APPENDIX A

Examples

These are the appendices to the course “Notes on Geometry and 3-Manifolds”
given by Walter Neumann at the Turdn Workshop on Low Dimensional Topology
in Budapest, August 1998. The notes for that course can be found on

http://neumann.maths.mu.oz.au/preprints.html.
The following examples were presented during tutorials at the Turan Workshop.

1. Trefoil complement

We will put two geometric structures on the trefoil complement. Since the
trefoil is a torus knot its complement is Seifert fibred with an orbifold quotient
F given by the disk with two orbifold points of orders 2 and 3. Thus x(F) =
1-(1-1/2)—(1-1/3) = —1/6 so F' admits a hyperbolic structure. We can realise
this explicitly with the orbifold F = PSL(2,Z)\H. Now pull back the metric using
the map S® — K — F. This construction is not so explicit and in fact we can pull
back the metric in different ways to get H? x R structures or a PSL structure.

A better way to see things is as follows. We use the fact that the trefoil is a
fibred knot. This can be seen from the fundamental group

W](Sg—K) = {a17a2,a3|a1a2:a2a3:a3a1}
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{a,2,yla" 'wa = y,a 'ya =z 'y}

or as the link of the singularity Y24 X3 = 0. We can perturb this to Y2 = — X3 +¢
which describes the Milnor fibre, or the Seifert surface S, of the trefoil as a branched
cover of the disk with branch points Xg, (Xg, (?Xy where ¢(? = 1. This makes the
holonomy of the fibration S? — K — S! clear it is given by rotation of the disk
by 27/3.
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Thus if we have a hyperbolic metric on the orbifold given by the disk with
degree 2 orbifold points at the branch points that is invariant under the holonomy
this gives an explicit H? x R structure on S® — K. Notice that if we quotient S by
the Z /3 action we get the orbifold F' described above. The hyperbolic metric on
F lifts to a hyperbolic metric on S invariant under rotation by 27 /3 so we see the
H? x R structure explicitly.
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We can also get the PSL structure as follows. If we put a left invariant metric
on PSL(2,R) then it pushes down to the quotient PSL(2,7Z)\PSL(2,R). This
quotient is the complement of the trefoil. We can see this by studying the action
of SO(2) on the right and seeing that the quotient PSL(2,Z)\PSL(2,R)/SO(2) is
a disk with two orbifold points of degrees 2 and 3. By the classification of Seifert
fibred spaces this must be the trefoil complement. Notice that the Seifert surface
is totally geodesic in the H? x R case, but not so in the PSL case.

This example is one of the few cases when two types of geometries can be put
on the manifold. We cannot put a hyperbolic structure on the trefoil complement
due to the following general fact about Seifert fibred spaces. A fibre of the Seifert
fibring gives a normal Z in the fundamental group of the trefoil complement. Thus,
the square of any element of the fundamental group commutes with the element
represented by a fibre. This gives two parabolic elements and hence a cusp. But
there are more commuting parabolic elements and they also define the same cusp
which contradicts the fact that a lattice in the boundary C cannot have more than
two generators.

2. JSJ decomposition
We will give the JSJ decomposition of the link of the singularity
f=@"+y*)? +ay® + 2°.
The plumbing graph of this link is given in the following appendix. It is equivalent
to the splice diagram in figure 2. For this example it is sufficient to understand
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the following fact about splice diagrams. The simplest type of splice diagram is
of the form in figure 3 which represents a Seifert fibred space with three singular
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FI1GURE 3

fibres of multiplicities 2,3 and 5, respectively. The arrow indicates that we wish to
specify the singular fibre of multiplicity 5 as a link component in the Seifert fibred
space. (In this case the link is a knot.) The splice diagram in figure 2 is obtained
by “splicing” together the Seifert fibred spaces represented in figures 3 and 4 along
the two specified knots. We splice by removing a neighbourhood of each knot and
identifying the respective boundary tori where the longitude and meridian of one
torus is mapped to the meridian and longitude of the other torus.



3. IDEAL TETRAHEDRA AND THE INVARIANT TRACE FIELD 3

13 5
2

FIGURE 4

This is exactly the canonical decompositon of the three-manifold into two
Seifert, fibred spaces. They can each be given either the geometry H x R or PSL.

3. Ideal tetrahedra and the invariant trace field

We will show that the invariant trace field of an ideally triangulated hyperbolic
manifold with cusps is generated by its tetrahedra parameters.

Given M? non-compact and ideally triangulated notate its set of cusps by
C C OH? = CU{oc}. Define ka to be the field generated by the simplex parameters
of the ideal tetrahedra. Take one of the ideal tetrahedra of M? and put three of
the vertices of the tetrahedron at 0,1 and oc.

(i) First we will show that C' C ka U {oc} and C generates ka U {o0}.

This is proved by induction using the fact that if three of 21, ...z4 are in kaU{oo}
then the last one is in ka U{oo} if an only if the cross ratio is in ka U{oo}. Thus, we
begin with the tetrahedron with three vertices at 0,1 and oc and use the preceding
fact to see that the fourth vertex lies in ka U {oo}. Any ideal tetrahedron that
shares a face with this tetrahedron now has three of its vertices in ka U {oo} so
the induction continues to this tetrahedron. Thus C' C ka U {oco} and C generates
ka U {oc} since each simplex parameters is the cross ratio of four cusp points.

Thus it is sufficent to show that ka = k(T).

(i) ka C k(D).

Since T' C k(T') - T = Q(T), the quaternion algebra associated to T', then the
existence of parabolic elements implies that Q(T') € M (2,C) has zero divisors—
if P is parabolic then (P — )2 = 0 so Q(I') = M(2,k(')). Therefore we can
conjugate I' to get a subgroup of PGL(2,k(T")). Notice that if ¢ € PGL(2,k(T))
then g?/det(g) € PSL(2,k(T)) and thus we can conjugate T'®) to a subset of
PSL(2,k(T')). Now, a cusp is a solution of

a b z\ (=

¢ d y ) \uy
where the matrix lies in PGL(2, k(T')) and in fact by using the square of an element
of I" we may assume that the matrix lies in PSL(2, k(T")). Therefore z/y € k(T).

(iii) If T is a group fixing a subset of ka U {oc} then I' C PGL(2, ka).
We can see this simply by observing that the following equation:

B a b ’)/(0):0(
7((3 d>7,;/y(go))_:ﬂ,y € ka U {o0}.

has a solution in ka:
b=ad, a+b=pc+pd, a=cy.
Thus, I' € PGL(2,ka) and I'® € PSL(2,ka) so it follows that k(T) C ka.
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4. Scissors congruence

Here we will prove that two FEuclidean polygons are scissors congruent if and
only if they have the same area.

Given two polygons of equal area we can reduce the problem of scissors con-
gruence to two equal area triangles as follows. Assume we can solve the equal area
triangle problem. Cut the two polygons into triangles and take a triangle from each
polygon. If they have equal area then we use the solution of the equal area triangle
problem to cut the two triangles into equal pieces. If they have unequal area then
cut the bigger one into two triangles one of which has the same area as the triangle
from the other polygon. (We can do this by the intermediate value theorem.) Now
cut the two equal area trangles into identical pieces. This has reduced the problem.
In the first case the total number of triangles is reduced by two and in the second
case the number is reduced by one.

Scissors congruence is an equivalence relation since we can cut a polygon further
to prove transitivity. Thus to solve the equal area triangle problem it is enough to
show that any triangle is scissors congruent to the square of equal area. From the
diagram we see how to go from a triangle to a rectangle.

FIGURE 5

To go from the rectangle to the square we cut the rectangle as shown until the
ratio of the two sides is not greater than two.

FIGURE 6

Then the following diagram gives the equivalence with the square.

FIGURE 7



APPENDIX B

Problems

The following set of problems were used during the Turdn Workshop. They are
sometimes answered in the course notes and the worked examples.

1. Geometries

QUICK

(i) Take a family of non-conjugate representations of m ¥ into SL(2,R). Does
Mostow-Prasad rigidity imply these representations are conjugate inside SL(2,C)?

(ii) Find all integer solutions {p1, ..., ps} of

2-%1(1-1/pi) =0 (=x(F)).

(These give all flat compact genus 0 orbifolds, where the {p;} give the mulplicities
of the orbifold points.)

(iii) Put a hyperbolic structure on the surface of genus g.
UNDERSTANDING

(i) Describe the complement of the trefoil in terms of the link of the singularity
y? = 23 and hence describe the holonomy.

(ii) Put geometries on each of: the trefoil complement; figure-8 complement.

(iii) Why is the type of the geometry that can be put on a closed manifold
unique? (Hint: look for topological invariants.)

(iv) Describe the isometry groups of the 8 geometries in dimension 3.

(v) Describe the space of geodesics for each geometry.
THOUGHTFUL

(i) Given any two Euclidean polygons of the same area, show that you can cut
one of them into a finite number of Euclidean polygons and reassemble the pieces
to get the other polygon.

(ii) We have seen that the trefoil complement admits a geometric structure
of type H? x R and also of type PSL. How can we see that it does not admit a
hyperbolic structure?

2. Decomposition

QUICK

(i) What does an incompressible torus in Y? imply about the fundamental
group 7Y ?? If the incompressible torus is boundary parallel what does this say in
terms of the fundamental group?

(ii) Give an example to show what is wrong with this definition:

an embedded annulus (A,0A4) — (Y, 0Y) is boundary parallel if there exists an
annulus A C Y with 9A = A and AU A = 9H for an embedded solid torus
H <Y with HN oY = A,

(iii) Describe canonical circles in two dimensions.

5
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UNDERSTANDING

(i) Find the maximal set of canonical tori, and hence the JSJ-decomposition, of
the following 3-manifolds: trefoil complement; figure-8 complement; trefoil cabled
on figure-8 complement; link of the singularity

f=@+¢") +ay’ + 25
(Hint: use the algorithm described in Nemethi’s course to verify that the resolution
of the singularity has plumbing graph

-2 -2 -2 -3 -2 -2 -2 -2 -2 -2
(@ O

-2 -2

FiGURE 1

where each curve is a P!. Since the link is given by the boundary of a neighbourhood
of the divisor and hence a circle bundle over the smooth points of the divisor any
embedded circle in the divisor pulls back to a torus.)

Here are examples of decompositions where uniqueness fails:

(i) Connect sum in two dimensions: prove that RP? #RP2#RP? = T24#RP2.

(iii) Connect sum in three dimensions: Y = M;# My#...# M} decomposes an
orientable 3-manifold Y into prime manifolds M;, unique up to order. What is not
unique here?

(iv) Connect sum of non-orientable 3-manifolds: give an example to show non-
uniqueness.

(v) Connect sum in four dimensions: give an example to show non-uniqueness.

(vi) What is the key point in the proof of uniqueness of JSJ-decompositions
that fails in the previous three cases. Show this explicitly with the example of the
blown up projective plane and torus (in (ii) above).

(vii) Show that every Seifert fibred space has a normal Z in its fundamental
group and thus a Seifert fibred space does not admit a hyperbolic structure.

(viii) Put a geometry on the torus with one orbifold point.

THOUGHTFUL

(i) Canonical decomposition of maps of a surface: given a diffeomorphism f :
¥ — ¥, we say an embedded circle S' — ¥ has finite order if some iterate of f
takes the circle to an istopic circle. Define a canonical circle to be a finite order
circle with the property that all other finite order circles can be isotoped off the
canonical circle. Use this to get a canonical decomposition of (X, f) and show that
it is unique.

(ii) Given any two hyperbolic or spherical polygons of the same area, show that
you can cut one of them into a finite number of hyperbolic, respectively spherical,
polygons and reassemble the pieces to get the other polygon.

(iii) Prove that if both cosf and /7 are rational then 6 is a multiple of 7/2 or
/3.
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Scissors congruence

QUICK

(i) Show that scissors congruence is an equivalence relation.

(ii) Show R ®z R/Z = R ®¢ R/Q.

(iii) Calculate the Dehn invariant of the Euclidean polyhedron §(X x I) for any
2-dimensional polygon X.

(iv) What is the Dehn invariant in dimension 2 (Euclidean, hyperbolic and
spherical) and why doesn’t it obstruct scissors congruence?

UNDERSTANDING

(i) Prove that Euclidean polygons of the same area are scissors congruent:

(a) show that it is enough to prove this for two triangles;

(b) show that a triangle is scissors congruent to a rectangle;

(c) show that any rectangle is scissors congruent to a square;
(d) conclude the equivalence of any two polygons of equal area.

(ii) Prove that the Dehn invariant doesn’t vanish on a regular tetrahedron and
create your own example with § # 0.

(iii) Prove: im(vol|ker §) = R and im(d|ker vol) = im(9).

(iv) Recall that scissors congruence for finite area hyperbolic polygons with
ideal vertices is allowed. Show that stable scissors congruence is not the same as
scissors congruence. Show that two polygons are scissors congruent if and only if
they have the same area and they are either both compact or both non-compact
and stably scissors congruent if and only if they have the same area.
THOUGHTFUL

(i) Where does the argument that Euclidean polygons of the same area are
scissors congruent (in Understanding(i) above) fail for hyperbolic and spherical
geometry? Can it be fixed?

(ii) Where does the argument that Euclidean polygons of the same area are
scissors congruent (in Understanding(i) above) fail in dimension 3?7 Does it succeed
on a limited class of polyhedra?

(iii) Show that for polygons P and @, 2P ~ 2(Q) implies P ~ (). Since this
is a general fact in any dimension and geometry, one can argue without using the
equality of area.

(iv) Define a Dehn invariant in dimension 4. Is it unique?

Commensurability

QUICK

(i) Show that all ideal triangles in H? are isometric.

(ii) Show that not all ideal tetrahedra in H® are isometric.

(iii) Construct a rotation of R? that acts on Z[i] giving a commensurable lattice.
Show that a dense set of rotations has this property.
UNDERSTANDING

(i) Show that the group of symmetries of the tessellation of H® by ideal tetra-
hedra is arithmetic.

(i) Show that Comm™ (PSL(2,7Z[i])) = PGL(2,Q[i]).

(iii) Prove that there are exactly two quaternion algebras over R.

(iv) Show that the figure 8 knot and the Whitehead link are arithmetic.
THOUGHTFUL

(i) Does arithmeticity exist in dimension 27
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Bloch group.

QUICK

(i) Show explicitly that the figure 8 knot lies in the kernel of the complex Dehn
invariant. (Hint: the parameter for the figure 8 knot is given by 2[¢] where ¢® = 1.)

(ii) Does hyperbolic Dehn surgery on the figure 8 knot change its scissors con-
gruence class in the Bloch group, Gy(Y) € B(C)?

(iii) Are the hyperbolic Dehn surgeries on the figure 8 knot arithmetic?
UNDERSTANDING

(i) Show that the invariant trace field of an ideally triangulated hyperbolic
manifold with cusps is generated by its tetrahedra parameters.

(ii) Show that two hyperbolic 3-manifolds with imaginary quadratic trace field
are scissors congruent commensurable if and only if they have the same invariant
trace fields.

(iii) Prove that the five-term scissors congruence relation implies that [z] =
[1-—1/z].



