
ASYMPTOTIC VALUES OF HYPERBOLIC MONOPOLESPAUL NORBURYAbstra
t. We show that many hyperboli
 monopoles 
an be distinguishedfrom ea
h other via their asymptoti
 values in 
ontrast to the 
ase of Eu
lideanmonopoles. 1. Introdu
tionMagneti
 monopoles initially arose out of Dira
's study of the quantum theoryof ele
tro-magnetism. They are singular solutions of Maxwell's equations validaway from their singularities. Bogomolny-Prasad-Sommer�eld monopoles are ageneralisation of Dira
 monopoles to non-abelian theories where the singularities
an be smoothed away. They are solutions to the equation dA� = �FA where(A;�) is a pair given by a 
onne
tion with L2 
urvature FA and a Higgs �eld|ase
tion of the adjoint bundle|de�ned on a trivial bundle over R3 with stru
turegroup a 
ompa
t Lie group G, and the Hodge star is given with respe
t to a metri
on R3 . The Higgs �eld � is 
onstrained to lie in a given orbit of the Lie algebraon the sphere at in�nity. The mass of the monopole is de�ned to be the 
onjuga
y
lass of the Higgs �eld on the sphere at in�nity, or more generally it is the orbitin the Lie algebra under the a
tion of the group of the Higgs �eld on the sphereat in�nity. The mass also de�nes an embedding of the 
ir
le (the gauge group ofthe abelian theory) into the group G so that BPS monopoles 
an be 
ompared toDira
 monopoles.It is reasonable to ask what BPS monopoles look like from a long distan
e, andto the extreme, on the sphere at in�nity. It is not ne
essarily true that they shouldlook like Dira
 monopoles sin
e the latter approximate BPS monopoles not onlyfar from the singularities but also only when the singularities are far apart. We 
anask this question for di�erent metri
s on R3 . When the metri
 is Eu
lidean, themonopoles on the sphere at in�nity do look exa
tly like Dira
 monopoles. Moreover,as for Dira
 monopoles, up to 
harge, all Eu
lidean monopoles look the same atin�nity.In this paper we will 
onsider hyperboli
 monopoles de�ned over hyperboli
 spa
eH 3 . We will show that on the sphere at in�nity, the BPS hyperboli
 monopolestake on many di�erent values in 
ontrast to the Eu
lidean 
ase. This agrees withthe 
onje
ture that in fa
t hyperboli
 monopoles are determined by their values onthe sphere at in�nity. This 
onje
ture has been 
on�rmed for integral mass SU(2)hyperboli
 monopoles by Austin and Braam [2℄ and it is an easy fa
t for hyperboli
Dira
 monopoles. The proof of the integral mass SU(2) 
ase by Austin and Braamin uses some beautiful algebrai
 geometry and introdu
es dis
rete Nahm data. Thisapproa
h has been generalised to SU(n) by Murray and Singer [15℄ and it is likelythis will lead to a proof that these monopoles are determined by their asymptoti
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2 PAUL NORBURYvalues. Our aim is to 
omplement this work with proofs that work for all gaugegroups and non-integral mass. We are also interested in how su
h proofs fail forEu
lidean monopoles.Murray and Singer [16℄ also study the twistor theory of hyperboli
 monopoles.Their results hold for any mass sin
e rather than working with 
ir
le invariantinstantons over the four-sphere whi
h requires integral mass they work with instan-tons over Minkowski spa
e invariant under translations. They show that a hyper-boli
 monopole is determined by its asymptoti
 value plus some extra information(remark (3) on p.989.)It may end up that methods of algebrai
 geometry will be needed to show thata hyperboli
 monopole is determined by its asymptoti
 value. We believe the mainresult of this paper is still valuable sin
e it dire
tly shows why hyperboli
 monopolesand Eu
lidean monopoles behave di�erently.As mentioned, a monopole has a mass given by an element of the Lie algebra, orreally the orbit of the element. We 
an parametrise the moduli spa
e of monopoleswith given mass by holomorphi
 maps from the two-sphere into the orbit in theLie algebra|see Se
tion 3. Sin
e many di�erent masses have isomorphi
 orbits andhen
e the same parametrisation we 
an speak of a subset of the moduli spa
e beforespe
ifying the mass pre
isely. This same idea is used in the study of \monopole
louds".Theorem 1. Given two disjoint 
ompa
t subsets in the parameter spa
e of mono-poles, if the mass is small enough then the asymptoti
 values of the 
orrespondinghyperboli
 monopoles respe
tively give two distin
t subsets.Remarks: (i) It is probably true that only one of the subsets of the parameterspa
e need be 
ompa
t. We dis
uss this in Se
tion 4(ii) One satisfying aspe
t of the theorem is that we 
an see where the proof failsfor Eu
lidean monopoles.In Se
tion 2 we des
ribe Dira
 monopoles over Eu
lidean and hyperboli
 spa
es.In Se
tion 3 we give the ba
kground to the holomorphi
 map asso
iated to a mono-pole. In Se
tion 4 we give the proof of Theorem 1. We 
ontrast properties of theasymptoti
 values of hyperboli
 monopoles with those of Eu
lidean monopoles inSe
tion 5. 2. Dira
 monopoles.In this se
tion we study the elementary issue of Dira
 monopoles sin
e theygive an analogue to the non-linear problem. It is interesting to the note that atin�nity Eu
lidean BPS monopoles look exa
tly like Eu
lidean Dira
 monopoleswhereas hyperboli
 spa
e dete
ts a di�eren
e between BPS monopoles and Dira
monopoles.A Dira
 monopole is a solution to Maxwell's equations: FA = �dA� where FAis the magneti
 �eld, or the 
urvature of a 
onne
tion A, and dA� is the ele
tri
�eld given by the 
ovariant derivative of the Higgs �eld. The Hodge star � dependson the metri
. It follows that the magneti
 �eld is harmoni
, so for the Eu
lideanmetri
 the magneti
 �eld is given byB = r̂4�r2



ASYMPTOTIC VALUES OF HYPERBOLIC MONOPOLES 3where r̂ represents the imaginary-valued 2-formr̂ = 2r2d �wdw(1 + jwj2)2 ;and more generally B = \(r � a)4�(r � a)2is a monopole at the point a 2 R3 . As r ! 1, r2B ! n̂, the unit normal, whi
his in parti
ular independent of a. Thus, on the sphere at in�nity a monopole lookslike a symmetri
 distribution, or the imaginary-valued 2-form, 2d �wdw=(1 + jwj2)2.A 
olle
tion of k monopoles is simply the sum of k of these and thus givesFA = 2kd �wdw(1 + jwj2)2(1)on the sphere at in�nity.Thus we see that (ex
ept for the 
harge) Eu
lidean Dira
 monopoles 
annot bedistinguished from a distan
e. In 
ontrast with this, the situation is exa
tly theopposite for hyperboli
 Dira
 monopoles.Proposition 2.1. Hyperboli
 Dira
 monopoles are determined by their asymptoti
values.Proof. A hyperboli
 Dira
 monopole is a solution of the equation FA = �dA�for the hyperboli
 Hodge star. The fundamental solution isB = r̂4� sinh2(r)so a more general single Dira
 monopole is given byBa(x) = �̂4� sinh2(d(x; a))where d(x; a) is the hyperboli
 distan
e between a point x 2 H 3 and a given pointa and �̂ is the unit ve
tor pointing (away from a) along the geodesi
 joining x anda. The asymptoti
 value of ea
h of these monopoles is given by the unit outwardnormal ve
tor of S21 s
aled by limr!1 sinh2(r)= sinh2(d(x; a)) (for r = d(x; 0).)It uniquely determines the monopole sin
e it simply gives the symmetri
 measured �wdw=(1 + jwj2)2 transformed by the 
onformal transformation of S21 indu
ed bythe isometry of H 3 that takes 0 to a.The most general Dira
 monopole is a linear 
ombination of these single mono-poles. The 
ontent of this proposition is to show that the linear 
ombination of
onformal transformations of the symmetri
 measure on S21 determines the 
onfor-mal transformations.A 
onformal transformation takesw 7! aw + b
w + d :Sin
e the subgroup SU(2) �xes the symmetri
 measure we need only 
onsider 
on-formal transformations of the formw 7! aj(w � wj); aj 2 R+ ; wj 2 C :



4 PAUL NORBURYThe symmetri
 measure maps to a2jd �wdw=(1 + a2j jw � wj j2)2 so a general Dira
monopole has measure at in�nity given byXj a2jd �wdw(1 + a2j jw � wj j2)2(2)where there might be repeated appearan
es of a pair (aj ; wj).The denominator for (2) is given by �j(1+a2j jw�wj j2)2. Put w = x+iy and sety = 0. Then the denominator fa
torises with fa
tors x�xj � ip(y2j +1=a2j). Thus,the measure determines ea
h xj and y2j + 1=a2j . (We have analyti
ally 
ontinuedx to take on 
omplex values.) Similarly, if we set x = 0 then we get ea
h yj andx2j + 1=a2j so we get ea
h xj ; yj ; aj and the boundary measure has determined theDira
 monopole.The spa
e of 
ompa
tly supported 
ontinuous fun
tions on hyperboli
 spa
e a
tson the symmetri
 measure ! on S2 by f � ! = RH3 f(x)x � !dx where we think ofx 2 SL(2; C )=SU(2). Atiyah has suggested that this a
tion might be faithful.Conje
ture 1. Let f 2 C0
 (H 3 ), then f � ! = 0 , f � 0:The proposition would then �t into a rather natural setting, following fromlimiting behaviour of su
h a result.3. Holomorphi
 maps.In this se
tion we will des
ribe the holomorphi
 map of the two-sphere into ahomogeneous spa
e asso
iated to a monopole via s
attering. First we will give abrief des
ription of the homogeneous spa
es.Let � 2 g, the Lie algebra of G, and let K� = fg 2 G j g � � = �g be the isotropysubgroup of � from the adjoint a
tion of G. Then the homogeneous spa
e G=K�is a 
omplex manifold and we 
an speak of holomorphi
 maps into this manifold.This is best seen using the isomorphism G=K� �= G � � � g.The tangent spa
e of an adjoint orbit X = G � � � g has a ni
e des
ription. At� = g � � 2 G � �, the tangent spa
e T�X = [g; �℄ � g. It is more 
onvenient to useg= ker[�; �℄ �= T�X . The isomorphism is given by u 7! [u; �℄ for u 2 g.Homogeneous spa
es have 
omplex realisationsG=K� �= G
=P�(3)where P� is the paraboli
 subgroup of G
 with the further property that P� \G =K�. The isomorphism (3) simply says that given any g 2 G
, there exists p 2 P�su
h that gp 2 G and p is unique up to p 7! pk for k 2 K�. When G = U(n), thisis the Gram-S
hmidt pro
ess.The 
omplex stru
ture at � is given by Ju � iu(mod p�) with respe
t to thetrivialisation T�X �= g= ker[�; �℄. It is well-de�ned sin
e given iu, there is an elementv of p�, the Lie algebra of P� , unique up to an element of ker[�; �℄ su
h that iu+v 2 g.The 
omplex stru
ture at ea
h point of the orbit � = g � � is de�ned similarly.A map f : S2 ! G=K� is holomorphi
 when its lift u to G (de�ned lo
ally)satis�es u�1�xu+ Ju�1�yu = 0, or equivalently for w = x+ iyu�1� �wu(w) � p� :(4)The adjoint orbit has a natural symple
ti
 stru
ture, 
ompatible with the 
om-plex stru
ture to give a Kahler stru
ture, given at T�X by !(u; v) = h�; [u; v℄i whereh�; �i is the Killing form. At T�X , the metri
 is g(u; v) = !(Ju; v) for the 
omplex



ASYMPTOTIC VALUES OF HYPERBOLIC MONOPOLES 5stru
ture J . There are many other symple
ti
 stru
tures and 
omplex stru
turesthat arise less naturally.The map f : S2 ! G=K� pulls ba
k the symple
ti
 form ! to a two-form overS2 via its lift u: f�! = h�; [u�1�wu; u�1� �wu℄id �wdw:(5)A hyperboli
 monopole (A;�) with �nite energy, kFAk2 <1, has a well-de�nedlimit at in�nity (ensuring that the problem of this paper is well-posed) and the 
om-ponents of the monopole and their derivatives satisfy asymptoti
 de
ay 
onditionsnear in�nity, [14℄. In parti
ular, �jS21 = � 2 g is the mass of the monopole.More pre
isely, there exists a gauge in whi
h� = � +O(e�
r)and A = Awdw +A �wd �w +Ar su
h thatAwdw +A �wd �w = A1 +O(e�
r)for a K� 
onne
tion A1 on S2, andAr = O(e�
r)as r !1 and 
 > 0 is a 
onstant. There are similar estimates on the derivatives.The asymptoti
 
onditions on the monopole ensure along ea
h radial geodesi
the existen
e of a frame of fundamental solutions g : R+ ! G
 of the s
atteringequation (�Ar � i�)g = 0(6)with the property that g(0) 2 G and limr!1 g exp(�i�r) is bounded. The solutionis unique up to g 7! gk for k 2 K�.We 
an 
hoose a family of solutions g(w; r) to (6) that depend smoothly on w.It follows from the Bogomolny equation FA = �dA� that(�Ar � i�)�A�wg = 0and �A�wg exp(�i�r) is bounded as r !1, so�A�wg = g�(w)(7)for some �(w) 2 p�. In parti
ular, � �wg(w; 0) = g(w; 0)�(w) sin
e by the 
hoi
e of
oordinate system �A�w = � �w at r = 0. Thus g(w; 0)�1� �wg(w; 0) � p� and by (4) thismeans g(w; 0) : S2 ! G=K� is a holomorphi
 map. In order to make sense of thevalue of g at r = 0 we have 
hosen a frame of the bundle there. This 
onstru
tiongives part of the following theorem.Theorem 3.1. [12℄ The spa
e of hyperboli
 monopoles framed at 0 2 H 3 withgauge group G and mass � is di�eomorphi
 to the spa
e of holomorphi
 mapsHol(S2; G=H) where H is the isotropy subgroup of �.We 
an interpret the solution g of (6) as a 
hoi
e of gauge and then (6) and (7)give (A;�) with respe
t to this gauge, respe
tively showing that Ar � i� = 0 andA �w = �(w). We 
an 
hoose another solution g(w; r)p(w) of (6) for p : C ! P� thathas the same asymptoti
 properties as g but no longer satis�es gp(w; 0) 2 G andwith the property that with respe
t to this gaugeAr � i� = 0; A �w = 0:(8)



6 PAUL NORBURYThis simply uses the fa
t that any holomorphi
 map f : S2 ! G=K� (lo
ally) liftsto a map u : C ! G, and there is a map p : C ! P� su
h that up : C ! G
 is a liftof f to an algebrai
 map. The maps u and p are unique up to (u; p) 7! (uk; k�1p)for k : C ! K�. The evaluation g(w; 0) is of 
ourse a lift of a holomorphi
 map toG=Kxi.Sin
e (A;�) is Hermitian, with respe
t to the frame gp satisfying (6), the Her-mitian metri
 H = (gp)�gp : H 3 ! G
=G together with (8) gives the remainder ofthe monopole Ar + i� = H�1�rH; Aw = H�1�wH:(9)The Bogomolny equations be
ome B(H) = 0 whereB(H) = sinh2(r)�r(H�1�rH) + (1 + jwj2)2� �w(H�1�wH):(10)See [10℄ for further details.Noti
e that H(0) = p(w)�p(w) is not well-de�ned (it depends on w) and H jS21is redu
ed i.e. H jS21 2 K
�=K� (for generi
 mass K� is a torus and H jS21 is apotential.)Now we represent a monopole as a Hermitian metri
 H that satis�es (10). GivenH1 and H2, de�ne the endomorphism h = H�11 H2.Lemma 3.2. If �1 = �2 on S21, so the two monopoles have the same mass andwe 
hoose gauges in whi
h the Higgs �elds look the same, then the endomorphismh is 
onjugate to a bounded endomorphism.Proof. The Hermitian metri
 Hj arises from (Aj ;�j) as Hj = g�j gj . Put�j jS21 = �, then gj = Gj(w; r)exp(i�r) for Gj(w; r) bounded so g2g�11 is bounded.Now, h = g�1(((g2g�11 )�g2g�11 )g1.The two monopoles have the same asymptoti
 value pre
isely when hjS21 = I ,the identity endomorphism. The 
omplete metri
 on the spa
e of Hermitian metri
sgiven by taking the supremum over hyperboli
 spa
e of hH�1ÆH;H�1ÆHi uses theKilling form so the previous lemma implies that for two monopoles with the samemass, the distan
e between H1 and H2 is �nite. Two monopoles are the same whenthe distan
e between their Hermitian metri
s is zero.4. Approximate monopoles.In this se
tion we will prove Theorem 1. Our strategy is as follows. For ea
hholomorphi
 map and mass we 
an �nd an approximate monopole and a uniqueexa
t monopole nearby. The smaller the mass, the better the approximation. Forany two holomorphi
 maps, the distan
e between the asymptoti
 values of the
orresponding approximate monopoles is independent of the mass and positive.Thus, for small enough mass, when the two approximations are quite good, theremust also be a positive distan
e between the asymptoti
 values of the two exa
tmonopoles and the theorem is proven. We will a
tually use Hermitian metri
sin pla
e of monopoles sin
e there is a good notion of distan
e between Hermitianmetri
s and there are te
hniques to estimate this distan
e.A Hermitian metri
 H : H 3 ! G
=G 
an be asso
iated to a more general set ofpairs (A;�) than monopoles over H 3 . In fa
t, to any pair (A;�) that satis�es[�A�w ; �Ar � i�℄ = 0



ASYMPTOTIC VALUES OF HYPERBOLIC MONOPOLES 7we 
an asso
iate a Hermitian metri
 H and (A;�) is retrieved from H by (8) and(9). This is the 
lass of pairs we will 
onsider.Given � 2 g and a holomorphi
 map f : S2 ! G=K� de�neHf = p� exp(2i�r)p(11)where p : C ! P� is a map into the paraboli
 subgroup with the property that upis a lift of f to an algebrai
 map from C to G
 and u is a lift of f to a map fromC to G. The map u is ambiguous up to an a
tion of K� on the right and hen
e pinherits this ambiguity on the left. The expression for Hf is independent of thisambiguity.In order to show the existen
e of a monopole for any given mass and holomorphi
map we use the non-linear heat 
ow for Hermitian metri
s with initial value givenby Hf . H�1(w; r; t)�H(w; r; t)=�t = B(H(w; r; t)); H(w; r; 0) = Hf (w; r)(12)Theorem 4.1. [10, 12℄ There is a unique solution H(w; r; t) of (12).The solution H(w; r; t) of the heat 
ow 
onverges to a Hermitian metri
 thatsatis�es B(H(w; r;1)) = 0 and gives rise to a monopole with holomorphi
 mapf . Together with the s
attering 
onstru
tion des
ribed in Se
tion 3 this gives theproof of Theorem 3.1.It is worth pointing out that the 
onstru
tion of monopoles from holomorphi
maps is treated di�erently in [10℄ and [12℄ and here it is treated slightly di�erentlyagain. In [10℄ the initial 
hoi
e of Hermitianmetri
 used expli
itly known symmetri
hyperboli
 monopoles. In [12℄, sin
e both instantons and hyperboli
 monopoleswere treated together it was more 
onvenient to 
hoose an initial Hermitian metri
that was independent of su
h information (and also to use something more generalthan a Hermitian metri
.) Neither of these suÆ
e for our purposes here. In orderthat the limiting 
onne
tions at in�nity of di�erent monopoles 
an be 
ompared weneed to ensure that a 
ommon redu
tion of the monopoles to a subgroup (usually amaximal torus) is used. This is why the paraboli
 subgroup is spe
i�ed and featuresin the Hermitian metri
 above. In parti
ular, the approximate monopole de�nedby Hf has the same asymptoti
 mass as the monopole asso
iated to H(w; r;1), sod(H(w; r;1);Hf ) is �nite.The metri
 on the spa
e of Hermitian metri
s is given by tr(H�1dH) so the heat
ow gives an estimate of the distan
e from the initial Hf and the �nal H(w; r;1):d(H(w; r;1);Hf ) � Z 10 jB(H(w; r; t))jdt(13) � Z 10 maxj�j=sjB(Hf (w; �))j2G(s; r)ds(14)where the se
ond inequality 
omes from the fa
t that jB(H(w; r; t))j is dominatedby a solution of the linear heat 
ow for a Lapla
ian like operator that redu
es tothe usual Lapla
ian on radially symmetri
 fun
tions. When we maximise jB(Hf )jover spheres of 
onstant radius we get a fun
tion of the radius so we 
an use aone-dimensional Green's fun
tion G(s; r). See [10, 12℄ for the proof of this and also[3, 22℄ where this te
hnique is introdu
ed.The following two propositions estimate how well (11) approximates a monopoleby using (14). The �rst proposition is enough to prove Theorem 1. We go on toprove more in the se
ond proposition. It relates the estimate in the �rst proposition



8 PAUL NORBURYwith jf�!j, the two-form on S2 pulled ba
k by the holomorphi
 map, where f�!is 
ompared to the standard two-form on S2 to get its magnitude. This pre
iseinformation is in
luded parti
ularly to show how good the approximation is as theholomorphi
 maps bubble.Proposition 4.2. d(H(w; r;1);Hf ) � Cj�j maxS21 jFAj.Proof. By (14) we have to get an upper bound for jB(H(w; r))j on ea
h sphere r =
onstant. Using (8) and (9) with H = Hf , and going to a unitary gauge we get� = �; Ar = 0; A �w = exp(i�r)u�1� �wu exp(�i�r); Aw = exp(�i�r)u�1�wu exp(i�r)and B(H(w; r)) = �i(1 + jwj2)2F �ww.The 
onne
tion A splits into a radially independent K� 
onne
tion and an ex-ponentially de
aying 
onne
tion. More pre
isely, putg
 = k� � n+� � n��where k� = ker[�; �℄ is the Lie algebra of K� and k� � n+� = p�, the Lie algebra ofP�. Alternatively, we 
an 
hara
terise the sub-spa
es by(exp (i�r)� I) � k� = 0 = limr!+1 exp (�i�r) � n�:De
ompose v 2 g
 a

ordingly as v = v0 + v+ + v�.The 
onne
tion A de
omposes as A = A0 + a for a = A+�wd �w + A�wdw with theproperty that A0 is a K� 
onne
tion independent of r, and a is a 1-form that de
aysexponentially as r !1. Then F �ww = FA0 + dA0a+ a ^ a and FA0 is independentof r whilst the rest de
ays exponentially, so FA0 = FAjS21 .De�ne 
� > 0 to be the smallest eigenvalue of the a
tion of exp(i�r) on g
. Thenea
h time we say that a term de
ays exponentially, it de
ays at least as fast ase�
�r. Noti
e that 
� � j�j. We have jFAj �M1jFA0 j(1� e�
�r) for some 
onstantM1 � 1 and thusd(H(w; r;1);Hf ) � Z maxj�j=sjB(H)(w; �)j2G(s; r)ds� M1maxS21 jFAj Z 10 (1� e�
�s)minfr; sgsinh2 s dswhere minfr; sg= sinh2 s is the one-dimensional Green's fun
tion.NowZ 10 (1� e�
�s)minfr; sgsinh2 s ds = Z r0 (1� e�
�s)ssinh2 s ds+ r Z 1r (1� e�
�s)sinh2 s dsand the se
ond term of the right hand side 
onverges to 0 as r ! 1. Sin
e1� e�
�s � 
�s, the �rst term is dominated by 
�M2 for a 
onstant M2. Sin
e 
� �j�j the proposition follows. The 
onstant C in the statement of the proposition doesdepend on the holomorphi
map f , and is bounded below by a 
onstant independentof f .In parti
ular, the estimate depends only on the holomorphi
 map and the mass.For small mass, the distan
e is small. For any two holomorphi
 maps f and g,noti
e that restri
ted to S21 the distan
e d(Hf ;Hg) is independent of the masssin
e it depends onH�1f Hg = p�1f exp(�2i�r)(p�f )�1p�g exp(2i�r)pg
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h is independent of � in the limit r ! 1. Of 
ourse the holomorphi
 maps fand g use � to be de�ned, but they 
ould equally well use a mass that gives thesame homogeneous manifold, like �� for � 2 R� .Thus, if we take any two holomorphi
 maps and 
hoose the mass small enough,then the nearby monopoles must have di�erent asymptoti
 values. This argumentextends to two disjoint 
ompa
t subsets of the spa
e of holomorphi
 maps andTheorem 1 is proven.Proposition 4.3. hFA;�ijS21 = f�!:Proof. In the proof of the previous proposition we saw that FA has a radiallyindependent part FAjS21 and an exponentially de
aying part. Sin
e F �ww vanishesat r = 0 we get an identity relating FAjS21 with the term that 
an
els it.In the notation of the previous proof, F 0�wwd �wdw = FAjS21 + [A+�w ; A�w ℄0d �wdw sohFA;�ijS21 = h�[A+�w ; A�w ℄0d �wdw;�ijr=0 = h�[A+�w ; A�w ℄d �wdw;�ijr=0where the last equality follows from the fa
t that � is orthogonal to n�. But atr = 0, A �w = u�1� �wu;Aw = u�1�wu sohFA;�ijS21 = �h[u�1� �wu; u�1�wu℄; �id �wdw = f�!:The previous proposition shows that the heat 
ow gives bad estimates for well-separated monopoles. That is, if a sequen
e of holomorphi
 maps bubble thenthe pull-ba
k of the Kahler form will bubble and hFA; FAi whi
h determines thea

ura
y of the approximate monopole, gets a 
ontribution from hFA;�i, and hen
egets large. (It may even be true that hFA;�i 
ontrols hFA; FAi.)Well-separated monopoles are Dira
-like and are the sour
e of our intuition thathyperboli
 monopoles have interesting asymptoti
 limits. So far we have not beenable to produ
e good approximate well-separated monopoles. It would be veryinteresting to see su
h approximations sin
e they would 
ombine the linear natureof Dira
 monopoles with the soliton nature of gluing together holomorphi
 maps.Given the intuition that asymptoti
 values of well-separated monopoles look likeasymptoti
 values of Dira
 hyperboli
 monopoles, we would be able to relax the
ondition in Theorem 1 allowing one set to be non-
ompa
t and in parti
ular applythe theorem to a point and a deleted neighbourhood of the point.Conje
ture 2. Given a 
ompa
t subset and a disjoint subset in the parameterspa
e of monopoles, if the mass is small enough then the asymptoti
 values of the
orresponding hyperboli
 monopoles respe
tively give two distin
t subsets.A related and interesting issue is to know if the set of monopoles with bounded
urvature on S21 and bounded mass, gives rise to a 
ompa
t set in the spa
e ofholomorphi
 maps. Su
h a result would also prove the 
onje
ture. In spe
ial 
ases it
an be shown that for a �xed holomorphi
 map the maximum value of the 
urvatureat in�nity is a monotone de
reasing fun
tion of the mass so the 
onje
ture follows.5. Comparison with Eu
lidean monopoles.The asymptoti
 value of a Eu
lidean monopole gives a symmetri
 
onne
tionon the sphere at in�nity, and in parti
ular, all monopoles (with the same massand 
harge) give rise to the same 
onne
tion at in�nity. This 
ontrasts with the
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ase and it is interesting to see where the point of departure from thebehaviour of hyperboli
 monopoles o

urs.The proof of Proposition 4.2 goes through for Eu
lidean monopoles with theonly 
hange being in the one-dimensional Green's fun
tion. We use minfr; sg=s2instead of minfr; sg= sinh2 s. Nowd(H(w; r;1);Hf ) � C maxS21 jFAj�Z r0 (1� e�
�s)s ds+ r Z 1r (1� e�
�s)s2 ds�and the se
ond term is bounded whilst the �rst term is O(ln r). This is enoughto show that the heat 
ow 
onverges and thus Theorem 3.1 is true for Eu
lideanmonopoles, [10, 19℄. But we see that the asymptoti
 value of the monopole 
anmove arbitrarily far and a posteriori we know that all of the asymptoti
 values
onverge to the same 
onne
tion.This is an appropriate pla
e to mention the result of Murray and Singer [16℄regarding asymptoti
 values of hyperboli
 monopoles. They show that an SU(n)hyperboli
 monopole is determined by (r0jS21)0;1 and (b+jS21)0;1, using their no-tation. The �rst term is the asymptoti
 value of the monopole and the se
ondterm is an artifa
t of the holomorphi
 gauge they use giving o�-diagonal terms.In the good unitary gauge de�ned by Rade [20℄ the asymptoti
 value is a U(1)n
onne
tion. The term (b+jS21)0;1 essentially en
odes the holomorphi
 map whi
his also enough to give a Eu
lidean monopole so no new behaviour is seen there. Itis not so surprising sin
e their methods are similar to those applied to Eu
lideanmonopoles.Finally, we mention a maximum prin
iple whi
h a priori may have led to a proofthat hyperboli
 monopoles are determined by their asymptoti
 values. It ends upthat the maximum prin
iple also applies to Eu
lidean monopoles so it proves aresult that is true for both 
ases.As in Se
tion 3 de�ne h = H�11 H2 for two Hermitian metri
s satisfying B(Hi) =0. Consider �(h) = tr(h)+ tr(h�1)�2n; (n = trI). This is a non-negative quantitythat vanishes pre
isely when H1 = H2. The problem of showing that a monopole isdetermined by its asymptoti
 values then be
omes the problem of showing that ifthe asymptoti
 value of �(h) vanishes then �(h) vanishes identi
ally. The followinginequality leads to a maximum prin
iple.sinh2(r)�2r� + (1 + jwj2)2� �w�w� � 0:It applies to Eu
lidean monopoles alsor2�2r� + (1 + jwj2)2� �w�w� � 0:The maximum prin
iple states that �(h) is dominated by any fun
tion that dom-inates �(h) on the boundary and lies in the kernel of the se
ond order partialdi�erential operator above. The important point here is that there are two bound-ary 
omponents, r = 0 and r = 1, sin
e �(h) depends on w at r = 0. Thefun
tion a+ br is a good 
omparison fun
tion for 
onstants a and b 
hosen so thata � maxr=0�(h) and b > 0. As b! 0 we see thatmaxr=0�(h) � maxr=1�(h):This is true of both hyperboli
 monopoles and Eu
lidean monopoles. In the latter
ase, maxr=1 �(h) = 0 so the inequality is trivial.
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