ∈ Γ(B̂[Σ], GΣ) constructed in Theorem 11 takes its values in LKS—see
Proposition 4.54.5. This is used to understand the relation of the Airy structure built
out of Σ ⊂ (X,ΩX ,F) to the local geometry of the space B, stated concretely in
Theorem 33 below.

The Donagi-Markman cubic [DM96DM96] is the extension class defined by the exact
sequence (11), which gives rise to a tensor on B:

ĀΣ ∈ Ext1(KΣ, TΣ) ∼= H0(Σ,K⊗3
Σ )∨ ∼=

(
T ∗[Σ]B

)⊗3

.
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There is a natural isomorphism H0(Σ,KΣ)∨ ∼= V Σ where V Σ is the image of VΣ

under the quotient map GΣ → HΣ:

V Σ = {η ∈ H1(Σ;C) |
∮
ai

η = 0, i = 1, ..., g}

which satisfies
H1(Σ;C) = H0(Σ,KΣ)⊕ V Σ.

Any complement to H0(Σ,KΣ) is naturally isomorphic to H0(Σ,KΣ)∨ via the
symplectic form on H1(Σ;C). Via this natural isomorphism, the Donagi-Markman
cubic is represented by

ĀΣ ∈ V Σ ⊗ V Σ ⊗ V Σ.

Theorem 3. The image of the tensor AΣ under the quotient map VΣ → V Σ is the
tensor ĀΣ.

VΣ ⊗ VΣ ⊗ VΣ → V Σ ⊗ V Σ ⊗ V Σ(9)

AΣ 7→ ĀΣ.

The Donagi-Markman cubic can be calculated via variations
∂τij
∂zk

and hence (99) can be
deduced from Corollary 22 together with the result AΣ = ω0,3—see Proposition 4.104.10.
Instead, we give a direct, geometric proof of Theorem 33. In Section 4.34.3, AΣ is
constructed as a linear map

T0LKS ⊗ T0LKS → VΣ

via covariant differentiation of a vector field on LKS. The tensor ĀΣ similarly arises
via covariant differentiation of vector fields. Any vector v ∈ T[Σ]B ∼= H0(Σ,KΣ)
extends locally to a unique vector field ṽ ∈ Γ(U[Σ], TB)] ⊂ Γ(U[Σ],H) defined by

requiring
∮
ai
ṽ to be locally constant. The covariant derivative ∇GM

u ṽ lives inside

V Σ, since the derivative of constant a-periods is zero. Hence ∇GM
u ṽ takes in two

vectors u, v ∈ T[Σ]B and defines a linear map

H0(Σ,KΣ)⊗H0(Σ,KΣ)→ V Σ

which is identified with ĀΣ. Note that the Donagi-Markman cubic is independent
of the extension of a vector v to a vector field ṽ, however the particular choice of

vector field here produces its representative in V
⊗3

Σ . Thus, both AΣ and ĀΣ are
obtained via covariant differentiation with respect to a flat connection of a tangent
vector field by a tangent vector. Moreover, the vector fields and flat connection
upstairs are related to vector fields and flat connection downstairs. To implement
this idea one needs to use the formal germ of a Lagrangian and formal vector fields
upstairs, together with the linearisation of θ defined in Theorem 11. One consequence
of Theorem 33 is that although AΣ is constructed only in a formal neighbourhood of
a point in B, it descends to an analytic tensor which extends over all of B.

It is interesting that the methods used here, following Kontsevich and Soibelman,
embed B into a vector space of meromorphic differentials on the curve, with poles
located at the branch points on the spectral curve, while the methods used by Bertola
and Korotkin to prove Corollary 22 embed B into a moduli space of meromorphic
differentials with poles located at the poles of the Higgs field. They write in
[BK19BK19]: “This suggests a possibility of the existence of a natural simple structure
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on spaces of abelian differentials which underlie the topological recursion framework
on spaces of spectral covers”. Indeed the methods of Kontsevich and Soibelman
produce topological recursion from a natural structure on the space of meromorphic
differentials on a curve. Although the meromorphic differentials differ in both cases,
it would be interesting to compare these two approaches.

In Section 22 we define topological recursion for any smooth curve embedded in a
foliated symplectic surface Σ ⊂ (X,ΩX ,F), and give examples of foliated symplectic
surfaces. Topological recursion is related to cohomological field theories [Dun+14Dun+14]
and we describe its consequences for the deformation space B of Σ ⊂ X in Sec-
tion 2.32.3. In Section 33 we define the approach to topological recursion by Kontsevich
and Soibelman [KS18KS18]. The quadratic Lagrangian used is LAiry constructed from
the Kontsevich-Witten tau function. In Section 3.4.23.4.2 we instead use a quadratic
Lagrangian LBessel built from the Brézin-Gross-Witten tau function of the KdV

hierarchy. In Section 44 we define the series θ ∈ Γ(B̂[Σ], GΣ) defined in any formal
neighbourhood of [Σ] ∈ B and prove its properties. Appendix AA contains a proof of
the variation formula for the correlators ωh,n due to Eynard and Orantin [EO07EO07]
and adapted to the spectral curves arising out of Σ ⊂ (X,ΩX ,F).

Acknowledgements. The authors would like to thank David Baraglia, Todor Milanov,
Jan Soibelman and Kari Vilonen for useful conversations. WC and PN would like
to thank the Max Planck Insitute for Mathematics, Bonn, where part of this work
was carried out and PN would like to thank LMU, Munich where part of this work
was carried out. This work was partially supported under the Australian Research
Council Discovery Projects funding scheme project number DP180103891.

2. Topological recursion applied to curves in surfaces

In this section we apply topological recursion as defined in [EO07EO07] to

Σ ⊂ (X,ΩX ,F)

given by a compact curve embedded inside a (holomorphic) symplectic surface
(X,ΩX) with Lagrangian foliation F following Kontsevich and Soibelman [KS18KS18].
We begin with a description of the prepotential on the deformation space of Σ inside
X. We then equip the surface X with a Lagrangian foliation, F , which puts the
extra structure on Σ required to define a spectral curve which is the initial data of
topological recursion. More generally one should be able to relax the symplectic
condition, and require only a Poisson structure, [KS18KS18]. In Sections 2.42.4 and 2.52.5 we
describe the cases X = T ∗C and X = an elliptic K3 surface.

2.1. Deformation space of embedded curves. Consider a symplectic surface
(X,ΩX) together with a smooth, embedded genus g curve Σ ⊂ X. The deformation
space B of Σ inside X is a smooth complex analytic moduli space of dimension g.
The tangent space of the moduli space B at the point Σ is naturally identified with
H0(Σ, νΣ), the space of holomorphic sections of the normal bundle of Σ, which is
isomorphic to H0(Σ,KΣ), the space of holomorphic differentials on Σ via adjunction

KΣ
∼= KX |Σ ⊗ νΣ

∼= νΣ.

This is a particular case of the more general property for a Lagrangian subspace L
of a symplectic vector space W

0→ L→W
ΩW (·,·)→ L∗ → 0
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which produces a canonical isomorphism L∗ ∼= W/L.

Over the moduli space B is a symplectic vector bundle H equipped with a flat
connection ∇GM. The symplectic vector bundle H is given by the hypercohomology

(10) HΣ = H0(Σ,Cone(ddR : OΣ → Ω1
Σ))

which is isomorphic to the first cohomology group H1(Σ;C), and ∇GM is the Gauss-
Manin connection. Define theH-valued 1-form φ ∈ Γ(B,Ω1

B⊗H) via the composition
of maps

TΣB
∼=−→ H0(Σ,Ω1

Σ)→ H1(Σ;C) = HΣ.

Then φ is flat with respect to ∇GM.

Lemma 2.1. ∇GMφ = 0.

Proof. We will show that φ is locally exact, i.e. there exists a well-defined local
primitive, or equivalently that φ integrates trivially along small loops in B. Given
[Σ] ∈ B, choose a small loop γ ⊂ B containing [Σ]. Choose [α] ∈ H1(Σ,Z)
represented by an embedded closed curve α ⊂ Σ and choose a family α̃ of embedded
closed curves representing the given homology cycle in each fibre. This gives a
torus T 2 → X which bounds a solid torus M3 → X when γ is chosen small enough.
Integration of φ along γ gives an element of a fibre of H which evaluates on [α] by〈∫

γ

φ, [α]

〉
=

∫
T 2

ΩX = 0

since dΩX = 0 and T 2 is homologically trivial. This applies to any primitive
homology class [α] hence ∫

γ

φ = 0.

This is true of any small γ, so φ is locally exact hence closed (as a section of the
locally trivial bundle H) i.e. flat with respect to ∇GM. �

The flat connection ∇GM naturally defines a complex

Ω0
B ⊗H

∇GM

→ Ω1
B ⊗H

∇GM

→ Ω2
B ⊗H

∇GM

→ ...

Define a local section s ∈ Γ(U[Σ],H), for U[Σ] ⊂ B a neighbourhood of a point [Σ] ∈ B,

by ∇GMs = −φ. The solution to this equation is a cohomology class s([Σ′]) ∈ H′Σ
for each [Σ′] ∈ U[Σ] well-defined up to addition of a constant independent of [Σ′].
To remove the constant define [θ] : U[Σ] → HΣ by

(11) [θ]([Σ′]) := s([Σ])− s([Σ′]) ∈ C2g ∼= HΣ

which is a well-defined map from the open set U[Σ] ⊂ B to C2g. The isomorphism

of cohomology with C2g uses a choice of Torelli basis. Strictly, in (1111), s([Σ′]) has
been parallel transported from HΣ′ to HΣ via the Gauss-Manin connection. By
definition, the covariant derivative of [θ] is given by

∇GM
η [θ] = η

for any η ∈ H0(Σ,KΣ) ∼= T[Σ]B. The linearisation ∇GM [θ] : T[Σ′]B → HΣ′ has

image given by the parallel transport of the Lagrangian subspace H0(Σ,KΣ′) ⊂ HΣ′
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so [θ] defines a local Lagrangian embedding of U[Σ]] ⊂ B into HΣ:

(12) U[Σ]

Lag.
↪−→ HΣ

∼= C2g.

Remark 2.2. It is important to note that [θ] is related to, but not equal to, the
cohomology class of the tautological 1-form vdu|Σ′ in the case X = T ∗C. It is given
by

[θ]([Σ′]) = [vdu|Σ]− [vdu|Σ′ ] ∈ C2g.

As mentioned above, this difference uses parallel transport by the Gauss-Manin
connection. We will see later that there exists a meromorphic differential θ which
is defined only in a formal neighbourhood of [Σ] ∈ B with cohomology class given
by an analytic expansion of [θ]. The Gauss-Manin connection lifts to a connection
with well-defined parallel transport on any formal neighbourhood, but only partially
defined on G.

Using the choice of a-cycles on each Σ′, [θ] defines coordinates on U[Σ] ⊂ B by

(13) zi([Σ′]) =

∮
ai

[θ]([Σ′]), i = 1, ..., g.

The coordinates satisfy zi([Σ]) = 0, and coordinates defined with respect to any
nearby point are related via a constant shift zi 7→ zi + zi0.

The b-cycles on each Σ′ give rise to functions wi(z
1, ..., zg) defined by wi =

∮
bi

[θ]([Σ′])

for i = 1, ..., g. Their derivatives satisfy

∂wi
∂zj

=
∂

∂zj

∮
bi

[θ] =

∮
bi

∇GM
∂

∂zj
[θ] =

∮
bi

ωj = τij

where the second equality uses the definition of the Gauss-Manin connection. By the
Riemann bilinear relations τij is symmetric, hence there exists a function, known as
the prepotential,

F0 : U → C
satisfying

wi =
∂F0

∂zi
, i = 1, ..., g

hence also ∂2F0

∂zi∂zj = τij and ∂3F0

∂zi∂zj∂zk
= cijk, which defines the tensor ĀΣ ∈

V Σ ⊗ V Σ ⊗ V Σ.

2.2. Foliations and topological recursion. Equip the symplectic surface (X,ΩX)
with a holomorphic Lagrangian foliation F . Let Σ ⊂ (X,ΩX ,F) be a compact curve
embedded inside a symplectic surface (X,ΩX) with Lagrangian foliation F . We
require that Σ is tangent to F at finitely many points R ⊂ Σ and the tangencies
are simple.

Example 2.3. A typical example is the cotangent space X = T ∗C of a compact
curve C. The symplectic surface X is foliated by fibres of the projection π : X → C.
For an embedded compact curve Σ ⊂ X the set R is the set of ramification points of
the morphism π|Σ, and Σ is chosen to have simple ramification points.
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Definition 2.1. Define FD (foliation-Darboux) local coordinates u, v on (X,ΩX ,F)
to be Darboux coordinates, i.e. du ∧ dv = ΩX that define the leaves of the foliation
via u = constant.

For each point in X, there exists a neighbourhood with FD local coordinates. They
are unique up to the symplectic change of coordinates which preserves the foliation

(14) (u, v) 7→ (f(u),
v

f ′(u)
+ g(u)),

for f ′(u) 6= 0 in the neighbourhood of X.

The data Σ ⊂ (X,ΩX ,F) gives rise to a spectral curve which is used to define
topological recursion. We begin with a definition of topological recursion following
Eynard and Orantin [EO07EO07]. Topological recursion arose out of the study of the
free energy of matrix models [CE06CE06].

• Spectral curve. A spectral curve (Σ, u, v, B) consists of a compact Rie-
mann surface Σ equipped with two meromorphic functions u and v defined
on Σ and a symmetric bidifferential B defined on Σ× Σ. We assume that
each zero of du is simple and does not coincide with a zero of dv. Topological
recursion produces symmetric tensor products of meromorphic differentials
ωh,n on Σn for h ≥ 0 and n ≥ 1 which we call correlators.

• Bergman kernel. A good choice of bidifferential B in the spectral curve is
the Bergman kernel which is a canonical normalised symmetric bidifferential
B(p, p′) associated to a compact Riemann surface equipped with a choice of
a-cycles {ai}i=1,...,g ⊂ Σ. It is normalised by

∫
p∈ai B(p, p′) = 0, i = 1, ..., g.

In a local coordinate z on Σ it is given by

(15) B(p, p′) =
dz(p)dz(p′)

(z(p)− z(p′))2
+ holomorphic in (z(p), z(p′)).

It generalises the Cauchy kernel since it satisfies df(p) = Res
p′=p

f(p′)B(p, p′),

for all meromorphic f .

• Recursion kernel. Define a kernel in a neighbourhood of any α ∈ Σ, i.e.
du(α) = 0, by

(16) K(p1, p) = −1

2

∫ p
p̂
B(p1, · )

(v(p)− v(p̂)) du(p)
.

where p 7→ p̂ denotes the holomorphic involution defined locally at the
ramification point α ∈ R satisfying u(p̂) = u(p) and p̂ 6= p.

• Recursion. The correlators ωh,n are defined by

ω0,2(p1, p2) = B(p1, p2)

and for 2h− 2 + n > 0 recursively via:

ωh,n(p1, pS) =
∑

du(α)=0

Res
p=α

K(p1, p)

[
ωh−1,n+1(p, σα(p), pS)(17)
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+
∑

h1+h2=h
ItJ=S

ωh1,|I|+1(p, pI)ωh2,|J|+1(σα(p), pJ)

]
.

Here, we use the notation S = {2, 3, . . . , n} and pI = {pi1 , pi2 , . . . , pik} for
I = {i1, i2, . . . , ik}. The outer summation is over the zeroes of du.

• Structure of correlators. The correlators ωh,n(p1, ..., pn) are tensor prod-
ucts of meromorphic differentials, symmetric in pi, with zero residue poles
at pi = α for any zero α of du, and holomorphic outside the set defined by
du = 0. They inherit from B(p, p′) the property

∮
pi∈ak ωh,n(p1, · · · , pn) = 0.

• Dilaton equation. The differential vdu is locally exact on Σ, and we
define ψ to be a local primitive, i.e. dψ = vdu. The dilaton equation, proven
in [EO07EO07] is:

(18)
∑

du(α)=0

Res
pn+1=α

ψ(pn+1)ωh,n+1(p1, ..., pn+1) = (2h− 2 + n)ωh,n(p1, ..., pn).

Since ωh,n+1 has zero residue at each α, the left hand side of the dilaton
equation is independent of the choice of primitive ψ. The dilaton equation
leads to the definition of the correlators for n = 0 and h ≥ 2.

(19) Fh :=
1

2h− 2

∑
du(α)=0

Res
p=α

ψ(p)ωh,1(p), h ≥ 2.

These are called symplectic invariants in [EO07EO07] (which uses Fh that differs
by a negative sign from (1919)).

• Local spectral curve. The recursion depends only a neighbourhood of
the zeros of du, hence u, v and B need only be defined locally in this
neighbourhood. In this case (Σ, u, v, B) is said to be a local spectral curve.

In this paper ω0,1 are not defined, or equivalently zero. In some conventions ω0,1 is
defined to coincide with vdu.

The recursive procedure of topological recursion (1717) can be formulated and gener-
alised [And+17And+17; KS18KS18] in terms of the tensors A, B and C from the Airy structure
defined in Section 3.23.2.

2.2.1. Correlators of Σ ⊂ (X,ΩX ,F). Given a compact curve embedded inside a
symplectic surface with Lagrangian foliation Σ ⊂ (X,ΩX ,F), choose a collection of
a-cycles on Σ ⊂ X. This choice defines an associated Bergman kernel B normalised
over the a-cycles, and together with a choice of FD local coordinates u and v (see
Definition 2.12.1), they define a local spectral curve:

Σ ⊂ (X,ΩX ,F) ; (Σ, u, v, B).

Apply topological recursion, defined via (1616) and (1717), to this local spectral curve
to produces correlators ωh,n which are tensor products of meromorphic differentials
on Σn with poles precisely at R ⊂ Σ. The spectral curve (Σ, u, v, B) depends on a
choice of (u, v). The correlators are independent of the ambiguity (1414) since (u, v)
enters the recursion via the kernel K(p1, p) as

(v(p)− v(p̂))du(p) =

(
v(p)

f ′(u(p))
+ g(u(p))− v(p̂)

f ′(u(p̂))
− g(u(p̂))

)
df(p)



14 AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES

and the involution p 7→ p̂ depends only on the foliation. The dilaton equation is also
independent of the ambiguity (1414) since ψ 7→ ψ + ξ(u) which adjusts the left hand
side of (1818) by a sum of residues of a holomorphic function in u times the correlator.
These residues vanish, i.e. for holomorphic ξ(u) defined in a neighbourhood of α,
Res
p=α

ξ(u(p))ωh,n|pn=p = 0 since the principal part of ωh,n at α is skew-invariant

under the involution p 7→ p̂ and it is still skew-invariant after multiplication by an
invariant function. The residue comes from the invariant part. In particular the
functions Fh are well-defined for h ≥ 2 since they do not change under (1414). In the
case X = T ∗X, this generalisation of a spectral curve was studied in [DM14DM14].

Since the simple tangency condition on a curve Σ ⊂ (X,ΩX ,F) is an open con-
dition and a choice of a-cycles on Σ is a discrete choice, we can choose an open
neighbourhood U[Σ] of [Σ] ∈ B consisting of nearby embedded Σ′ ⊂ (X,ΩX ,F)
satisfying the simple tangency condition and with a given choice of a-cycles. Thus
the correlators ωh,n are well-defined on each nearby Σ′ and Fh defines a function on
a neighbourhood U[Σ] of [Σ] ∈ B for each h ≥ 2.

One main motivation of [KS18KS18], is to use the functions Fh to produce a cyclic vector
for the deformation quantisation of B ⊂ H1(Σ;C) by:

exp

(
F0

~
+ F1 + ~F2 + ...+ ~g−1Fg + ...

)
This is annihilated up to O(~) by a quantisation of the local defining equations for
B ⊂ H1(Σ;C):

−~ ∂

∂zi
+ wi(z

1, ..., zg).

Just as F0 can be calculated independently of the choice of foliation, the deformation
quantisation suggests that there may be a way one could define the Fh independently
of the choice of foliation. This might allow Fh to be constructed via topological
recursion using any local Darboux coordinates (u, v) of X leading to symplectic
invariance of Fh.

2.3. Cohomological field theories. A cohomological field theory (CohFT) is a
pair (H, 〈., .〉) consisting of a finite-dimensional complex vector space H ∼= CR
equipped with a non-degenerate symmetric bilinear pairing 〈., .〉 and a sequence of
Sn-equivariant maps

Ωh,n : H⊗n → H∗(Mh,n;C).

The maps Ωh,n satisfy natural compatibility conditions with respect to restriction to

lower dimensional strata inMh,n built out ofMh′,n′—see [KM94KM94]. It is semisimple
if H is semisimple with respect to a product on H induced from Ω0,3 and 〈., .〉.

A relationship between semisimple cohomological field theories and topological
recursion was proven in [Dun+14Dun+14]. The correlators ωh,n of (Σ, u, v, B) are polynomial
in a basis of differentials {ξαk | α ∈ R ⊂ Σ, k ∈ N} constructed out of the locally
defined function u on Σ and the Bergman kernel B—see [Eyn14Eyn14; Eyn19Eyn19]. Define
the topological recursion partition function of the spectral curve S = (Σ, B, u, v) by

ZS(~, {ξαk }) = exp

∑
h,n

~h−1

n!
ωh,n({ξαk })

 .
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It was proven in [Dun+14Dun+14] that, under assumptions on the spectral curve, ZS

coincides with the partition function of a semisimple CohFT which stores intersection
numbers of all Ωh,n with the tautological psi classes. Furthermore, this decomposition
coincides with a decomposition of Givental [Giv01Giv01] for partition functions arising
out of semisimple cohomological field theories. The assumptions on the spectral
curve in [Dun+14Dun+14] were lifted in [CN19CN19] to allow any compact curve Σ ⊂ X.

Given a curve Σ inside a foliated symplectic surface X and α ∈ R ⊂ Σ, choose local
coordinates (uα, vα) for X in a neighbourhood of α as follows.

Definition 2.2. Given (X,ΩX ,F) and α ∈ R ⊂ Σ ⊂ X, define local coordinates
(uα, vα) in a neighbourhood Uα ⊂ X of α satisfying:

• duα ∧ dvα = ΩX ;

• {uα = constant } defines the leaves of the foliation F ;

• (uα, vα)|α = (0, 0);

• uα − v2
α = 0 locally defines Σ.

The first two properties define FD coordinates—see Definition 2.12.1. Via the change of
coordinates given in (1414) arbitrary FD coordinates can be transformed to satisfy the
remaining two properties. The four properties uniquely determine the coordinates
up to

(uα, vα) 7→ (ζ2uα, ζvα), ζ3 = 1.

The locally defined function u restricts to each Σ′ for [Σ′] ∈ UΣ and we denote its
critical value by u(α′) = λα([Σ′]). The set of critical values {λα(z1, ..., zg) | α ∈ R}
defines a map

(20) Λ : UΣ → CR.
The linearisation, described explicitly in (6363) in Appendix AA,

DΛ : H0(Σ,KΣ)→ CR

composed with the CohFT induces linear symmetric maps:

H0(Σ,KΣ)⊗n → H∗(Mh,n;C).

This is no longer a CohFT because the pairing on H0(Σ,KΣ) given by

〈η1, η2〉 :=
∑
α∈R

Res
α

η1(p)η2(p)

duα(p)

for η1, η2 ∈ H0(Σ,KΣ) is not necessarily non-degenerate. For example, when
X = T ∗C, the tautological 1-form vdu|Σ ∈ H0(Σ,KΣ) pairs trivially with any
η ∈ H0(Σ,KΣ).

The classes Ωh,n(η1,⊗...⊗ ηn) ∈ H∗(Mh,n;C) of a CohFT consist of terms in all
degrees. Among these, the term of degree 3h − 3 + n is known as the primary
class and measured by

∫
Mh,n

Ωh,n(η1,⊗...⊗ ηn). The correlator ωh,n ∈ V ⊗nΣ , which

stores intersection numbers of the tautological psi classes with the image of Ωh,n,
also defines a linear map

ωh,n : H0(Σ,KΣ)⊗n → C
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via the natural pairing of VΣ and H0(Σ,KΣ). It would be interesting to understand
how to relate this to a primary part. Note that primary part of Ωh,n should
not be confused with the topological part, underlying any CohFT, given by the
projection of Ωh,n to H0(Mh,n,C) ∼= C. The projection to H0(Mh,n,C) defines
a two-dimensional topological field theory on (H, 〈., .〉) which is a sequence of
Sn-equivariant maps

Ω0
h,n : H⊗n → C

satisfying compatibility conditions that are equivalent to composition of multilinear
maps.

A CohFT on H ∼= CR is equivalent to a geometric structure on H given by a
flat metric, a product on the tangent space and further structure, known as a
Frobenius manifold, [Dub96Dub96]. The manifold CR parametrises a family of more
general deformations of Σ ⊂ X than those that embed into X. The family of
curves gives rise to Dubrovin’s superpotential associated to a semisimple Frobenius
manifold, which is related directly to topological recursion in [Dun+19Dun+19]. Hence the
g-dimensional space B of deformations of the spectral curve inside X maps to an
|R|-dimensional Frobenius manifold.

2.4. Deformation space associated with Higgs bundles. A particularly in-
teresting class of examples of a deformation spaces of a curve inside a foliated
symplectic surface arises from the geometry of Higgs bundles defined by Hitchin in
[Hit87Hit87].

Definition 2.3. A Higgs bundle over a compact Riemann surface C is a pair (E, φ)
where E is a rank N holomorphic vector bundle over C and φ ∈ H0(C,End(E)⊗KC).

Associated to the pair (E, φ) is its spectral curve

Σ = {det(φ− λI) = 0} ⊂ T ∗C,
which has equation 0 = (−1)N det (φ− λI) = λN + a1λ

N−1 + ... + aN where

ak ∈ H0(C,K⊗kC ). If the spectral curve is irreducible then the pair (E, φ) is stable
meaning that for any φ-invariant subbundle F ⊂ E, i.e. φ(F ) ⊂ F ⊗KΣ, we have
c1(F )

rank F < c1(E)
rank E .

The spectral curve associated to a pair defines a map from the moduli space
M =MN,d of stable Higgs bundles of rank N and degree d on a compact Riemann
surface C of genus gC > 1,

f :M→ B.
Here B is the space of (possibly singular) spectral curves which can be identified
with the following space:

B =

N⊕
j=1

H0(C,K⊗jC ).

Fibres of f are complex tori and they are singular in general. Let f :Mreg → Breg
be the restriction of f to the open subset Mreg ⊂M consisting of smooth fibres.
For any point [Σ] ∈ Breg the associated spectral curve Σ is an irreducible curve of

genus g = N2(gC−1)+1 (which is calculated via dimB = 1+
∑N
j=1(gC−1)(2j−1)).

The deformation space of Σ ⊂ T ∗C coincides with Breg. The natural projection
π : Σ → C is a degree N map. The foliation is given by fibres of the projection
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map π. We consider only Σ such that the morphism π has only double ramification
points.

Fibres over Breg are naturally identified with Jacobians of the spectral curves Σ for
[Σ] ∈ B which is defined inside the cotangent bundle of the Riemann surface C. The
tangent space of a fibre is naturally identified with H1(Σ,OΣ). The moduli space
Mreg is symplectic and the symplectic form produces a non-degenerate pairing
between the tangent space of the base and the tangent base of the fibre

H0(Σ,KΣ)⊗H1(Σ,OΣ)→ C
which coincides with Serre duality. The base space Breg parametrises embedded
Lagrangian Jacobians inMreg and embedded curves Σ ⊂ X, which are automatically
Lagrangian. It is proven in [Hit99Hit99] that the deformation space of a compact
holomorphic Lagrangian in a holomorphic symplectic Kähler manfold naturally has
a special Kähler structure. Hence there are two natural special Kähler structures
defined on Breg. It is proven in [BH17BH17] that the special Kähler structures coincide—
see also [Hit19Hit19].

Denote by vdu the tautological 1-form on the cotangent bundle of C. The pair
of holomorphic coordinate systems (ζ1, . . . , ζg) and (η1, . . . , ηg) on UΣ ⊂ Breg is
obtained by integrating the 1-form vdu over a-cycles and b-cycles of the spectral
curve. More precisely,

ζi =

∫
ai

vdu, ηi =

∫
bi

vdu.

Given normalised holomorphic differentials ωi, i = 1, ..., g on Σ, vdu − ζiωi is
holomorphic with zero a-periods so it vanishes, hence:

vdu = ζiωi.

The tautological 1-form gives a canonical primitive of ΩX , which does not exist for
more general symplectic X so we instead use the coordinates zi defined in (1313) and
the related coordinates wi. The relation between these coordinates is as follows.
For [Σ′] ∈ UΣ

zi([Σ′]) = ζi([Σ′])− ζi([Σ]), wi([Σ
′]) = ηi([Σ′])− ηi([Σ]).

In particular, zi(Σ) = 0 = wi(Σ). Note that we still have τij = ∂
∂ziwj since

τij = ∂
∂ζi ηj = ∂

∂zi (wj + constant) = ∂
∂ziwj .

The action of C∗ on fibres of T ∗C induces an action on B which preserves the
conformal type of the spectral curve hence also τij is preserved. Under this action
vdu 7→ λvdu for λ ∈ C∗ hence zi 7→ λzi and wi 7→ λwi. We have

F0 =
1

2
ziwi

since
∂

∂zj
1

2
ziwi =

1

2
wj +

1

2
zi

∂

∂zj
wi =

1

2
wj +

1

2
ziτij =

1

2
wj +

1

2
ziτji

=
1

2
wj +

1

2
zi

∂

∂zi
wj =

1

2
wj +

1

2
wj = wj ,
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where the second last equality used the fact that wi is homogeneous of degree one
under the C∗ action which is generated by zi ∂

∂zi . For more general symplectic
X 6= T ∗C, F0 does not have the same simple formula.

For h ≥ 2 there is a similar formula for Fh.

Fh =
1

2h− 2

∑
α

Res
p=α

ψ(p)ωh,1(p)

=
1

2h− 2

g∑
i=1

∮
ai

ωh,1(p)

∮
bi

vdu(p)−
∮
bi

ωh,1(p)

∮
ai

vdu(p)

=
1

2− 2h

∮
bi

ωh,1(p)zi

where we sum over indices i = 1, ..., g in the last expression, ψ(p) is a primitive
of the restriction of the tautological 1-form vdu(p) on Σ − {ai, bi} and we have
used the Riemann bilinear relations. Note also that Fh is homogeneous of degree
2− 2h which follows from topological recursion since inductively the recursion gives
ωh,n 7→ λ2−2h−nωh,n under the C∗ action.

2.4.1. Rank one case. A rather trivial example is the rank one case which gives
the deformation space of the zero section of a cotangent bundle Σ ⊂ T ∗Σ. The
deformation space is B = H0(Σ,KΣ) since any deformation of the zero section
remains a section. The vector space B is isomorphic to its tangent space T[Σ]B =

B. We have φ ∈ Γ(B,Ω1
B ⊗ H) defined by φ(η) = [η] ∈ H1(Σ;C) for any η ∈

H0(Σ,KΣ). The a-periods of vdu define coordinates zi on B. The sum zi[ωi],
with respect to the basis of normalised holomorphic differentials ωi, i = 1, ..., g,
represents the general point in B and also the restriction of the tautological 1-form.
The Lagrangian embedding B → C2g is defined globally and is simply the linear
embedding H0(Σ,KΣ)→ H1(Σ;C). The prepotential is F0 = ziwi = zizjτij where
τij is constant on B, and the deformation tensor vanishes identically: 0 = ĀΣ ∈
V Σ⊗ V Σ⊗ V Σ. In order to agree with the more general construction of coordinates
zi for a symplectic surface, we would shift the coordinates by a constant zi− zi([Σ]).

Note that for smooth symplectic structures, by Weinstein’s theorem [Wei71Wei71] the
neighbourhood of any Lagrangian submanifold is symplectomorphic to a neighbour-
hood of the zero section of the Lagrangian submanifold in its cotangent bundle
equipped with its canonical symplectic structure. Unlike in the smooth category, a
neighbourhood of a complex submanifold is not necessarily biholomorphically equiv-
alent to a neighbourhood of a complex submanifold in the total space of its normal
bundle. If a local holomorphic symplectomorphism exists between neighbourhoods
of Σ ⊂ X and Σ ⊂ T ∗Σ then the prepotential of the former must coincide with the
prepotential in the rank one case above.

2.5. K3 surfaces. A rich class of examples of foliated symplectic surfaces arise
from elliptic fibrations of K3 surfaces. Elliptic K3 surfaces form a dense codimension
one subset of the moduli space of complex K3 surfaces. Recall that a K3 surface is
called elliptic when there is a surjective morphism π : X → P1 whose generic fibre
is a smooth curve of genus one. Such morphisms are always flat and therefore all
fibres have arithmetic genus one. The foliation F on any such surface X is defined
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by the fibres of the elliptic fibration. The foliation is singular at a finite set of points,
which can be avoided by a generic spectral curve inside the K3 surface.

The simplest class of K3 elliptic surfaces are obtained from Kummer surfaces of the
form X = E1 ×E2, where E1 and E2 are elliptic curves. Two special fibrations are
obtained via the projections of the surface X to the quotients Ei/ι ∼= P1, where ι is
the elliptic involution on the curve.

Elliptic surfaces X → P1 with a section are described by their Weierstrass form:

y2 = x3 + f(z)x+ g(z)

where x, y, z are local coordinates and f(z), g(z) are polynomials of deg f = 8,
deg g = 12. We equip the surface with the symplectic form

ω =
dx ∧ dz

y
.

This equation defines an affine surface in C3 with compactification X.

For a given polynomial

p(z) = u0 + u1z + · · ·+ umz
m

we obtain a hyperelliptic curve Σ ⊂ X defined via the equation x = p(z), or
equivalently

y2 = p(z)3 + f(z)p(z) + g(z).

The deformation space B is parametrised by {u0, ..., um}. An example of such a
family of hyperelliptic curves can be found in [Tak01Tak01]. A choice of a-cycles on Σ
together with the foliation defines a spectral curve as in Section 2.2.12.2.1 and Theorem 11
applies.

Another family of examples of elliptic K3 surfaces arise from quartics in P3, such as
the Fermat quartic:

X = {z4
0 + z4

1 + z4
2 + z4

3 = 0} ⊂ P3.

The set of hyperplanes in P3 will be used to define both the deformation space B of
curves in X and the elliptic fibration X → P1 as follows. For H a hyperplane in
P3 intersecting X generically, let Σ = H ∩X be an embedded genus 3 curve. Its
deformation space B is an open set in the set of hyperplanes P3

dual in P3. Consider
a line in P3 that is contained in X, i.e. L ⊂ X. The P1-family of hyperplanes in P3

that contain L defines the elliptic fibration X → P1. A choice of a and b-cycles on
Σ defines correlators on ωh,n on Σ. Again, Theorem 11 applies in this case.

We can replace the genus 3 curve Σ ⊂ X in the previous example by a genus 1
curve. Instead choose a hyperplane in P3 intersecting X non-generically. Given two
such lines L1, L2 ⊂ P3 and a hyperplane H containing L1 define the elliptic curve
Σ = H ∩X − L with a 1-dimensional deformation space B, and use L2 to define a
foliation on X. In other words, given two different elliptic fibrations, we use one for
the foliation and the other for the family of embedded curves.

3. Airy structures

In this section we give the formulation of topological recursion due to Kontsevich
and Soibelman [KS18KS18]. Given a quadratic Lagrangian L ⊂ W we describe the
corresponding Airy structure which is a collection of tensors satisfying A, B and C
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on V satisfying quadratic constraints. We then define the main example given by
the quadratic Lagrangian LKS defined in (88) which gives rise to abstract topological
recursion (3232).

3.1. Tate spaces. We outline the algebraic background needed to define an Airy
structure, on an infinite dimensional Tate space W , over a field k of characteristic
zero with discrete topology, from [KS18KS18]. Tate spaces can be used as a model for an
infinite dimensional symplectic (topological) vector space.

Let V,U be topological vector spaces, with discrete toplogy, both over a field k with
discrete topology. Let ∗ denote the topological dual. Recall the discrete topology
defines all subsets as open sets.

Definition 3.1 (Tate space). A Tate space W is the direct sum

W = V ⊕ U∗.

As U has discrete topology, U∗ has locally linearly compact topology.

A topological vector space V ′ is linearly topologised if there is a neighbourhood
basis at zero of linear subspaces, and is Hausdorff. A linear variety A is a subset of
the form v + U ′ where U ′ is a linear subspace of V ′. A is closed if U ′ is closed (or
respectively open). Finally a linearly topologised vector space is linearly compact
if collections of linear varieties with the finite intersection property is non empty
[Lef42Lef42, p. 74].

Setting U = V , there is an isomorphism V ∼= (V ∗)∗ [Dri06Dri06]. With U = V , this
gives W the property W ∼= W ∗, making W a strong symplectic vector space, with a
polarisation given by V .

An Airy structure characterises a quadratic Lagrangian subvariety L in the polarised
symplectic vector space W . Define L as the zero set of the ideal generated by a
collection of quadratic polynomials. Choose Darboux coordinates {xk | k ∈ I}
on V ∗ ∼= L = T0L indexed by a set I ⊆ N, and note xk ∈ (V ∗)∗ ∼= V , together
with coordinates {yk | k ∈ I} on V , so that yk ∈ V ∗ ∼= L. The coordinates xk

and yk can also be treated as formal variables in a coordinate ring. For the main
infinite-dimensional example W in this paper, we will choose a particular set of
Darboux coordinates, given in Definition 3.33.3.

When W is infinite dimensional and I = N, we construct the coordinate ring k[W ]
via the symmetric algebra:

S(W ∗) =
⊕

Sk(V ∗ ⊕ V ) =
⊕
k

⊕
λ`k

Sλ(V )⊗ Sλ(V ∗) ∼= k[V ]⊗ k[V ∗] ∼= k[W ],

where ⊗ is algebraic tensor product. Elements of k[W ] are formal combinations of
variables x• and y•, xk 6= 0 only for a k in a finite number of k ∈ I, x• terms are
bounded in degree, and y• terms are bounded in degree.

Additionally, there is a natural isomorphism between completed tensor products,
and a ring of formal power series in infinite variables,

Ŝ(W ∗) = kJW K.



AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 21

Where kJW K is given by completion at the maximal ideal 〈x•, y•〉, allowing for formal
sums of unbounded degree in x• and y•.

The symplectic structure on the vector space W corresponds naturally to a Poisson
bracket on k[W ] and on the completion kJW K. The Poisson bracket is a map

{•, •} : k[W ]× k[W ]→ k[W ]

defined by the coordinates,

{yj , xi} := δij , {xi, xj} := 0, {yi, yj} := 0

and extending to polynomials and formal series via the Leibniz rule. This gives
k[W ] the structure of a Lie algebra.

Example 3.1. Let (Σ, R) be a curve equipped with a divisor R ⊂ Σ. Equip Σ with
a choice of a-cycles in H1(Σ;Z). The main example we consider in this paper is VΣ

defined in (2424) to be the vector space of residueless global meromorphic differentials
on Σ, holomorphic on Σ − R with zero a-periods. It is equipped with the discrete
topology.

3.2. Airy structures. Consider a quadratic Lagrangian L in W defined by a
(possibly infinite) collection of quadratic polynomials, Hi ∈ k[W ] given by

Hi = −yi + aijk x
jxk + 2bkij x

jyk + cjki yjyk, i, j, k ∈ I ⊆ N
where we sum over repeated indices. Linearising Hi defines the tangent space at 0
by T0L = {yi = 0}.

With respect to a polarisation, i.e. a choice of V ⊂W such that W ∼= V ⊕ V ∗, the
coefficients naturally form tensors:

A = (aijk) ∈ V ⊗ V ⊗ V,

B = (bkij) ∈ V ∗ ⊗ V ⊗ V,(21)

C = (cjki ) ∈ V ∗ ⊗ V ∗ ⊗ V,

where (aijk) := aijkx
ixjxk, (bkij) := bkijx

ixjyk and (cjki ) := cjki x
iyjyk.

Any functions Hi which define a Lagrangian submanifold define an ideal with
respect to the Poisson bracket—see for example [Wei88Wei88]. When Hi are quadratic
this produces a Lie algebra g with structure constants gkij , given by the closure of
the Poisson bracket from k[W ]:

{Hi, Hj} = gkijHk.

The closure of this Lie bracket induces the following constraints on the tensors A,
B and C known as an Airy structure on V .

Definition 3.2 (Airy structure). An Airy structure on V is a collection of tensors
(2121) satisfying the homogeneous constraints:

2
(
bkji − bkij

)
= gkij ,

4
(
ajksb

k
it − aiksbkjt

)
= gkijakst,

4
(
ajksc

kt
i − aikscktj + bkisb

t
jk − btikbkjs

)
= 2gkijb

k
kst,

4
(
bsjkc

kt
i − bsikcktj

)
= gkijc

st
k .
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Airy structures were introduced by Kontsevich and Soibelman in [KS18KS18] and the
homogeneous constraints appeared in [And+17And+17]. Their algebraic structure was
generalised in [Bor+18Bor+18; BM20BM20].

We study the Lagrangian L in formal neighbourhoods of the origin 0 ∈ W .
This approach is necessary when W is infinite-dimensional since in that case
Spec (k[W ]/I(L)) defines a point in W , for I(L) = 〈H1, H2, ...〉. In a formal
neighbourhood of the origin 0 ∈ W , L corresponds to a formal scheme, which
we also denote by L. It is given by completion of k[W ]/I along a maximal ideal
m = 〈x•, y•〉 (representing zero in W ). The quotient of k[W ]/I by mk+1 corresponds
to the k-th formal neighbourhood. So the colimit of the quotient gives

L = colim
n

Spec
(
k[W ]/{I,mn+1}

)
via the projective limit functor.

The Lagrangian L is realised as a graph via a fixed point iteration as follows. Put
Hi = −yi + Ĥi so that Ĥi is quadratic in {xj , yk}. The image of L in the n-th
formal neighbourhood of 0 ∈W is the graph:

(22) {y(n)
i = aijkx

jxk + 2bkijak`mx
jx`xm + ... | i = 1, 2, 3, ...}.

where the polynomial y
(n)
i is obtained iteratively by

y
(n+1)
i = Ĥi(x

j , y
(n)
k ).

We have y
(1)
i = 0 hence y

(2)
i = aijkx

jxk and y
(3)
i is the cubic expression above.

This procedure produces y
(n)
i as a degree n polynomial in xj defined in the nth

formal neighbourhood of 0 ∈ W , for any n. Since y
(n+1)
i and y

(n)
i agree up to

degree n, we can drop the superscript y
(n)
i and write yi({x•}) when the nth formal

neighbourhood is understood.

Example 3.2. Consider the conic −y + x2 + 2xy + y2 = 0. Solving for y, and
taking the formal expansion of the square root gives y(x) = u0(x) = x2 + 2x3 + 5x4 +

· · ·+ (2n)!
(n+1)!n!x

n+1 + · · ·. The coefficients are Catalan numbers, which count rooted

binary trees.

Quite generally, any Lagrangian submanifold can be represented locally via a
generating function. The restriction of a primitive of a symplectic form to a
Lagrangian submanifold is exact since integrals around contractible closed loops
vanish by the Lagrangian condition. Apply this to the primitive −yidxi of Ω in a
formal neighbourhood of 0 ∈ L to get a function S0 defined in a neighbourhood in
W of 0 ∈ L satisfying

yidx
i = dS0({xi}).

Explicitly

S0(x) =
1

3
aijkx

ixjxk +
1

6

(
bkijak`m + bki`akjm + bkimakj`

)
xixjx`xm + ...,

The symmetry of S0(x) uses the closure under the Poisson bracket {Hi, Hj} = gkijHk.
A consequence of the symmetry is

bkijak`m + bki`akjm + bkimakj` = bkjiak`m + bkj`akim + bkjmaki`
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which agrees with the constraints in Definition 3.23.2. For example we see that

∂

∂xi
S0,4 =

4

6
(bkijak`m + bki`akjm + bkimakj`)x

jx`xm = 2bkijak`mx
jx`xm = y

(4)
i

as required.

3.3. Tate spaces associated to a curve in a symplectic surface. In this
section a bundle of Tate spaces is associated to curves in a symplectic surface.
Following [KS18KS18], define the symplectic (Tate) vector space

WAiry =

{
J =

∑
n∈Z

Jnz
−n dz

z
| J0 = 0,∃N such that Jn = 0, n > N

}
with symplectic form

ΩWAiry
(η1, η2) = Res

z=0
f1η2, df1 = η1, η2 ∈WAiry.

The skew-symmetric bilinear form ΩWAiry
is translation-invariant hence closed. It

is non-degenerate because for J =
∑
n≥k Jnz

−n dz
z ∈ WAiry, with Jk 6= 0, then

ΩWAiry
(J, zk dzz ) 6= 0. The locally holomorphic differentials define LAiry = {J |

Jn = 0, n > 0} ⊂WAiry, which is a Lagrangian subspace tangent to the quadratic
Lagrangian LAiry ⊂WAiry defined in Example 1.11.1.

Given a compact curve Σ, a non-empty finite subset R ⊂ Σ, and local coordinates
zα defined in a neighbourhood of α ∈ R, define W = (WAiry)R. Each copy of WAiry

uses the local coordinate zα. The subspace L = (LAiry)R ⊂ W consists of locally
holomorphic differentials. Define GΣ ⊂W by

(23) GΣ = {η ∈ H0(Σ,Ω1(Σ−R)) meromorphic on Σ | Res
r∈R

η = 0}

where we identify GΣ with its image under the injective map GΣ → W . Given a
choice of Torelli basis on Σ, define

(24) VΣ = {η ∈ GΣ |
∮
ai

η = 0, i = 1, ..., g}.

We have L⊕ VΣ = W , proven in (2929), hence VΣ defines a polarisation

W ∼= VΣ ⊕ V ∗Σ .

A family of pairs (Σ, R) is obtained naturally out of a foliated symplectic surface.
Let (X,ω,F) be a symplectic surface with a Lagrangian foliation F . Consider a
curve Σ ⊂ X. The curve Σ ⊂ X and choice of Torelli basis determines VΣ ⊂ W ,
defined to be those residueless differentials on Σ with zero a-periods. Recall that
H → B, defined in (1010), is a vector bundle with fibre H[Σ] = H1(Σ;C) ∼= C2g

and G → B is a vector bundle with fibre GΣ. Define [.] : G → H which maps a
residueless meromorphic differential to its cohomology class.

The quadratic Lagrangian LKS ⊂ Ŵ defined in a formal neighbourhood of 0 ∈W
by (88) can be alternatively defined via the following residue constraints [KS18KS18].
Choose local FD coordinates (uα, vα) in a neighbourhood Uα ⊂ X of α satisfying
the properties of Definition 2.22.2.
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A point η ∈ LKS satisfies the following residue constraints:

Res
α

(
vα −

η

duα

)
umα duα = 0, m ≥ 1,(25)

Res
α

(
vα −

η

duα

)2

umα duα= 0, m ≥ 0.(26)

The condition that the differential Res α ηu
m
α duα = 0 for m ≥ 0 is equivalent

to η having skew-invariant principal part under each local involution σα defined by F .

It is convenient to express the quadratic Lagrangian LKS ⊂ W in the form of
Section 3.23.2 with respect to the following choice of Darboux coordinates.

Definition 3.3. Given (Σ, R), choose Darboux coordinates {xi, yi} on W satisfying
Ω = dxi ∧ dyi, xi ∈ VΣ ⊂W ∼= W ∗ such that

1

2πi

∮
bj

xk = δjk, j ∈ {1, ..., g}, k ∈ N

and yi ∈ L ⊂W .

The coordinates {xi, yi} satisfy the following properties.

(1) [xi] = 0 for i > g.

(2) yi = ωi, the normalised holomorphic differential, for i = 1, ..., g.

The first property uses the fact that
∮
aj
xi = 0 since xi ∈ VΣ, and combined with∮

bj
xi = 0, we see that all periods vanish hence so does the cohomology class [xi].

The second property uses ΩW = dxi ∧ dyi and the Riemann bilinear relations to
deduce ΩW (ωi, x

j) = δij . Hence yi = ωi follows from the nondegeneracy of ΩW .

For the existence of coordinates {xi, yi} satisfying the conditions of Definition 3.33.3,
use the fact that the map GΣ → H1(Σ;C) is surjective. So there exists xi, i = 1, ..., g
satisfying 1

2πi

∮
bj
xi = δij . Then for i > g, complete {xi | i = 1, ..., g} to a basis of

meromorphic differentials; for i = i(α, n) where α ∈ R and n ∈ N, let

xi0 = d(z−nα ) + holomorphic terms ∈ VΣ

(by the Hodge decomposition theorem) and also let

xi = xi0 −
g∑
j=1

xj
1

2πi

∮
bj

xi0.

In terms of xi, we have

y0
i =

1

n
d(znα) +

g∑
j=1

ωj
1

2πi

∮
bj

xi0

for i > g. Then define

yi = y0
i −

g∑
j=1

yjΩW (y0
i , x

j).
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The coordinates {xi, yi} from Definition 3.33.3 are not unique, since, for example,
x1 7→ x1 + xg+1 and xi 7→ xi, i > 1 (which induces a linear change of the variables
yi) also satisfies the conditions. However, the set of vector fields

∂

∂x1
,
∂

∂x2
, ...,

∂

∂xg
,

is well-defined independent of the ambiguity in the choice of coordinates {xi, yi}.
This can be seen in two ways. We have

∂

∂xi
= ωi, i = 1, ..., g

where the normalised holomorphic differential ωi represents a vector field independent
of coordinate choices. Or more directly, the linear change x1 7→ x1 + xg+1 and
xi 7→ xi induces ∂

∂x1 7→ ∂
∂x1 and ∂

∂xg+1 7→ ∂
∂xg+1 + ∂

∂x1 leaving ∂
∂x1 invariant.

3.4. Symplectic reduction. Consider a symplectic manifold (M,ω) that admits
a proper Hamiltonian action of an abelian Lie group G and an invariant moment
map µ : M → g∗. The moment map is characterised by

(27) ω(ξu(m), ·) = d〈µ(m), u〉
where u ∈ g defines the vector field ξu on M by ξu(m) = d

dt (g(t) · m)|t=0 and
g′(0) = u.

For any regular value a of µ, define the symplectic quotient

M�G := µ−1(a)/G.

Then M�G inherits a symplectic form (depending on a).

Apply these ideas to a symplectic vector space (W,ω) equipped with a translation-
invariant symplectic form ω. Let U ⊂ W be an isotropic subspace, so ω|U = 0 or
equivalently U ⊂ U⊥. Then U acts on W by translations, and hence preserves ω.
The moment map µ is given by the quotient map

0→ U⊥ →W
µ→ U∗ → 0

because ω(u, v) = 〈µ(v), u〉, ∀u, v ∈ W agrees with (2727) (since u = ξu(m) and
d〈µ(m), u〉(v) = 〈µ(v), u〉). Hence U⊥ = µ−1(0) and the symplectic quotient is
given by:

W�U := U⊥/U.

The symplectic form ω on W�U is defined by ω(v̄1, v̄2) = ω(v1, v2) where vi ∈ U⊥
is any lift of v̄i ∈ U⊥/U . The right hand side is independent of the lift since
ω(v1 +u, v2) = ω(v1, v2) for any u ∈ U . The 2-form ω is closed since it is translation
invariant. It is non-degenerate since ω(v̄1, v̄2) = ω(v1, v2) = 0 for all v̄2, hence all v2

implies that v1 ∈ U hence v̄1 ≡ 0.

To apply this to GΣ ⊂W defined by the pair (Σ, R) we need the following.

Lemma 3.3 ([KS18KS18]). GΣ ⊂W is coisotropic.

Proof. We first show that GΣ and L intersect transversally, i.e.

(28) GΣ + L = W.

Define
Wk = {J ∈W | Jn = 0, n ≥ k}
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so H = W1 ⊂ W2 ⊂ ... ⊂ Wk ⊂ Wk+1 ⊂ ... ⊂ W = ∪k>0Wk. We have
dim(Wk/Wk−1) = |R| and by Riemann-Roch this vector space can be represented
by elements of GΣ since

dim(Wk ∩GΣ)− dim(Wk−1 ∩GΣ)

= dimH0(Σ,KΣ(kR))− dimH0(Σ,KΣ((k − 1)R))

= k|R|+ 1− g − ((k − 1)|R|+ 1− g) = |R|.
Hence (Wk ∩GΣ) + L = Wk and (2828) follows by taking the union over k > 0.

Define VΣ ⊂ GΣ to consist of those differentials with vanishing a-periods. It is easy
to see that the proof of (2828) can be adjusted to yield:

(29) VΣ ⊕ L = W,

since the elements of Wk ∩GΣ can be chosen to be normalised to have vanishing
a-periods.

Let η1 + ` ∈ G⊥Σ for η1 ∈ V and ` ∈ L. Then ΩW (η1 + `, η2) = 0 for all η2 ∈ V since
η1 +` annihilates all elements of GΣ, in particular those from V . But ΩW (η1, η2) = 0
by the Riemann bilinear relations:

(30)
∑

Res
r∈R

f1η2 =
1

2πi

g∑
j=1

∮
bj

η1

∮
aj

η2 −
∮
bj

η2

∮
aj

η1 =
1

2πi

∫
Σ

[η1] ∧ [η2]

since all a-periods vanish in the middle expression of (3030). Here df1 = η1 for a
locally defined function f1. Hence ΩW (`, η2) = 0 for all η2 ∈ V . But ω is symplectic,
so for any non-zero ` ∈ L there is η2 ∈ V such that ΩW (`, η2) 6= 0. We conclude
that ` = 0 so η1 + ` = η1 ∈ V , hence

G⊥Σ ⊂ V ⊂ GΣ

as required. �

Strengthening Lemma 3.33.3, elements of G⊥Σ , are exact, i.e.

G⊥Σ = {η = df, f holomorphic on Σ−R}.
To show this, first note the inclusion of exact differentials into G⊥Σ follows from the
fact that if η1 = df1 for a global meromorphic function f1, then

∑
Res r∈R f1η2 = 0

since it is the sum of the residues of the meromorphic differential f1η2.

For the other direction, by Lemma 3.33.3, any η1 ∈ G⊥Σ lives in GΣ hence it is (the
local expansion of) a globally defined meromorphic differential on Σ. The b-periods
of η1 can be calculated using (3030). Let ωi, i = 1, ..., g be the normalised holomorphic
differentials on Σ, so

∮
aj
ωi = δij . We have∮

bj

η1 =

∮
aj

ωj

∮
bj

η1 −
∮
aj

η1

∮
bj

ωj = ΩW (η1, ωj) = 0

since ωj ∈ GΣ and η1 ∈ G⊥Σ . But the residues of η1 and all of its a-periods and
b-periods vanish. Hence

f(p) :=

∫ p

p0

η1

is well-defined and η1 is exact.
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Thus the symplectic quotient of W is given by

W�G⊥Σ := GΣ/G
⊥
Σ
∼= HΣ = H1(Σ;C),

where the isomorphism uses the fact that elements of GΣ define cohomology classes
on Σ, the quotient by exact differentials sends a meromorphic differential (with zero
residues) to its cohomology class, and the map is surjective. Clearly

VΣ → V Σ = VΣ/G
⊥
Σ

where V Σ ⊂ HΣ consists of those cohomology classes with vanishing a-periods.

3.4.1. The quadratic Lagrangian LKS. Given a symplectic quotient

M�G := µ−1(a)/G

and a Lagrangian submanifold L ⊂M , if L intersects µ−1(a) transversally, then the
quotient of L ∩ µ−1(a) defines a Lagrangian submanifold of µ−1(a)/G.

The intersection LKS ∩GΣ is transversal since W = GΣ + L = GΣ + T0LKS which
is proven in (2828). To make sense of the quotient of LKS ∩GΣ by G⊥Σ , we need to
treat the symplectic reduction of (W,ΩW ) algebraically, since LKS lives in a formal
neighbourhood of 0 ∈W . The quotient

G⊥Σ → GΣ → HΣ

corresponds to the ring homomorphism

k[HΣ]→ k[GΣ]G
⊥
Σ

(zi,wi) 7→ (

∮
ai

,

∮
bi

)

where k = C and k[V ] =
⊕

k Sk(V ∗) is the ring of regular functions on the vector
space V .

In terms of the coordinates defined in Definition 3.33.3, we have:

k[G] = k[W ]/{xi | i > g}
since the restriction xi|GΣ

, for i ∈ N depends only on its cohomology class [xi] ∈
H1(Σ;C). In particular, the ambiguity in the choice of coordinates x1, ..., xg in
Definition 3.33.3 disappears under restriction to GΣ. Also

k [LKS] = k[W ]/{yi = aijkx
jxk + 2bkijak`mx

jx`xm + ...},
which is defined in a formal neighbourhood of 0 ∈ W , where the series for yi are
defined in (2222). From the commutative square

k[W ] −→ k[GΣ]
↓ ↓

k [LKS] −→ k [LKS ∩GΣ]

we find that

k [LKS ∩GΣ] = k[W ]/{yi = aijkx
jxk + ..., xm = 0,m > g} ∼= kJx1, ..., xgK.

Compose k[HΣ]→ k[GΣ] with the right vertical arrow in the commutative square
to get:

(31) k[HΣ] → k [LKS ∩GΣ]
(zi,wi) 7→ (xi, yi + τijx

j)



28 AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES

which is a map from a formal neighbourhood of 0 ∈ HΣ to a formal neighbourhood
of 0 ∈ W . In Section 44 it is proven that the kernel of (3131) is given by the ideal

{wi = wi(z
1, ..., zg)} hence (3131) defines an isomorphism k[B̂] ∼= k [LKS ∩GΣ].

3.4.2. Choice of quadratic Lagrangian. An Airy structure is equivalent to the choice
of a quadratic Lagrangian. The work of Kontsevich and Soibelman [KS18KS18] is based
on the quadratic Lagrangian LKS = LRAiry where LAiry is built from the Kontsevich-
Witten tau function. In place of LAiry we can use a quadratic Lagrangian LBessel

built from the Brézin-Gross-Witten tau function of the KdV hierarchy which arises
out of a unitary matrix model studied in [BG80BG80; GW80GW80]. For m = 0, 1, ... the
operators

Lm = −1

2

∂

∂x2m+1
+

~
4

∑
i+j=2m

i,j odd

∂2

∂xi∂xj
+

1

2

∞∑
i=1
i odd

ixi
∂

∂xi+2m
+

1

16
δm,0,

satisfy Virasoro relations

[Lm, Ln] = (m− n)Lm+n, for m,n ≥ 0,

The Brézin-Gross-Witten tau function is uniquely defined by

LmZ
BGW(~, x1, x3, ...) = 0, m = 0, 1, 2, ...

and the initial condition

logZBGW(x1, 0, 0, ...) =
1

8
log(1− x1).

Analogous to ZKW, the tau function ZBGW is shown in [Nor17Nor17] also to be a
generating function for intersection numbers over Mh,n. The Virasoro operators
give rise to the quadratic Lagrangian LBessel ⊂WAiry defined by the ideal:

Hk(x•, y•) = −yk, k ∈ Z+
even,

Hk(x•, y•) = ~L k−1
2

(
x•, ~

∂

∂x•

)
|~ ∂

∂xi
=yi

k ∈ Z+
odd,

= − 1
2yk + 1

4

∑
i+j=k−1

i,j odd

yiyj + 1
2

∞∑
i=1
i odd

ixiyi+k−1 + 1
16δk,3.

Define L = LRBessel. More generally, one can also combine a product of a combination
of copies of LAiry and LBessel. This produces topological recursion on irregular
spectral curves [DN18aDN18a] with local behaviour at points in R giving topological
recursion over the Bessel curve [DN18bDN18b]. In the case L = LRBessel the tensor AΣ = 0
and the Airy structure consists of the tensors BΣ and CΣ. There are residue
constraints analogous to (2525) which define L:

Res
α

(dvα − η)umα = 0 = Res
α

(dvα − η)
2 umα
duα

= 0, m ≥ 1.

If L = LR1

Airy ×Speck LR2

Bessel where R1 ∪R2 = R then the residue constraints above,

respectively the residue constraints (2525), are used at α ∈ R2, respectively α ∈ R1.

3.5. Quantum Airy structures. Now let D = kJx•, ~∂•KJ~K be a graded Weyl

algebra with Lie bracket given by [xi, xj ] = [~∂i, ~∂j ] = 0 and [~∂i, xj ] = ~δji .
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Consider the differential operators Ĥ ′i ∈ W

Ĥ ′i = ~∂i + aijkx
jxk + 2~ bkij xj∂k + ~2cjki ∂j∂k.

Kontsevich and Soibleman define a quantum Airy structure as the deformation
quantisation of the classical Airy structure on the Lagrangian L. Deformation
quantisation is a functor which replaces the commutative algebra kJW K with the
non commutative Weyl algebra of differential operators W. First the coordinates
are mapped by xi → xi and yi → ~∂i where ∂i can be identified with the vector
field, or derivation, ∂

∂xi when ~ is invertible. Further, the Poisson Lie algebra g

with Poisson bracket has to be identified with the Lie algebra structure of the Ĥi

with a Lie bracket. A necessary condition to do this, is that the second cohomology
vanishes, H2(g,k) = 0 [KS18KS18]. This is a choice of central extension of g and the Lie
algebra structure of the quantum and classical cases coincide. So

Hi → Ĥi = Ĥ ′i + ~εi
and

[Ĥi, Ĥj ] = ~{Hi, Hj}x•→x•,y•→~∂• + ~gkijεk.

Definition 3.4. A quantum Airy structure is the collection of Ĥi := Ĥ ′i + ~εi, and
an extra constraint:

2
(
ajst c

st
i − aist cstj

)
= gkijεk.

When a quantum Airy structure arises from deformation quantisation, this gives
rise to a wavefunction supported on L. A wavefunction is a generator of a cyclic

module E over D, given by the quotient E = D/D〈Ĥi〉. This module encodes the

solution to the Ĥi acting as operators on kJx•KJ~K. The wavefunction ψL ∈ kJx•KJ~K
is computed using the ansatz

ψL = exp(S(x•))

where
S(x•) =

∑
h≥0

~h−1Sh(x•), Sh(x•) ∈ kJx•K

and solving the differential equations

Ĥi exp(S(x•)) = 0.

Modulo ~, ψL is a function on L̂.

Example 3.4. Consider the quantised conic with ε = 0:(
−~ ∂

∂x
+ x2 + 2~x

∂

∂x
+ ~2 ∂

2

∂2x

)
ψL(x) = 0.

Computing some terms

ψL(x) = exp

(
1

~

∫
dx (u0(x) + ~u1(x) +O(~2))

)
,

with u0(x) as example 3.23.2, and u1(x) = 2x + 10x2 + · · · + (4n − (2n)!
(n!)2 )xn + · · · a

generating function for counting numbers of rooted two-face n-edge maps in the
plane, (1-loop Feynmann diagrams) [PAC18PAC18], and in general rooted uh counts h-face
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n-edge maps. Then

Sh(x) =

∫
dxuh(x).

Kontsevich and Soibelman [KS18KS18] prove that the coefficients of Sh,n of S satisfy
abstract topological recursion defined as follows. Denote Sh,n;•:i = ∂iSh,n;•. Apply

the Ĥi to ψL and solve for 0:

aijkx
jxk +

∑
h

(
2 ~ bjik

∑
n

Sh,n;jx
k+

~2cjki

(∑
n

Sh,n;j,k +
∑
n

Sh,n;jSh,n;k

)
− ~Sh,n;i + ~ εi

)
= 0.

Gathering coefficients:

Sh,n;i,i1,...,in−1
= cjki Sh−1,n+1;j,k,i1,...in−1

(32)

+ 2

n−1∑
α=1

bki iαSh,n−1;ki{1,...n−1}/{α}

+
∑

h1+h2=h
I1tI2={1,...,n−1}

cjki Sh1,|I1|+1;j Sh2,|I2|+1;k

produces a recursive formula known as abstract topological recursion. The sum of
h− 1 and h1 + h2 = h terms gives a resemblance to topological recursion.

The symmetry of Sh,n for h = 0 uses the same argument as for the classical case,
which uses closure of the Poisson bracket {Hi, Hj} = gkijHk. For higher genus, the
argument is given in [KS18KS18, Theorem 2.4.2] for finite dimensional V which suffices
here since VΣ is the union of finite dimensional subspaces graded by the degree of
poles, and Sh,n, and all Sh′,n′ for 2h′ − 2 + n < 2h− 2 + n live inside one of these
finite dimensional subspaces.

Topological recursion of Eynard and Orantin [EO07EO07], can be seen as a particular
specialisation of abstract topological recursion. Restricting to the odd Hi recovers
topological recursion:

Sodd
h,n →

1

n!
ωh,n.

Remark 3.5. The constructions of ωh,n via the Eynard-Orantin recursion (1717) and
via abstract topological recursion (3232) produce different proofs of the symmetry of
ωh,n which demonstrates a departure between the two constructions. The proof in
[EO07EO07] using (1717) expresses the difference ωh,n(p1, p2, ..., pn)−ωh,n(p2, p1, ..., pn) as a
sum of a collection of terms which are shown to vanish rather non-trivially. The rather
elegant proof in [KS18KS18] is a consequence of the fact that the Hamiltonians that define
a Lagrangian submanifold generate an ideal, expressed above via {Hi, Hj} = gkijHk.
is rather elegant.
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4. Formal and convergent series

Let (X,Ω,F) be a foliated symplectic surface, Σ ⊂ X and B the deformation space
of Σ in X. Recall from (2424) that Σ defines a polarisation VΣ ⊂W of the symplectic
vector space W of locally defined residueless meromorphic differentials on Σ.

In this section we study the following commutative diagram from [KS18KS18]:

(33)

LKS ∩GΣ −→ GΣ −→ VΣ ⊕ V ∗Σ ∼= W
↓ ↓
B̂[Σ] −→ HΣ

∼=−→ V Σ ⊕ V
∗
Σ

which shows how the quadratic Lagrangian

LKS →W ∼= VΣ ⊕ V ∗Σ
defined in (88), and via residue constraints in (2525) and (2626), behaves under symplectic
reduction

W�G⊥Σ := GΣ/G
⊥
Σ
∼= HΣ

where HΣ = H1(Σ;C). Its image is a formal neighbourhood of a point of the
Lagrangian embedding of a neighbourhood U[Σ] ⊂ B of [Σ] ∈ B

U[Σ] → HΣ
∼= V Σ ⊕ V

∗
Σ

defined in (1212). More precisely, LKS is defined in a formal neighbourhood of 0 ∈W
and its intersection with the zero level set of the moment map maps to a formal

neighbourhood B̂[Σ]
ι→ B of [Σ] ∈ B.

An explicit section θ ∈ Γ(B̂[Σ], GΣ) of the bundle G→ B with fibre GΣ is constructed
in Theorem 4.14.1 below. It is given by a formal series which takes its values in LKS∩GΣ

and in fact defines an isomorphism

B̂[Σ]
∼= LKS ∩GΣ

with inverse producing the left vertical arrow in (3333). It is proven in Theorem 4.14.1
that under the quotient map G→ H to the bundle H → B with fibre HΣ

∼= GΣ/G
⊥
Σ ,

the section θ maps to [θ] = ι∗[θ] ∈ Γ(B̂[Σ],H) which is the composition

(34) B̂[Σ]
ι−→ U[Σ]

[θ]−→ H|U[Σ]

and by abuse of notation it is given the same name as the analytic section [θ] defined
in (1111). The composition (3434) defines the lower left horizontal arrow in (3333). Hence
the formal series θ maps under the quotient to an analytic series [θ].

For L = T0LKS ⊂ W given by the Lagrangian subspace of locally holomorphic
differentials, defined in a neighbourhood of R ⊂ Σ, the symplectic form ΩW defines
a natural isomorphism of Lagrangian subspaces L ∼= V ∗Σ . Similarly, in the symplectic
quotient HΣ, the symplectic form Ω defines a natural isomorphism of Lagrangian

subspaces H0(Σ,KΣ) ∼= V
∗
Σ. Define the linear map

h : H0(Σ,KΣ)→ L
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which maps a holomorphic differential to its local expansion at R ⊂ Σ. For any
T ∈ Hom(L⊗ L, VΣ) the square

L⊗ L VΣ

H0(Σ,KΣ)⊗H0(Σ,KΣ) V Σ

T

h⊗h

induces a map T 7→ [T ◦ (h ⊗ h)] ∈ Hom(H0(Σ,KΣ) ⊗ H0(Σ,KΣ), V Σ), where
[·] is the map VΣ → V Σ. This defines the right vertical arrow in the following
commutative diagram:

(35)

VΣ ⊗ VΣ ⊗ VΣ Hom(L⊗ L, VΣ)

V Σ ⊗ V Σ ⊗ V Σ Hom(H0(Σ,KΣ)⊗H0(Σ,KΣ), V Σ).

ΩW

Ω

The section θ allows us to associate vector fields over B to vector fields over LKS.
In particular, this leads to a relationship between the tensor AΣ ∈ VΣ ⊗ VΣ ⊗ VΣ,
which is part of the Airy structure arising from Σ ⊂ (X,Ω,F), and the tensor
ĀΣ ∈ V Σ ⊗ V Σ ⊗ V Σ representing the Donagi-Markman cubic. In general, for a
Lagrangian submanifold of a polarised symplectic vector space L ⊂ V ⊕ V ∗, the
tensor A is defined via the map

TpL ⊗ TpL → V

given by variation of a vector field with respect to another vector field. This uses a
canonical extension of any given vector in TpL to a local vector field so that covariant
differentiation gives a tensor, meaning it depends only on vectors. By relating vectors,
their canonical extensions to vector fields, and covariant differentiation upstairs and
downstairs in (3333) we prove AΣ → ĀΣ via the map (3535).

4.1. The section θ ∈ Γ(B̂[Σ], GΣ). We define a section θ ∈ Γ(B̂[Σ], GΣ) in terms
of holomorphic differentials ωi normalised over the a-periods and the topological
recursion correlators ω0,n calculated via (1717). Represent elements of the formal

neighbourhood B̂[Σ] with respect to the coordinates {z1, ..., zg} defined in (1313)

satisfying zi([Σ]) = 0, and sum over indices in {1, ..., g}. For any residueless
meromorphic differential η defined on Σ, we use the normalised periods defined in
(33): ∮

b̂k

η :=
−1

2πi

∮
bk

η.

Theorem 4.1. Define a section θ ∈ Γ(B̂[Σ], GΣ) by

(36) θ = ziωi −
1

2
zizj

∮
b̂i

∮
b̂j

ω0,3 −
1

3!
zizjzk

∮
b̂i

∮
b̂j

∮
b̂k

ω0,4 − ...

Then θ satisfies the following properties:

(1) It takes its values in LKS.

(2) Its cohomology class [θ] ∈ Γ(B̂[Σ],H) is analytic in z1, ..., zg and coincides
with the local section defined in (1111).
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More precisely, [θ] is the restriction of an analytic section to a formal neighbourhood
of [Σ] given in (3434). The analyticity of [θ] contrasts with the formal series for θ.
The proof of Theorem 4.14.1 is given by Propositions 4.54.5 and 4.74.7.

A cohomology class is characterised by its periods along a Torelli basis:

[θ] = (

∮
ai

θ,

∮
bi

θ | i = 1, ..., g) ∈ C2gJz1, ..., zgK.

The periods are: ∮
ai

θ = zi,

∮
bi

θ = wi(z
1, ..., zg).

Corollary 4. The Taylor expansion of wi(z
1, ..., zg) around {zi = 0} is:

(37) wi = zjτij −
1

2
zjzk

∮
bi

∮
b̂j

∮
b̂k

ω0,3 −
1

3!
zjzkz`

∮
bi

∮
b̂j

∮
b̂k

∮
b̂`

ω0,4 − ...

where the normalised periods (33) are used in (3737) except for the first period. Hence
Corollary 44 shows that

∂

∂zi
τjk = −2πi

∮
b̂i

∮
b̂j

∮
b̂k

ω0,3

and more generally

∂n−2

∂zi1 ..∂zin−2
τin−1in = −2πi

∮
b̂i1

∮
b̂i2

...

∮
b̂in

ω0,|I|

which proves Corollary 22 and generalises the result in [BH17BH17] to Σ ⊂ X for any
foliated symplectic surface (X,Ω,F).

Given a normalised holomorphic differential such as ωi, its cohomology class [ωi]
gives rise to a vector field on B. It corresponds to the vector field ∂

∂zi with respect to

the coordinates z1, ..., zg. This maps to a vector field, [ωi] = ι∗[ωi] which maintains

the same name by abuse of notation, on the formal neighbourhood B̂[Σ]. It is
simply given by the Taylor expansion of [ωi] at [Σ]. Above [ωi] is a vector field
ω̂i = Dθ

(
∂
∂zi

)
on LKS:

(38) ω̂i = ωi − zj
∮
b̂i

∮
b̂j

ω0,3 −
1

2
zjzk

∮
b̂i

∮
b̂j

∮
b̂k

ω0,4 − ...

Again the series for [ω̂i] = [ωi] ∈ C2gJz1, ..., zgK is analytic in z1, ..., zg in contrast
to the formal series for ω̂i. It gives the analytic expansion of a holomorphic section
of the bundle

H

B

[ω̂i]

which takes the cohomology class of the holomorphic differential over each [Σ] ∈ B
normalised to have constant a-periods. The analytic expansion is:∮

bi

ω̂j = −
∑
I

zI

|I|!

∮
bi

∮
b̂j

∮
b̂I

ω0,|I|+2 = τij − zk
∮
bi

∮
b̂j

∮
b̂k

ω0,3 − ...

where
∮
b̂I

:=
∮
b̂i1
...
∮
b̂in

for I = (i1, ..., in).
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For any m ≥ 0, the series

Tm(z1, ..., zg) =
∑
I

zI

|I|!

∮
b̂I

ω0,|I|+m

is defined in the kth formal neighbourhood of [Σ] ∈ B. Its cohomology class is
denoted [T ]. We summarise the geometric meaning of Tm for small values of m here:

F0 = −
∑
I

zI

|I|!

∮
b̂I

ω0,|I|, Prepotential

θ = −
∑
I

zI

|I|!

∮
b̂I

ω0,|I|+1, [θ] = Cohomology class defined in (1111)

T̂ =
∑
I

zI

|I|!

∮
b̂I

ω0,|I|+2, [T̂ ] = τij

Â =
∑
I

zI

|I|!

∮
b̂I

ω0,|I|+3, [Â] = Donagi-Markman cubic.

4.1.1. The connection ∇F . Given Σ ⊂ (X,Ω,F) and B the deformation space of Σ

in X, let Z
π→ B be the universal family of curves in B, which comes with a natural

map Z → X which induces the map Σ→ X on each fibre of Z over [Σ] ∈ B. The
fibres of Z → B induce a one-dimensional foliation which we call vertical.

The codimension one foliation F on X induces a codimension one foliation H on Z
denoted by Hz ⊂ TzZ for z ∈ Z. It satisfies

(39) TzZ ∼= TzΣ⊕Hz, z ∈ Z − ZR,
where [Σ] = π(z) and ZR ⊂ Z is the codimension one set where the foliation
intersects the vertical foliation non-transversally. On Z∗ = Z − ZR, Hz

∼= T[Σ]B
and (3939) defines a horizontal lift of T[Σ]B to TzZ.

Definition 4.1. Define a connection ∇F on Z∗ → B by the splitting (3939).

The connection ∇F is flat since leaves of the foliation H give local flat sections. This
connection appears in many places, often implicitly, for families of varieties such
as Hurwitz spaces [Dub96Dub96; Dun+18Dun+18], Seiberg-Witten families of curves [NO06NO06], the
Rauch variational formula in Appendix AA and in the work of Eynard and Orantin
[EO07EO07; KS18KS18]. The connection lifts any vector in T[Σ]B to a vector in TzZ for z ∈ Z∗
which is used to take a Lie derivative of any tensor defined on Z such as a locally
defined relative differential η. We can allow η to be meromorphic. This can be
achieved either by considering ∇Fη locally on patches where η is holomorphic and
gluing, or by replacing η with η · (u− λ)m, where u is a locally defined function on
X that defines the foliation, and λ is a function on B, chosen so that η · (u− λ)m is
holomorphic for m large enough. Then

∇Fv
(
η · (u− λ)m

)
= ∇Fv (η) · (u− λ)m − hm(u− λ)m−1v · λ

which defines ∇Fv η in terms of the covariant derivative of local holomorphic functions.
The covariant derivative ∇Fv η naturally has poles, so the construction above allows
one to take multiple covariant derivatives. In particular it defines a covariant
derivative on sections of the bundle W = B ×W → B. For an open neighbourhood
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UΣ ⊂ B of [Σ] ∈ B, and for each v ∈ T[Σ]B

∇Fv : Γ(UΣ,W)→ Γ(UΣ,W),

which leaves Γ(UΣ,G) ⊂ Γ(UΣ,W) invariant.

For any closed contour γ ⊂ Σ0,

(40)
∂

∂zi

∮
γ

η =

∮
γ

∇Fi η,

where ∇Fi = ∇F∂
∂zi

. To prove (4040), define a local coordinate x on Z chosen so that

x = constant defines the foliation H induced by F . Express η in terms of the local
coordinate x and depending on parameters zi, differentiate under the integral sign,
since the contour is compact, and use ∇Fu = 0.

In particular, for η ∈ Γ(UΣ,G), its cohomology class [η] ∈ Γ(UΣ,H), is determined
by its periods hence (4040) implies that ∇F lives above the Gauss-Manin connection:

(41) [∇Fη] = ∇GM[η].

This restricts to formal neighbourhoods to give[
∇F ω̂j

]
= ∇GM [ωj ]

for ω̂j defined in (3838). It is shown in Section 4.34.3 that the covariant derivative ∇Fi ω̂j
gives rise to the tensor AΣ ∈ VΣ ⊗ VΣ ⊗ VΣ, and since ∇GMi [ωj ] gives rise to the

tensor ĀΣ ∈ V Σ ⊗ V Σ ⊗ V Σ, the compatibility of the covariant derivatives of vector
fields is used to prove that AΣ 7→ ĀΣ under the map VΣ → V Σ. This is proven in
Proposition 4.94.9.

Note that parallel transport, hence a flat frame, on Z (or W or G) for ∇F does not
exist in general due to the non-existence of solutions to ODEs at points where the
foliation does not meet the vertical fibres transversally. However, it does exist on
any formal neighbourhood of a point [Σ] ∈ B.

Example 4.2. Define a foliated surface locally by the family parametrised by z

x = y2 + z.

Leaves of the foliation x = constant defines a flat connection on the fibration defined
by the family. Consider parallel transport from a general fibre to the fibre over z = 0
given by x = y2

0. We have

y(y0) =
√
y2

0 − z = y0

√
1− z/y2

0 = y0

(
1− z

2y2
0

− 1

8

z2

y4
0

− ...
)

exists analytically only when |y0| > |z| whereas it exists in C[z]/zn for any n. For

example, in C[z]/z2, y(y0) = y0 −
z

2y0
which defines a path

C− {0} → C

y0 7→ y0 −
z

2y0

giving parallel transport above the first formal neighbourhood.

4.2. Formal and convergent series. The series given in (3636) and (3838) are in-

duced via the natural map between a formal neighbourhood B̂[Σ] and an actual
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neighbourhood UΣ ⊂ B of [Σ] ∈ B

B̂[Σ]
ι−→ UΣ → B.

The restriction ι∗ sends locally defined functions to formal series. It naturally
extends from locally defined functions to locally defined sections such as (relative)
meromorphic differentials. On G→ B, the holomorphic bundle with fibre GΣ ⊂W
over [Σ] ∈ B, it defines

ι∗ : Γ(UΣ,G)→ Γ(B̂[Σ],G)

which associates to any local section of the bundle G→ B a section of the bundle G
defined in the kth formal neighbourhood of [Σ] ∈ B for each k. This map depends
on the choice of connection ∇F . It expresses a section of G in terms of a flat frame
for G over the kth formal neighbourhood at [Σ], for any k.

Lemma 4.3. For η ∈ Γ(UΣ,G), with respect to local coordinates {z1, ..., zg} defined
on UΣ ⊂ B

(42) ι∗η =
∑
I

zI

|I|!
(
∇FI η

)
|Σ,

on the kth formal neighbourhood of [Σ] ∈ B for each k. The sum is over tuples of
positive integers I = (i1, ..., in) ∈ {1, ..., g}n, zI =

∏
zik , |I| =

∑
ik, ∇Fi = ∇F∂/∂zi

and ∇FI = ∇Fi1 · · · ∇
F
in

.

Proof. The formula (4242) is essentially a Taylor series for η. We need to explain the
appearance of the covariant derivative.

Consider the universal family π : Z → B and an open neighbourhood VZ ⊂ π−1(UΣ).
Then OZ(VZ) is a module over OB(UΣ). For any locally defined function h ∈
OZ(UZ), the restriction of h to a formal neighbourhood of the fibre Σ of Z above
[Σ] ∈ B is defined by

(43) ι∗h =
∑
I

zI

|I|!
(
∇FI h

)
|Σ.

The functions zi ∈ OB(UΣ) pull back to functions zi ∈ OZ(VZ), with the same
name by abuse of notation. The Taylor series for h ∈ OZ(UZ) would normally
use partial derivatives with respect to the vector fields ∂

∂zi , but these are not yet
defined on Z until a full system of coordinates is defined. Choose a locally defined
function u on Z which induces the foliation on Z. The collection {u, z1, ..., zg}
defines local coordinates on Z (when the foliation on Z meets the fibre transversally).
The coordinates give rise to well-defined vector fields ∂

∂zi on Z (given the same
name as vector fields on B) which allow one to write out a Taylor series with
∇Fi replaced by ∂

∂zi in (4343). The vector fields ∂
∂zi are independent of a change of

coordinates {u, z1, ..., zg} 7→ {f(u), z1, ..., zg} hence the Taylor series depends only
on the foliation F (which induces the folation on Z). The use of the covariant
derivative in (4343) to signify the choice of local coordinate u is natural since ∇Fi u = 0
agrees with the definition of the vector fields from coordinates via ∂

∂ziu. Note that

a more general change of coordinates {u, z1, ..., zg} 7→ {f(u, z1, ..., zg), z1, ..., zg}
which is equivalent to a different choice of connection unrelated to the foliation,
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leads to a different right hand side in (4343), where the relation between the two
different series is achieved via zi-dependent coefficients in (4343)

The formula (4242) follows from (4343) since G is the push-forward of the sheaf of
relative differentials on Z, hence η ∈ Γ(UΣ,G) is built locally from h ∈ OZ(UZ). �

On the universal family Z → B, let h ∈ OZ(UZ) be a locally defined function on an
open set UZ ⊂ Z. Its image in a formal neighbourhood of a fibre Σ uses the same
formula as (4242)—the difference between functions and differentials is minor since
hdu is a locally defined differential and ∇Fdu = 0.

The ring homomorphism ι∗ in (4343) satisfies ι∗1 = 1 which is visible on the right
hand side of (4343) since ∇F1 = 0. The equality ι∗(h1h2) = ι∗(h1)ι∗(h2) is the
combinatorial identity∑

I

zI

|I|!
∇FI (h1h2)|Σ =

∑
I

zI

|I|!
∇FI (h1)|Σ

∑
I

zI

|I|!
∇FI (h2)|Σ

which follows from Leibniz’ formula applied to ∇F . It formally coincides with the
identity showing that the Taylor expansion in several variables of a product of two
functions is the product of the two Taylor expansions.

Covariant differentiation ∇Fi on the formal neighbourhood B̂[Σ] is simply given by
∂
∂zi for each i = 1, ..., g. The map ι∗ commutes with ∇F :

∇F ◦ ι∗ = ι∗ ◦ ∇F .
The proof that ∂

∂zi ι
∗(h) = ι∗(∇Fi h) is combinatoric and formally coincides with

differentiation of a Taylor expansion in several variables.

Proposition 4.4. The section θ ∈ Γ(B̂[Σ], GΣ) defined in (3636) satisfies the following
relation with respect to local FD coordinates (u, v) on X:

(44) ι∗(vdu) =
∑
|I|≥0

zI

|I|!
∇FI (vdu)|Σ = vdu|Σ − θ.

Proof. Given local FD coordinates (u, v) around α ∈ R ⊂ Σ ⊂ X, the local
differential vdu pulls back to a local relative differential on the universal space Z.
Hence we can apply (4242) to get the first equality in (4444). Write (4444) as

(45) ι∗(vdu) = vdu|Σ − ξ
so it remains to prove that ξ = θ. Note that ξ is invariant under a change of local
FD coordinates (u, v) 7→ (f(u), v/f ′(u) + g(u)) since ∇Fi (g(u)df(u)) = 0.

Each holomorphic differential η ∈ H0(Σ,KΣ) extends to a family of normalised
holomorphic differentials η̃([Σ′]) ∈ H0(Σ′,KΣ′) for [Σ′] ∈ UΣ by requiring that the
a-periods are constant, for example

∮
aj
ω̃i = δij , i, j = 1, ..., g. We write

∇FI η :=
(
∇FI η̃

)
|Σ ∈ H0(KΣ(mR)), m = 2|I|

where, as usual, ∇FI = ∇Fi1 ...∇
F
in

.
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By definition, although vdu is locally defined on the fibre Σ, its covariant derivative
is globally defined:

(46) ∇Fi (vdu) = −ω̃i.
From (4545) and (4646) we have

ξ = ziωi +
1

2
zizj∇Fi ωj +

1

3!
zizjzk∇Fi ∇Fj (ωk) + ...

where ∇FI ωk ∈ H0(KΣ(mR)) for m = 2|I|.

We have
∮
b̂i
ω0,2 = −ωi, and the correlators satisfy the following variational formula

due to Eynard and Orantin [EO07EO07]:

(47) ∇Fi ωh,n(p1, · · · , pn) =

∮
pn+1∈b̂i

ωh,n+1(p1, · · · , pn, pn+1), n > 0.

The formula (4747) is proven in Appendix AA inductively. Applied to h = 0, we have

∇Fi ω0,n =

∮
b̂i

ω0,n+1, n ≥ 2

hence

∇FI ωi = −
∮
b̂i

∮
b̂I

ω0,|I|+2.

Thus ξ = θ and the proposition is proven. �

Proposition 4.5. The section θ ∈ Γ(B̂[Σ], GΣ) defines a map

θ : B̂[Σ] → LKS,

where LKS ⊂W is the quadratic Lagrangian defined in (2525) and (2626).

Proof. We need to check (2525) and (2626) for η = θ with respect to the FD coordinates
(uα, vα) from Definition 2.22.2.

Res
α

(
vα −

θ

duα

)
umα duα = Res (vαu

m
α duα − θumα )

= Res
α

vαumα duα +
∑
|I|>0

zI

|I|!
umα∇FI (vαduα)


= Res

α

vαumα duα +
∑
|I|>0

zI

|I|!
∇FI (vαu

m
α duα)


= 0

for any m ≥ 0 where the second equality uses (4444). The final equality uses the fact
that vαu

m
α duα is holomorphic at α hence has zero residue. Furthermore, it has zero

residue in a neighbourhood so its higher derivatives also vanish to give

(48) Res
α

∑
|I|>0

zI

|I|!
∇FI (vαu

m
α duα) =

∑
|I|>0

zI

|I|!
∂

∂zI
Res
α

(vαu
m
α duα) = 0.

Hence θ satisfies the first of the residue constraints (2525).
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Let p be any locally analytic function. A consequence of the ring homomorphism
property is:

ι∗p(vα) = p(ι∗(vα)) = p

(
vα −

θ

duα

)
.

In particular,(
vα −

θ

duα

)2

umα duα = ι∗(vα)2umα duα =
∑
I

zI

|I|!
∇FI (v2

αu
m
α duα)

and

Res
α

(
vα −

θ

duα

)2

umα duα =
∑
I

zI

|I|!
∂

∂zI
Res
α

(y2
αu

m
α duα) = 0

since v2
αu

m
α duα is holomorphic in a neighbourhood of α ∈ Σ0 ⊂ X. Hence θ also

satisfies the second of the residue constraints (2626) and the proposition is proven. �

Remark 4.6. In the proof of Proposition 4.54.5 it is shown that θ satisfies

Res
α

(
vα −

θ

duα

)k
umα duα = 0

for k = 1, 2 and for all m ≥ 0. The proof easily generalises to allow all k ≥ 1.

Proposition 4.54.5 yields a collection of relations among periods and residues of ωh,n.
Here we list a few of them. We have

0 = Res
α

(
vα −

θ

duα

)
umα duα = − Res

α
θumα =

∑
I

zI

|I|!
Res
α

umα

∮
b̂I

ω0,|I|+1

which implies that the principal part of
∮
b̂I
ω0,|I|+1 is skew-invariant under the local

involution defined by the F . The quadratic relation

0 = Res
α

(
vα −

θ

duα

)2

umα duα = −2 Res
α

vαθu
m
α +

θ · θumα
duα

yields a sequence of relations. When m = 0, the first two relations are:

(49) Res
α

ωiωj
duα

= − Res
α

vα

∮
b̂i

∮
b̂j

ω0,3

and

Res
α

( ωi
duα

∮
b̂j

∮
b̂k

ω0,3 +
ωj
duα

∮
b̂k

∮
b̂i

ω0,3 +
ωk
duα

∮
b̂i

∮
b̂j

ω0,3

)
(50)

= −1

3
Res
α

vα

∮
b̂i

∮
b̂j

∮
b̂k

ω0,4.

Proposition 4.7. The cohomology class of θ ∈ Γ(B̂[Σ], GΣ) defined in (3636) is the
local section [θ] ∈ Γ(UΣ,H) defined in (1111).

Proof. The symplectic form ΩX = −d(vαduα) on X defines a bundle-valued 1-form
ωi⊗dzi : T[Σ]B → H0(Σ,KΣ) which is a section of Ω1

B⊗G that lives over the 1-form

φ ∈ Γ(Ω1
B ⊗H) via the quotient G→ H. Hence ∇F (vαduα) = ωi ⊗ dzi lives over

∇GMs = φ where s ∈ Γ(UΣ,H) defines [θ]([Σ′]) := s([Σ′])− s([Σ]) ∈ C2g ∼= HΣ.



40 AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES

By (4141), ∇F lives above ∇GM so each higher covariant derivative ∇FI (vαduα) lives
over the cohomology class ∇GM

I [θ]. Hence by (4444), the series θ lives above the
Taylor series for [θ] which completes the proof. �

4.2.1. Higher genus. For g > 0, analogous to (3636) define θg ∈ Γ(B̂[Σ], GΣ) by

θg = ωg,1 + zi
∮
b̂i

ωg,2 +
1

2
zizj

∮
b̂i

∮
b̂j

ωg,3 +
1

3!
zizjzk

∮
b̂i

∮
b̂j

∮
b̂k

ωg,4 − ...

Then the cohomology class [θg] ∈ Γ(B̂[Σ],H) is analytic in z1, ..., zg and coincides
with the analytic expansion of [ωg,1] due to the following lemma which generalises
(4747) to the case n = 0.

Lemma 4.8. For h ≥ 2, the function Fh defined in (1919) satisfies the relation

∂Fh
∂zi

=

∮
bi

ωh,1.

Proof. The proof of (4747) uses (1717) which is not available in the case of n = 0.
Instead we must use the definition of Fh given in (1919) for h > 1 by

Fh =
1

2h− 2

∑
du(α)=0

Res
p=α

ψ(p)ωh,1(p)

where dψ = vdu.

Note that since ∇Fi dψ = −ωi then ∇Fi ψ = −fi where fi is a primitive of the
holomorphic differential ωi on Σ − {ai, bi}, i.e. dfi = ωi. Importantly, although
dψ = vdu is only locally defined on Σ, its variation can be represented by a global
holomorphic differential which allows us to take periods along global cycles in Σ.
Then:

(2h− 2)
∂Fh
∂zi

=
∂

∂zi

∑
Res
p=α

ψ(p)ωh,1(p)

=
∑

Res
p=α

[(
∇Fi ψ(p)

)
ωh,1(p) + ψ(p)

(
∇Fi ωh,1(p)

)]
=
∑

Res
p=α

[
fi(p)ωh,1(p) + ψ(p)

∮
b2

ωh,2(p, p′)

]
= (2h− 1)

∮
b2

ωh,1(p′) +
∑

Res
p=α

fi(p)ωh,1(p)

= (2h− 1)

∮
b2

ωh,1(p′) +

g∑
j=1

(∮
aj

ωh,1(p)

∮
bj

ωi(p)−
∮
bj

ωh,1(p)

∮
aj

ωi(p)

)

= (2h− 2)

∮
b2

ωh,1(p′)

where the third equality uses (4747) and the final two equalities use the Riemann
bilinear relations and vanishing of a-periods of ωh,1. �

Together with the variational formula, Lemma 4.84.8 implies the relation

∂i1 . . . ∂inFh =

∫
p1∈bi1

· · ·
∫
pn∈bin

ωh,n(p1, . . . , pn).
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Just as the symmetry of derivatives of the periods of θ, given by ∂
∂zi

wj = τij leads

to the potential F0, the same mechanism yields F1. Applied to (h, n) = (1, 1), the
variational formula yields

∂

∂zj

∮
bi

ω1,1 =

∮
bi

∮
bj

ω1,2 =
∂

∂zi

∮
bj

ω1,1

since ω1,2 is symmetric. Hence there exists a potential F1 defined up to a constant
by

∂F1

∂zi
=

∮
bi

ω1,1.

We have seen that Fh is defined via a variational formula and via topological recursion
together with the dilaton equation for h ≥ 2. These definitions are fundamentally
different since the variational approach requires knowledge of Fh in a neighbourhood
U ⊂ B whereas the topological recursion definition requires only knowledge at a
point b ∈ B.

4.3. Geometry of the tensor AΣ. The Lagrangian LKS ⊂ W is defined in a
formal neighbourhood of 0 ∈W . A vector field on LKS is a derivation given by a
linear combination of ∂

∂xi and ∂
∂yi

with coefficients defined in a formal neighbourhood

of 0 ∈ W . We present here explicit formulae for vector fields on LKS and relate

them to normalised holomorphic differentials ωi and ω̂i ∈ Γ(B̂[Σ], GΣ) defined in
(3838).

Coordinates {xi} on LKS are the restriction of those given in Definition 3.33.3. Dual
to {dxi} are the following vector fields on LKS

(51) ξi =
∂

∂xi
+ fij

∂

∂yj
= (0, ..., 1, ... | fi 1, fi 2, ...)

defined in any formal neighbourhood of 0 ∈W . The coefficients fij are functions
of {xk} defined in each formal neighbourhood of 0 ∈ W . They satisfy the linear
system:

0 = dHi(ξj) = ξj(Hi) =

(
∂

∂xj
+ fjk

∂

∂yk

)
Hi

= 2aijkx
k + 2bkijyk + fjk(−δik + 2bki`x

` + 2c`ki y`).

They can be calculated in the kth formal neighbourhood of 0 ∈W , for any k, using
the recursive procedure described in (2222), hence expressing LKS as the image of
S(x) = (x, y(x)). Linearise this to produce

ξi = DS

(
∂

∂xi

)
⇒ fij = 2aijkx

k + (4bmjkai`m + 2bmjiak`m)xkx` + ... .

Proposition 4.9. The vector fields on LKS satisfy the following:

ξi = ω̂i, i = 1, ..., g(52)

∇Fω̂i ω̂j 7→ ∇
GM
[ωi]

[ωj ](53)

AΣ 7→ ĀΣ.(54)

Proof. The map h : H0(Σ,KΣ) → L, maps holomorphic differentials normalised
over a-periods {ωi | i = 1, ..., g}, to its local expansion at R ⊂ Σ. h has a natural
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image with respect to the coordinates {xi, yi}:

(55)
∂

∂xi
= h(ωi), i = 1, ..., g.

To see this note that { ∂
∂xi } are dual to the differentials {dxi}, so one needs to

calculate the action of h(ωi) on dxj . Since xj is linear, any vector acts by 〈v, dxj〉 =
v · xj = ΩW (v, xj). Now

ΩW (ωi, x
j) =

g∑
k=1

(∮
ak

ωi

∮
b̂k

xj −
∮
b̂k

ωi

∮
ak

xj
)

= δij

proving h(ωi) = ∂
∂xi , i = 1, ..., g. Since the map h coincides with the linearisation of

the section θ ∈ Γ(B̂[Σ], GΣ) evaluated at the point [Σ] ∈ B, (5555) is the specialisation
of (5252) to the 1st formal neighbourhood.

The functions zi on HΣ and xi on W are related as follows. Under the symplectic
quotient, zi maps to xi|GΣ0

for i = 1, ..., g since for η ∈ GΣ, by the Riemann

bilinear relations 〈xi, η〉 =
∮
ai
η = zi([η]). In a formal neighbourhood of [Σ] ∈ B the

linearisation Dθ sends the vector field ∂
∂zi , defined on B and hence on the formal

neighbourhood of [Σ] ∈ B, to

∂θ

∂zi
:= ω̂i =

∑
I

zI

|I|!

∮
b̂i

∮
b̂I

ω0,|I|+2 = ωi + zj
∮
b̂i

∮
b̂j

ω0,3 + ... .

Hence the image of ω̂i is obtained by replacing zI by xI in θ to give

ω̂i|zj=xj = ξi|GΣ

which is (5252). The first two terms of (5252) are

ξi =
∂

∂xi
+ fij

∂

∂yj

for fij = aijkx
k + ... the first terms ωi and ∂

∂xi agree by (5555) and the second terms

xj
∮
bi

∮
bj
ω0,3 and aijkx

k ∂
∂yj also agree by the following. +

A variation of the vector field is given by

∂

∂xj
ξi = (0, ..., 0, ... | ∂

∂xj
fi 1,

∂

∂xj
fi 2, ...) ∈ VΣ.

Differentiate the expression for fij by xk and take the constant term to get

∂

∂xk
fji = 2aijk.

In other words, the tensor AΣ gives the map

T0LKS ⊗ T0LKS → VΣ

defined by variation of a vector field of LKS with respect to a vector. It is a tensor
because any vector in T0LKS canonically extends to a vector field via (5151). The
canonical isomorphism T0LKS

∼= V ∗Σ means that AΣ ∈ VΣ ⊗ VΣ ⊗ VΣ.

The Lagrangian LKS ⊂ W is a formal germ, and its vector fields are derivations
on W that annihilate the defining ideal of LKS. The tensor AΣ is defined via the
covariant derivative ∇Fu v of vector fields v ∈ Γ(TLKS) by vectors u ∈ L = T0LKS

with respect to the flat connection ∇F induced by the foliation F . It defines a
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tensor on L⊗ L because any vector v ∈ L extends canonically to a vector field—v
is a linear combination of ∂

∂xi which are mapped to ∂
∂xi 7→ ξi defined by (5151). �

An alternative, non-geometric proof of Theorem 33 can be obtained from Corollary 22
combined with the following result.

Proposition 4.10 ([KS18KS18]). Given Σ ⊂ (X,Ω,F), we have

AΣ = ω0,3 ∈ VΣ ⊗ VΣ ⊗ VΣ.

Proof. The element η ∈ W lives in LKS if it satisfies the residue constraints (2525).
For uα = z2

α, vα = zα:

Res

(
η

duα
− vα

)
umα duα = 0, m ≥ 1,

Res

(
η

duα
− vα

)2

umα duα = 0, m ≥ 0.

To analyse these we choose a new basis of W :

{xk,α, yk,α | k ∈ N, α ∈ R}
where xk,α has a pole of order k at α ∈ Σ and is holomorphic on Σ−α and yk,α = zkα
is defined only locally near α via the local coordinate zα.

The first residue constraint implies

0 = Res
α

(
η

duα
− vα

)
umα duα = Res

α
ηumα = −2m〈y2m−1,α, η〉

where the last equality uses uα = z2
α and d(umα ) = 2my2m−1,α.

The second implies

0 = Res

(
η

duα
− vα

)2

umα duα = Res
α

η · η
duα

umα − 2 Res
α

ηzαu
m
α

= Res
α

η · η
duα

umα − 2〈y2m,α, η〉

which is a linear term y2m,α plus a quadratic term

Res
α

η · η
dx

xm = aαβγijk x
j,βxk,γ + bαβkijγ x

j,βyk,γ + cαjkiβγ yj,βyk,γ .

The right hand side is the most general quadratic term with respect to the coordinates

xiβ = 〈xiβ , η〉 and yβi = 〈yβi , η〉. The coefficients a∗∗, b
∗
∗ and c∗∗ are m-dependent. To

determine the coefficient of xjβx
k
γ simply evaluate on any differential η which is

locally holomorphic since such η annihilates yi, i.e. 〈yβi , η〉 = 0. When η is locally
holomorphic

Res
α

η · η
dx

xm = 0, for m > 0

since xm/dx = z2m−1/dz has no pole, and nor does each factor of η. Hence we are
left with the case m = 0

Res
α

η · η
dx

= aβγijkx
j
βx

k
γ + ...
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so aβγijk = 1
4δijδikδαβδαγ . Hence AΣ = 1

4

∑
α x

1
α ⊗ x1

α ⊗ x1
α which agrees with the

following formula for ω0,3:

ω0,3(p1, p2, p3) =
∑
α

Res
p=α

B(p, p1)B(p, p2)B(p, p3)

du(p)dv(p)
.

�

4.4. Analytical construction of θ. The section [θ] ∈ Γ(UΣ,H) in (1111) together
with parallel transport by the Gauss-Manin connection ∇GM on H defines a local
embedding

UΣ ↪→ HΣ.

The cohomology classes in HΣ are represented by meromorphic differentials on Σ

which is encoded by the surjective map GΣ → HΣ. The section θ ∈ Γ(B̂[Σ], GΣ) in
(3636) defines a map on a formal neighbourhood of [Σ] ∈ B. The failure to lift the
embedding UΣ ↪→ HΣ to an embedding UΣ → GΣ is due to the failure of parallel
transport for the connection ∇F . Following Kontsevich and Soibelman [KS18KS18] one
can regain parallel transport for the connection ∇F on a bundle G0 related to G.

Let Σ ⊂ (X,Ω,F) and UΣ ⊂ B a ball neighbourhood of [Σ] ∈ B. Choose a union
of open balls in the universal space DR ⊂ Z, containing the points R ⊂ Σ ⊂ X
where F does not meet Σ transversally, such that DR

∼= UΣ ×D2 and UΣ × ∂D2 is
tangent to the foliation on Z induced by F . The balls are chosen small enough that
each component of DR contains a single point in R.

Definition 4.2. Define the vector space

(56) G0
Σ = {η ∈ H0(Ω1(Σ−DR)) |

∮
γ

η = 0, ∀ closed γ ⊂ ∂(Σ−DR)}.

Here, γ ⊂ ∂(Σ−DR) means that γ ⊂ Σ−DR and it is homotopic to a boundary
component. On the level of cohomology, G0

Σ behaves like GΣ. In particular, there is
a surjective linear map G0

Σ → HΣ obtained by taking the cohomology class η 7→ [η].
The vector space G0

Σ lives inside a weakly symplectic vector space W 0 of differentials
defined in annuli around each point of R ⊂ Σ with zero contour integrals around
boundary circles. Further details are in [Cha20Cha20].

Define a bundle G0 → UΣ with fibre over [Σ′] ∈ UΣ given by G0
Σ′ defined by (5656)

although using DR for R ⊂ Σ rather than Σ′. The covariant derivative ∇F acts on
sections of G0. Parallel transport of ∇F is well-defined on G0 by construction. On
the bundle G, parallel transport is not defined due to the non-existence of solutions
to the ODE at points where F meets the curve Σ′ non-transversally, and G0 simply
removes those points.

Define θ0 ∈ Γ(UΣ,G0) analogously to the definition of θ in (4444).

θ0([Σ′]) = vαduα|Σ′ − gΓ(vαduα)

where gΓ : G0
Σ → G0

Σ′ is defined by parallel transport with respect to ∇F along a
path Γ ⊂ UΣ joining [Σ] and [Σ′].

The residue constraints (2525) and (2626) also make sense in the analytic setting and they
define a quadratic Lagrangian L0

KS ⊂ W 0. Choose local FD coordinates (uα, vα)
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in X. For any closed boundary component γ ⊂ ∂(Σ −DR) define L0
KS ⊂ W 0 to

consist of differentials η ∈W 0 satisfying:∮
γ

(
vα −

η

duα

)
umα duα = 0, m ≥ 1,(57) ∮

γ

(
vα −

η

duα

)2

umα duα= 0, m ≥ 0.(58)

An analogue of Theorem 4.14.1 holds.

Proposition 4.11. The section θ0 ∈ Γ(UΣ,G0) satisfies the following properties.

(1) It takes its values in L0
KS.

(2) Its cohomology class [θ0] ∈ Γ(UΣ,H) coincides with [θ] defined in (1111).

Proof. ∮
γ

(
vα −

θ0

duα

)k
umα duα =

∮
γ

(gΓ(vα))
k
umα duα =

∮
γ′
vkαu

m
α duα = 0

where γ′ ⊂ Σ′ is obtained by parallel transporting γ ⊂ Σ via the foliation. The final
equality uses the holomorphicity of vkαu

m
α duα. Parallel transport to a holomorphic

differential defined along a different fibre is an analogous mechanism to equation
(4848) in the proof of Proposition 4.54.5. �

A. Variational Formulae

Recall from Section 2.22.2 that correlators of a curve embedded in a foliated symplectic
surface Σ ⊂ (X,ΩX ,F) are defined recursively via (1717) given by

ωh,n(p1, pS) =
∑

du(α)=0

Res
p=α

K(p1, p)

[
ωh−1,n+1(p, σα(p), pS)(59)

+
∑

h1+h2=h
ItJ=S

ωh1,|I|+1(p, pI)ωh2,|J|+1(σα(p), pJ)

]

where Σ enters via the recursion kernel K = K(p1, p) for p1 ∈ Σ and p in the vicinity
of a ramification point defined by

K(p1, p) := −1

2

∫ p′=p
p′=σα(p)

ω0,2(p1, p
′)

ω0,1(p)− ω0,1(σα(p))
.

which is globally defined in p1 in p. It satisfies

(60) K(p1, p) ∼p≈α −
1

2

B(p1, p)

dv(p)du(p)
+ holomorphic.

In this appendix we prove a variational formula for the topological recursion corre-
lators with respect to vector fields on B. We begin first with the Rauch variational
formula.
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A.1. Rauch variational formula. Let B be a family of curves Σ embedded in a
foliated symplectic surface (X,ΩX ,F). Choose FD coordinates (u, v) on X in a
neighbourhood of α ∈ R ⊂ Σ ⊂ X satisfying (u, v)(α) = (0, 0).

Lemma A.1. The variation of the Bergman kernel B(p, q) on a curve Σ in the
family B is given by

(61) ∇F∂
∂zi
B(p, q) = −

∑
α∈R

Res
r=α

ωi(r)B(p, r)B(r, q)

du(r)dv(r)
.

This formula appeared in various places before [Fay92Fay92; KK08KK08; EO07EO07; BH17BH17] but we
will provide the version of a proof which works in our setting.

Proof. A local Rauch variational formula gives the variation of the Bergman kernel
with respect to critical values of a locally defined function. Choose local FD
coordinates (uα, vα) in a neighbourhood Uα ⊂ X of α satisfying the properties of
Definition 2.22.2. Recall the map Λ : UΣ → CR defined in (2020). For [Σ′] ∈ UΣ, define
a local coordinate zα (up to ±1) on Σ′ by

(62) u|Σ′ = z2
α + λα

so that v|Σ′ = v(zα). Then

0 = ∇Fi u = 2zα∇Fi zα +∇Fi λα, ⇒ ∇Fi λα = −2zα∇Fi zα.
Hence the normalised holomorphic differential satisfies

ωi = −∇Fi (vdu) = −(∇Fi v)du = −v′(zα)(∇Fi zα)du =
v′(zα)

2zα

∂λα
∂zi

2zαdzα =
∂λα
∂zi

dv.

Thus the linearisation DΛ : Cg → CR is given by

(63)
∂

∂zi
λα(z1, ..., zg) =

(ωi
dv

)
(α).

The local Rauch variational formula [Rau59Rau59; KK08KK08] is

(64) ∇F∂
∂λα

B(p, q) = Res
r=α

B(p, r)B(r, q)

duα(r)

hence

∇F∂
∂zi
B(p, q) =

∑
α∈R

ωi(r)

dvα(r)
Res
r=α

B(p, r)B(r, q)

du(r)

and since the zero du(α) = 0 is simple, (6161) follows. �

A.2. Variation of correlators. Eynard and Orantin proved a formula for the
variation of topological recursion correlators ωh,n in [EO07EO07]. We include the proof
here for completeness since the definition of a spectral curve in this paper is slightly
different to that in [EO07EO07].

Proposition A.2. For Σ ⊂ X and ∂
∂zi ∈ T[Σ]B:

(65) ∇F∂
∂zi
ωh,n(p1, · · · , pn) = − 1

2πi

∮
pn+1∈bi

ωh,n+1(p1, · · · , pn, pn+1)



AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 47

Proof. The proof of this formula uses the Rauch variational formula in Lemma A.1A.1
and follows exactly the proof in [EO07EO07, Theorem 5.1]. We will prove it by induction
on 2h− 2 + n. The basic idea is simple—apply ∇F∂

∂zi
= ∇Fi to (5959). Most terms of

the covariant derivative are obtained immediately from the inductive hypothesis
and it remains to understand variation of the kernel K(p1, p).

Rewrite (6161) as follows:

∇Fi B(p, q) = −
∑
α∈R

Res
r=α

B(p, r)

dv(r)du(r)
B(r, q)ωi(r)

=
∑
α∈R

Res
r=α

B(p, r)

dv(r)du(r)
B(σα(r), q)ωi(r)

= −2
∑
α∈R

Res
r=α

K(p, r)B(σα(r), q)ωi(r)

= −
∑
α∈R

Res
r=α

K(p, r) (B(σα(r), q)ωi(r) +B(r, q)ωi(σα(r)))

where the second equality uses the fact that B(r, q) + B(σα(r), q) vanishes at
r = α which cancels the simple pole of the integrand, the third equality uses

Res
r=α

B(p,r)
dv(r)du(r)f(r) = −2 Res

r=α
K(p, r)f(r) for f holomorphic at α and the final

equality uses symmetry.

To simplify the notation, in a neighbourhood of α ∈ Σ define

Eq(p) := −1

2

∫ q′=q

q′=σα(q)

ω0,2(p, q′), Ω(p) := vdu(p)− vdu(σα(p))

so that K(p, q) =
Eq(p)
Ω(q) . By integrating (6161) from q′ = σα(q) to q′ = q along a

contour that does not intersect the ramification point rα, we have

∇Fi Eq(p) = 2
∑
α∈R

Res
r=α

K(p, r)Eq(r)ωi(r)

= −
∑
α∈R

Res
r=α

K(p, r)(Eq(σα(r))ωi(r) + Eq(r)ωi(σα(r))).

If f = f(q) is any function then we have [EO07EO07, Lemma 5.1]:

∇Fi

(∑
α∈R

Res
q=α

K(p, q)f(q)

)
=
∑
α∈R

Res
q=α

Eq(p)

Ω(q)
∇Fi f(q)

+
∑
α∈R

Res
q=α

(
2
∑
β∈R

Res
r=β

Er(p)

Ω(r)

Eq(r)

Ω(q)
ωi(r)f(q)− Eq(p)

(Ω(q))2
(ωi(q)− ωi(σα(q)))f(q)

)
=
∑
α∈R

Res
q=α

Eq(p)

Ω(q)
∇Fi f(q)−

∑
α∈R

Res
q=α

Eq(p)

(Ω(q))2
(ωi(q)− ωi(σα(q)))f(q)

+ 2
∑
α∈R

∑
β∈R

Res
r=β

Res
q=α
− Res

q=α
Res
r=q
− Res

q=α
Res

r=σα(q)

 Er(p)

Ω(r)

Eq(r)

Ω(q)
ωi(r)f(q)

=
∑
α∈R

Res
q=α

K(p, q)∇Fi f(q) + 2
∑
α,β∈R

Res
r=α

Res
q=β

K(p, r)K(r, q)ωi(r)f(q)
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=
∑
α∈R

Res
q=α

K(p, q)∇Fi f(q)

−
∑
α,β∈R

Res
r=α

Res
q=β

(
K(p, r)

(
K(σβ(r), q)ωi(r) +K(r, q)ωi(σβ(r))

)
f(q)

)
.

We are now ready to prove the variational formula (6565), which we will do so by
induction on 2h− 2 + n. The base case (h, n) = (0, 2) uses the Rauch variational
formula:

∇Fi ω0,2(p1, p2) = ∇Fi B(p1, p2) = −
∑
α∈R

Res
r=α

ωi(r)B(r, p1)B(r, p2)

duα(r)dvα(r)

= −2
∑
α∈R

Res
r=α

K(p1, r)ω0,2(r, p2)

(
1

2πi

∮
p3∈bi

ω0,2(r, p3)

)
= − 1

2πi

∮
p3∈bi

ω0,3(p1, p2, p3),

where we have used (6060) together with the recursive formula for ω0,3 in the second-last
and last equalities respectively.

Proceeding via induction, given (h, n) we shall assume that (6565) holds for all (h′, n′)
such that 2h′ − 2 + n′ < 2h− 2 + n. Then by applying ∇Fi to (5959) we have

∇Fi ωh,n(p1, · · · , pn) = − 1

2πi

∑
α,β∈R

Res
r=α

Res
p=β

K(p1, r)

×

(
K(σα(r), p)

∮
pn+1∈bi

ω0,2(r, pn+1) +K(r, p)

∮
pn+1∈bi

ω0,2(σα(r), pn+1)

)

×

ωh−1,n+1(p, σα(p), p2, · · · , pn) +
∑

h1+h2=h
I1

∐
I2={2,...,n}

ωh1,1+|I1|(p, pI1)ωh2,1+|I2|(σα(p), pI2)


− 1

2πi

∑
α∈R

Res
p=α

K(p1, p)

(∮
pn+1∈bi

ωh−1,n+2(σα(p), p, p2, · · · , pn, pn+1)

+
∑

h1+h2=h
I1

∐
I2={2,...,n}

∮
pn+1∈bi

ωh1,|I1|+2(p, pI1 , pn+1)ωh2,|I2|+1(σα(p), pI2)

+
∑

h1+h2=h
I1

∐
I2={2,...,n}

ωh1,|I1|+1(p, pI1)

∮
pn+1∈bi

ωh2,|I2|+2(σα(p), pI2 , pn+1)

)

= − 1

2πi

∮
pn+1∈bi

∑
α∈R

Res
r=α

K(p1, p)

(
ωh−1,n+2(σα(p), p, p2, · · · , pn, pn+1)

+ ωh,n(σα(p), p2, · · · , pn)ω0,2(p, pn+1) + ωh,n(p, p2, · · · , pn)ω0,2(σα(p), pn+1)

+

∗∑
h1+h2=h

I1
∐
I2={2,...,n,n+1}

ωh1,|I1|+1(p, pI2)ωh2,|I2|+1(σα(p), pI2)

)
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= − 1

2πi

∮
pn+1∈bi

ωh,n+1(p1, · · · , pn, pn+1).

Where
∗∑

indicates that we exclude all terms involving ω0,2(., pn+1) from the

summation. �
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