
APPENDIX AExamplesThese are the appendices to the course \Notes on Geometry and 3-Manifolds"given by Walter Neumann at the Tur�an Workshop on Low Dimensional Topologyin Budapest, August 1998. The notes for that course can be found onhttp://neumann.maths.mu.oz.au/preprints.html.The following examples were presented during tutorials at the Tur�an Workshop.1. Trefoil complementWe will put two geometric structures on the trefoil complement. Since thetrefoil is a torus knot its complement is Seifert �bred with an orbifold quotientF given by the disk with two orbifold points of orders 2 and 3. Thus �(F ) =1� (1�1=2)� (1�1=3) = �1=6 so F admits a hyperbolic structure. We can realisethis explicitly with the orbifold F �= PSL(2;Z)nH2 . Now pull back the metric usingthe map S3 �K ! F . This construction is not so explicit and in fact we can pullback the metric in di�erent ways to get H 2 � R structures or a PSL structure.A better way to see things is as follows. We use the fact that the trefoil is a�bred knot. This can be seen from the fundamental group�1(S3 �K) = fa1; a2; a3ja1a2 = a2a3 = a3a1g�= fa; x; yja�1xa = y; a�1ya = x�1ygor as the link of the singularity Y 2+X3 = 0. We can perturb this to Y 2 = �X3+�which describes the Milnor �bre, or the Seifert surface S, of the trefoil as a branchedcover of the disk with branch points X0; �X0; �2X0 where �3 = 1. This makes theholonomy of the �bration S3 �K ! S1 clear|it is given by rotation of the diskby 2�=3.
Figure 1Thus if we have a hyperbolic metric on the orbifold given by the disk withdegree 2 orbifold points at the branch points that is invariant under the holonomythis gives an explicit H 2 � R structure on S3 �K. Notice that if we quotient S bythe Z=3 action we get the orbifold F described above. The hyperbolic metric onF lifts to a hyperbolic metric on S invariant under rotation by 2�=3 so we see theH 2 � R structure explicitly. 1



2 A. EXAMPLESWe can also get the PSL structure as follows. If we put a left invariant metricon PSL(2;R) then it pushes down to the quotient PSL(2;Z)nPSL(2;R). Thisquotient is the complement of the trefoil. We can see this by studying the actionof SO(2) on the right and seeing that the quotient PSL(2;Z)nPSL(2;R)=SO(2) isa disk with two orbifold points of degrees 2 and 3. By the classi�cation of Seifert�bred spaces this must be the trefoil complement. Notice that the Seifert surfaceis totally geodesic in the H 2 � R case, but not so in the PSL case.This example is one of the few cases when two types of geometries can be puton the manifold. We cannot put a hyperbolic structure on the trefoil complementdue to the following general fact about Seifert �bred spaces. A �bre of the Seifert�bring gives a normal Z in the fundamental group of the trefoil complement. Thus,the square of any element of the fundamental group commutes with the elementrepresented by a �bre. This gives two parabolic elements and hence a cusp. Butthere are more commuting parabolic elements and they also de�ne the same cuspwhich contradicts the fact that a lattice in the boundary C cannot have more thantwo generators. 2. JSJ decompositionWe will give the JSJ decomposition of the link of the singularityf = (x2 + y3)2 + xy5 + z5:The plumbing graph of this link is given in the following appendix. It is equivalentto the splice diagram in �gure 2. For this example it is su�cient to understand
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Figure 2the following fact about splice diagrams. The simplest type of splice diagram isof the form in �gure 3 which represents a Seifert �bred space with three singular
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Figure 3�bres of multiplicities 2; 3 and 5, respectively. The arrow indicates that we wish tospecify the singular �bre of multiplicity 5 as a link component in the Seifert �bredspace. (In this case the link is a knot.) The splice diagram in �gure 2 is obtainedby \splicing" together the Seifert �bred spaces represented in �gures 3 and 4 alongthe two speci�ed knots. We splice by removing a neighbourhood of each knot andidentifying the respective boundary tori where the longitude and meridian of onetorus is mapped to the meridian and longitude of the other torus.



3. IDEAL TETRAHEDRA AND THE INVARIANT TRACE FIELD 3
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Figure 4This is exactly the canonical decompositon of the three-manifold into twoSeifert �bred spaces. They can each be given either the geometry H � R or PSL.3. Ideal tetrahedra and the invariant trace �eldWe will show that the invariant trace �eld of an ideally triangulated hyperbolicmanifold with cusps is generated by its tetrahedra parameters.Given M3 non-compact and ideally triangulated notate its set of cusps byC � @H 3 = C [f1g. De�ne k� to be the �eld generated by the simplex parametersof the ideal tetrahedra. Take one of the ideal tetrahedra of M3 and put three ofthe vertices of the tetrahedron at 0; 1 and 1.(i) First we will show that C � k� [ f1g and C generates k� [ f1g.This is proved by induction using the fact that if three of z1; :::z4 are in k�[f1gthen the last one is in k�[f1g if an only if the cross ratio is in k�[f1g. Thus, webegin with the tetrahedron with three vertices at 0; 1 and 1 and use the precedingfact to see that the fourth vertex lies in k� [ f1g. Any ideal tetrahedron thatshares a face with this tetrahedron now has three of its vertices in k� [ f1g sothe induction continues to this tetrahedron. Thus C � k� [ f1g and C generatesk� [ f1g since each simplex parameters is the cross ratio of four cusp points.Thus it is su�cent to show that k� = k(�).(ii) k� � k(�).Since � � k(�) � �� = Q(�), the quaternion algebra associated to �, then theexistence of parabolic elements implies that Q(�) � M(2; C ) has zero divisors|if P is parabolic then (P � I)2 = 0|so Q(�) �= M(2; k(�)). Therefore we canconjugate � to get a subgroup of PGL(2; k(�)). Notice that if g 2 PGL(2; k(�))then g2=det(g) 2 PSL(2; k(�)) and thus we can conjugate �(2) to a subset ofPSL(2; k(�)). Now, a cusp is a solution of� a bc d �� xy � = � xy �where the matrix lies in PGL(2; k(�)) and in fact by using the square of an elementof � we may assume that the matrix lies in PSL(2; k(�)). Therefore x=y 2 k(�).(iii) If � is a group �xing a subset of k� [ f1g then � � PGL(2; k�).We can see this simply by observing that the following equation:
 = � a bc d � ; 
(0) = �
(1) = �
(1) = 
 9=; 2 k� [ f1g:has a solution in k�: b = �d; a+ b = �c+ �d; a = c
:Thus, � � PGL(2; k�) and �(2) � PSL(2; k�) so it follows that k(�) � k�.



4 A. EXAMPLES4. Scissors congruenceHere we will prove that two Euclidean polygons are scissors congruent if andonly if they have the same area.Given two polygons of equal area we can reduce the problem of scissors con-gruence to two equal area triangles as follows. Assume we can solve the equal areatriangle problem. Cut the two polygons into triangles and take a triangle from eachpolygon. If they have equal area then we use the solution of the equal area triangleproblem to cut the two triangles into equal pieces. If they have unequal area thencut the bigger one into two triangles one of which has the same area as the trianglefrom the other polygon. (We can do this by the intermediate value theorem.) Nowcut the two equal area trangles into identical pieces. This has reduced the problem.In the �rst case the total number of triangles is reduced by two and in the secondcase the number is reduced by one.Scissors congruence is an equivalence relation since we can cut a polygon furtherto prove transitivity. Thus to solve the equal area triangle problem it is enough toshow that any triangle is scissors congruent to the square of equal area. From thediagram we see how to go from a triangle to a rectangle.
Figure 5To go from the rectangle to the square we cut the rectangle as shown until theratio of the two sides is not greater than two.
Figure 6Then the following diagram gives the equivalence with the square.
Figure 7



APPENDIX BProblemsThe following set of problems were used during the Tur�an Workshop. They aresometimes answered in the course notes and the worked examples.1. GeometriesQuick(i) Take a family of non-conjugate representations of �1� into SL(2;R). DoesMostow-Prasad rigidity imply these representations are conjugate inside SL(2; C )?(ii) Find all integer solutions fp1; :::; psg of2� �s1(1� 1=pi) = 0 (= �(F )):(These give all 
at compact genus 0 orbifolds, where the fpig give the mulplicitiesof the orbifold points.)(iii) Put a hyperbolic structure on the surface of genus g.Understanding(i) Describe the complement of the trefoil in terms of the link of the singularityy2 = x3 and hence describe the holonomy.(ii) Put geometries on each of: the trefoil complement; �gure-8 complement.(iii) Why is the type of the geometry that can be put on a closed manifoldunique? (Hint: look for topological invariants.)(iv) Describe the isometry groups of the 8 geometries in dimension 3.(v) Describe the space of geodesics for each geometry.Thoughtful(i) Given any two Euclidean polygons of the same area, show that you can cutone of them into a �nite number of Euclidean polygons and reassemble the piecesto get the other polygon.(ii) We have seen that the trefoil complement admits a geometric structureof type H2 � R and also of type PSL. How can we see that it does not admit ahyperbolic structure? 2. DecompositionQuick(i) What does an incompressible torus in Y 3 imply about the fundamentalgroup �1Y 3? If the incompressible torus is boundary parallel what does this say interms of the fundamental group?(ii) Give an example to show what is wrong with this de�nition:an embedded annulus (A; @A) ,! (Y; @Y ) is boundary parallel if there exists anannulus ~A � @Y with @A = @ ~A and A [ ~A = @H for an embedded solid torusH ,! Y with H \ @Y = ~A.(iii) Describe canonical circles in two dimensions.5



6 B. PROBLEMSUnderstanding(i) Find the maximal set of canonical tori, and hence the JSJ-decomposition, ofthe following 3-manifolds: trefoil complement; �gure-8 complement; trefoil cabledon �gure-8 complement; link of the singularityf = (x2 + y3)2 + xy5 + z5:(Hint: use the algorithm described in Nemethi's course to verify that the resolutionof the singularity has plumbing graph
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-2Figure 1where each curve is a P1. Since the link is given by the boundary of a neighbourhoodof the divisor and hence a circle bundle over the smooth points of the divisor anyembedded circle in the divisor pulls back to a torus.)Here are examples of decompositions where uniqueness fails:(ii) Connect sum in two dimensions: prove that RP2#RP2#RP2 �= T 2#RP2 .(iii) Connect sum in three dimensions: Y �= M1#M2#:::#Mk decomposes anorientable 3-manifold Y into prime manifolds Mi, unique up to order. What is notunique here?(iv) Connect sum of non-orientable 3-manifolds: give an example to show non-uniqueness.(v) Connect sum in four dimensions: give an example to show non-uniqueness.(vi) What is the key point in the proof of uniqueness of JSJ-decompositionsthat fails in the previous three cases. Show this explicitly with the example of theblown up projective plane and torus (in (ii) above).(vii) Show that every Seifert �bred space has a normal Z in its fundamentalgroup and thus a Seifert �bred space does not admit a hyperbolic structure.(viii) Put a geometry on the torus with one orbifold point.Thoughtful(i) Canonical decomposition of maps of a surface: given a di�eomorphism f :� ! �, we say an embedded circle S1 ,! � has �nite order if some iterate of ftakes the circle to an istopic circle. De�ne a canonical circle to be a �nite ordercircle with the property that all other �nite order circles can be isotoped o� thecanonical circle. Use this to get a canonical decomposition of (�; f) and show thatit is unique.(ii) Given any two hyperbolic or spherical polygons of the same area, show thatyou can cut one of them into a �nite number of hyperbolic, respectively spherical,polygons and reassemble the pieces to get the other polygon.(iii) Prove that if both cos � and �=� are rational then � is a multiple of �=2 or�=3.



COMMENSURABILITY 7Scissors congruenceQuick(i) Show that scissors congruence is an equivalence relation.(ii) Show R 
ZR=Z �= R 
Q R=Q .(iii) Calculate the Dehn invariant of the Euclidean polyhedron �(�� I) for any2-dimensional polygon �.(iv) What is the Dehn invariant in dimension 2 (Euclidean, hyperbolic andspherical) and why doesn't it obstruct scissors congruence?Understanding(i) Prove that Euclidean polygons of the same area are scissors congruent:(a) show that it is enough to prove this for two triangles;(b) show that a triangle is scissors congruent to a rectangle;(c) show that any rectangle is scissors congruent to a square;(d) conclude the equivalence of any two polygons of equal area.(ii) Prove that the Dehn invariant doesn't vanish on a regular tetrahedron andcreate your own example with � 6= 0.(iii) Prove: im(volj ker �) = R and im(�j ker vol) = im(�).(iv) Recall that scissors congruence for �nite area hyperbolic polygons withideal vertices is allowed. Show that stable scissors congruence is not the same asscissors congruence. Show that two polygons are scissors congruent if and only ifthey have the same area and they are either both compact or both non-compactand stably scissors congruent if and only if they have the same area.Thoughtful(i) Where does the argument that Euclidean polygons of the same area arescissors congruent (in Understanding(i) above) fail for hyperbolic and sphericalgeometry? Can it be �xed?(ii) Where does the argument that Euclidean polygons of the same area arescissors congruent (in Understanding(i) above) fail in dimension 3? Does it succeedon a limited class of polyhedra?(iii) Show that for polygons P and Q, 2P � 2Q implies P � Q. Since thisis a general fact in any dimension and geometry, one can argue without using theequality of area.(iv) De�ne a Dehn invariant in dimension 4. Is it unique?CommensurabilityQuick(i) Show that all ideal triangles in H 2 are isometric.(ii) Show that not all ideal tetrahedra in H 3 are isometric.(iii) Construct a rotation of R2 that acts on Z[i] giving a commensurable lattice.Show that a dense set of rotations has this property.Understanding(i) Show that the group of symmetries of the tessellation of H 3 by ideal tetra-hedra is arithmetic.(ii) Show that Comm+(PSL(2;Z[i])) = PGL(2;Q[i]).(iii) Prove that there are exactly two quaternion algebras over R.(iv) Show that the �gure 8 knot and the Whitehead link are arithmetic.Thoughtful(i) Does arithmeticity exist in dimension 2?



8 B. PROBLEMSBloch group.Quick(i) Show explicitly that the �gure 8 knot lies in the kernel of the complex Dehninvariant. (Hint: the parameter for the �gure 8 knot is given by 2[�] where �6 = 1.)(ii) Does hyperbolic Dehn surgery on the �gure 8 knot change its scissors con-gruence class in the Bloch group, �0(Y ) 2 B(C )?(iii) Are the hyperbolic Dehn surgeries on the �gure 8 knot arithmetic?Understanding(i) Show that the invariant trace �eld of an ideally triangulated hyperbolicmanifold with cusps is generated by its tetrahedra parameters.(ii) Show that two hyperbolic 3-manifolds with imaginary quadratic trace �eldare scissors congruent commensurable if and only if they have the same invarianttrace �elds.(iii) Prove that the �ve-term scissors congruence relation implies that [z] =[1� 1=z].


