
ASYMPTOTIC VALUES OF HYPERBOLIC MONOPOLESPAUL NORBURYAbstrat. We show that many hyperboli monopoles an be distinguishedfrom eah other via their asymptoti values in ontrast to the ase of Eulideanmonopoles. 1. IntrodutionMagneti monopoles initially arose out of Dira's study of the quantum theoryof eletro-magnetism. They are singular solutions of Maxwell's equations validaway from their singularities. Bogomolny-Prasad-Sommer�eld monopoles are ageneralisation of Dira monopoles to non-abelian theories where the singularitiesan be smoothed away. They are solutions to the equation dA� = �FA where(A;�) is a pair given by a onnetion with L2 urvature FA and a Higgs �eld|asetion of the adjoint bundle|de�ned on a trivial bundle over R3 with struturegroup a ompat Lie group G, and the Hodge star is given with respet to a metrion R3 . The Higgs �eld � is onstrained to lie in a given orbit of the Lie algebraon the sphere at in�nity. The mass of the monopole is de�ned to be the onjugaylass of the Higgs �eld on the sphere at in�nity, or more generally it is the orbitin the Lie algebra under the ation of the group of the Higgs �eld on the sphereat in�nity. The mass also de�nes an embedding of the irle (the gauge group ofthe abelian theory) into the group G so that BPS monopoles an be ompared toDira monopoles.It is reasonable to ask what BPS monopoles look like from a long distane, andto the extreme, on the sphere at in�nity. It is not neessarily true that they shouldlook like Dira monopoles sine the latter approximate BPS monopoles not onlyfar from the singularities but also only when the singularities are far apart. We anask this question for di�erent metris on R3 . When the metri is Eulidean, themonopoles on the sphere at in�nity do look exatly like Dira monopoles. Moreover,as for Dira monopoles, up to harge, all Eulidean monopoles look the same atin�nity.In this paper we will onsider hyperboli monopoles de�ned over hyperboli spaeH 3 . We will show that on the sphere at in�nity, the BPS hyperboli monopolestake on many di�erent values in ontrast to the Eulidean ase. This agrees withthe onjeture that in fat hyperboli monopoles are determined by their values onthe sphere at in�nity. This onjeture has been on�rmed for integral mass SU(2)hyperboli monopoles by Austin and Braam [2℄ and it is an easy fat for hyperboliDira monopoles. The proof of the integral mass SU(2) ase by Austin and Braamin uses some beautiful algebrai geometry and introdues disrete Nahm data. Thisapproah has been generalised to SU(n) by Murray and Singer [15℄ and it is likelythis will lead to a proof that these monopoles are determined by their asymptoti1991 Mathematis Subjet Classi�ation. 81T13, 53C07.1



2 PAUL NORBURYvalues. Our aim is to omplement this work with proofs that work for all gaugegroups and non-integral mass. We are also interested in how suh proofs fail forEulidean monopoles.Murray and Singer [16℄ also study the twistor theory of hyperboli monopoles.Their results hold for any mass sine rather than working with irle invariantinstantons over the four-sphere whih requires integral mass they work with instan-tons over Minkowski spae invariant under translations. They show that a hyper-boli monopole is determined by its asymptoti value plus some extra information(remark (3) on p.989.)It may end up that methods of algebrai geometry will be needed to show thata hyperboli monopole is determined by its asymptoti value. We believe the mainresult of this paper is still valuable sine it diretly shows why hyperboli monopolesand Eulidean monopoles behave di�erently.As mentioned, a monopole has a mass given by an element of the Lie algebra, orreally the orbit of the element. We an parametrise the moduli spae of monopoleswith given mass by holomorphi maps from the two-sphere into the orbit in theLie algebra|see Setion 3. Sine many di�erent masses have isomorphi orbits andhene the same parametrisation we an speak of a subset of the moduli spae beforespeifying the mass preisely. This same idea is used in the study of \monopolelouds".Theorem 1. Given two disjoint ompat subsets in the parameter spae of mono-poles, if the mass is small enough then the asymptoti values of the orrespondinghyperboli monopoles respetively give two distint subsets.Remarks: (i) It is probably true that only one of the subsets of the parameterspae need be ompat. We disuss this in Setion 4(ii) One satisfying aspet of the theorem is that we an see where the proof failsfor Eulidean monopoles.In Setion 2 we desribe Dira monopoles over Eulidean and hyperboli spaes.In Setion 3 we give the bakground to the holomorphi map assoiated to a mono-pole. In Setion 4 we give the proof of Theorem 1. We ontrast properties of theasymptoti values of hyperboli monopoles with those of Eulidean monopoles inSetion 5. 2. Dira monopoles.In this setion we study the elementary issue of Dira monopoles sine theygive an analogue to the non-linear problem. It is interesting to the note that atin�nity Eulidean BPS monopoles look exatly like Eulidean Dira monopoleswhereas hyperboli spae detets a di�erene between BPS monopoles and Diramonopoles.A Dira monopole is a solution to Maxwell's equations: FA = �dA� where FAis the magneti �eld, or the urvature of a onnetion A, and dA� is the eletri�eld given by the ovariant derivative of the Higgs �eld. The Hodge star � dependson the metri. It follows that the magneti �eld is harmoni, so for the Eulideanmetri the magneti �eld is given byB = r̂4�r2



ASYMPTOTIC VALUES OF HYPERBOLIC MONOPOLES 3where r̂ represents the imaginary-valued 2-formr̂ = 2r2d �wdw(1 + jwj2)2 ;and more generally B = \(r � a)4�(r � a)2is a monopole at the point a 2 R3 . As r ! 1, r2B ! n̂, the unit normal, whihis in partiular independent of a. Thus, on the sphere at in�nity a monopole lookslike a symmetri distribution, or the imaginary-valued 2-form, 2d �wdw=(1 + jwj2)2.A olletion of k monopoles is simply the sum of k of these and thus givesFA = 2kd �wdw(1 + jwj2)2(1)on the sphere at in�nity.Thus we see that (exept for the harge) Eulidean Dira monopoles annot bedistinguished from a distane. In ontrast with this, the situation is exatly theopposite for hyperboli Dira monopoles.Proposition 2.1. Hyperboli Dira monopoles are determined by their asymptotivalues.Proof. A hyperboli Dira monopole is a solution of the equation FA = �dA�for the hyperboli Hodge star. The fundamental solution isB = r̂4� sinh2(r)so a more general single Dira monopole is given byBa(x) = �̂4� sinh2(d(x; a))where d(x; a) is the hyperboli distane between a point x 2 H 3 and a given pointa and �̂ is the unit vetor pointing (away from a) along the geodesi joining x anda. The asymptoti value of eah of these monopoles is given by the unit outwardnormal vetor of S21 saled by limr!1 sinh2(r)= sinh2(d(x; a)) (for r = d(x; 0).)It uniquely determines the monopole sine it simply gives the symmetri measured �wdw=(1 + jwj2)2 transformed by the onformal transformation of S21 indued bythe isometry of H 3 that takes 0 to a.The most general Dira monopole is a linear ombination of these single mono-poles. The ontent of this proposition is to show that the linear ombination ofonformal transformations of the symmetri measure on S21 determines the onfor-mal transformations.A onformal transformation takesw 7! aw + bw + d :Sine the subgroup SU(2) �xes the symmetri measure we need only onsider on-formal transformations of the formw 7! aj(w � wj); aj 2 R+ ; wj 2 C :



4 PAUL NORBURYThe symmetri measure maps to a2jd �wdw=(1 + a2j jw � wj j2)2 so a general Diramonopole has measure at in�nity given byXj a2jd �wdw(1 + a2j jw � wj j2)2(2)where there might be repeated appearanes of a pair (aj ; wj).The denominator for (2) is given by �j(1+a2j jw�wj j2)2. Put w = x+iy and sety = 0. Then the denominator fatorises with fators x�xj � ip(y2j +1=a2j). Thus,the measure determines eah xj and y2j + 1=a2j . (We have analytially ontinuedx to take on omplex values.) Similarly, if we set x = 0 then we get eah yj andx2j + 1=a2j so we get eah xj ; yj ; aj and the boundary measure has determined theDira monopole.The spae of ompatly supported ontinuous funtions on hyperboli spae atson the symmetri measure ! on S2 by f � ! = RH3 f(x)x � !dx where we think ofx 2 SL(2; C )=SU(2). Atiyah has suggested that this ation might be faithful.Conjeture 1. Let f 2 C0 (H 3 ), then f � ! = 0 , f � 0:The proposition would then �t into a rather natural setting, following fromlimiting behaviour of suh a result.3. Holomorphi maps.In this setion we will desribe the holomorphi map of the two-sphere into ahomogeneous spae assoiated to a monopole via sattering. First we will give abrief desription of the homogeneous spaes.Let � 2 g, the Lie algebra of G, and let K� = fg 2 G j g � � = �g be the isotropysubgroup of � from the adjoint ation of G. Then the homogeneous spae G=K�is a omplex manifold and we an speak of holomorphi maps into this manifold.This is best seen using the isomorphism G=K� �= G � � � g.The tangent spae of an adjoint orbit X = G � � � g has a nie desription. At� = g � � 2 G � �, the tangent spae T�X = [g; �℄ � g. It is more onvenient to useg= ker[�; �℄ �= T�X . The isomorphism is given by u 7! [u; �℄ for u 2 g.Homogeneous spaes have omplex realisationsG=K� �= G=P�(3)where P� is the paraboli subgroup of G with the further property that P� \G =K�. The isomorphism (3) simply says that given any g 2 G, there exists p 2 P�suh that gp 2 G and p is unique up to p 7! pk for k 2 K�. When G = U(n), thisis the Gram-Shmidt proess.The omplex struture at � is given by Ju � iu(mod p�) with respet to thetrivialisation T�X �= g= ker[�; �℄. It is well-de�ned sine given iu, there is an elementv of p�, the Lie algebra of P� , unique up to an element of ker[�; �℄ suh that iu+v 2 g.The omplex struture at eah point of the orbit � = g � � is de�ned similarly.A map f : S2 ! G=K� is holomorphi when its lift u to G (de�ned loally)satis�es u�1�xu+ Ju�1�yu = 0, or equivalently for w = x+ iyu�1� �wu(w) � p� :(4)The adjoint orbit has a natural sympleti struture, ompatible with the om-plex struture to give a Kahler struture, given at T�X by !(u; v) = h�; [u; v℄i whereh�; �i is the Killing form. At T�X , the metri is g(u; v) = !(Ju; v) for the omplex



ASYMPTOTIC VALUES OF HYPERBOLIC MONOPOLES 5struture J . There are many other sympleti strutures and omplex struturesthat arise less naturally.The map f : S2 ! G=K� pulls bak the sympleti form ! to a two-form overS2 via its lift u: f�! = h�; [u�1�wu; u�1� �wu℄id �wdw:(5)A hyperboli monopole (A;�) with �nite energy, kFAk2 <1, has a well-de�nedlimit at in�nity (ensuring that the problem of this paper is well-posed) and the om-ponents of the monopole and their derivatives satisfy asymptoti deay onditionsnear in�nity, [14℄. In partiular, �jS21 = � 2 g is the mass of the monopole.More preisely, there exists a gauge in whih� = � +O(e�r)and A = Awdw +A �wd �w +Ar suh thatAwdw +A �wd �w = A1 +O(e�r)for a K� onnetion A1 on S2, andAr = O(e�r)as r !1 and  > 0 is a onstant. There are similar estimates on the derivatives.The asymptoti onditions on the monopole ensure along eah radial geodesithe existene of a frame of fundamental solutions g : R+ ! G of the satteringequation (�Ar � i�)g = 0(6)with the property that g(0) 2 G and limr!1 g exp(�i�r) is bounded. The solutionis unique up to g 7! gk for k 2 K�.We an hoose a family of solutions g(w; r) to (6) that depend smoothly on w.It follows from the Bogomolny equation FA = �dA� that(�Ar � i�)�A�wg = 0and �A�wg exp(�i�r) is bounded as r !1, so�A�wg = g�(w)(7)for some �(w) 2 p�. In partiular, � �wg(w; 0) = g(w; 0)�(w) sine by the hoie ofoordinate system �A�w = � �w at r = 0. Thus g(w; 0)�1� �wg(w; 0) � p� and by (4) thismeans g(w; 0) : S2 ! G=K� is a holomorphi map. In order to make sense of thevalue of g at r = 0 we have hosen a frame of the bundle there. This onstrutiongives part of the following theorem.Theorem 3.1. [12℄ The spae of hyperboli monopoles framed at 0 2 H 3 withgauge group G and mass � is di�eomorphi to the spae of holomorphi mapsHol(S2; G=H) where H is the isotropy subgroup of �.We an interpret the solution g of (6) as a hoie of gauge and then (6) and (7)give (A;�) with respet to this gauge, respetively showing that Ar � i� = 0 andA �w = �(w). We an hoose another solution g(w; r)p(w) of (6) for p : C ! P� thathas the same asymptoti properties as g but no longer satis�es gp(w; 0) 2 G andwith the property that with respet to this gaugeAr � i� = 0; A �w = 0:(8)



6 PAUL NORBURYThis simply uses the fat that any holomorphi map f : S2 ! G=K� (loally) liftsto a map u : C ! G, and there is a map p : C ! P� suh that up : C ! G is a liftof f to an algebrai map. The maps u and p are unique up to (u; p) 7! (uk; k�1p)for k : C ! K�. The evaluation g(w; 0) is of ourse a lift of a holomorphi map toG=Kxi.Sine (A;�) is Hermitian, with respet to the frame gp satisfying (6), the Her-mitian metri H = (gp)�gp : H 3 ! G=G together with (8) gives the remainder ofthe monopole Ar + i� = H�1�rH; Aw = H�1�wH:(9)The Bogomolny equations beome B(H) = 0 whereB(H) = sinh2(r)�r(H�1�rH) + (1 + jwj2)2� �w(H�1�wH):(10)See [10℄ for further details.Notie that H(0) = p(w)�p(w) is not well-de�ned (it depends on w) and H jS21is redued i.e. H jS21 2 K�=K� (for generi mass K� is a torus and H jS21 is apotential.)Now we represent a monopole as a Hermitian metri H that satis�es (10). GivenH1 and H2, de�ne the endomorphism h = H�11 H2.Lemma 3.2. If �1 = �2 on S21, so the two monopoles have the same mass andwe hoose gauges in whih the Higgs �elds look the same, then the endomorphismh is onjugate to a bounded endomorphism.Proof. The Hermitian metri Hj arises from (Aj ;�j) as Hj = g�j gj . Put�j jS21 = �, then gj = Gj(w; r)exp(i�r) for Gj(w; r) bounded so g2g�11 is bounded.Now, h = g�1(((g2g�11 )�g2g�11 )g1.The two monopoles have the same asymptoti value preisely when hjS21 = I ,the identity endomorphism. The omplete metri on the spae of Hermitian metrisgiven by taking the supremum over hyperboli spae of hH�1ÆH;H�1ÆHi uses theKilling form so the previous lemma implies that for two monopoles with the samemass, the distane between H1 and H2 is �nite. Two monopoles are the same whenthe distane between their Hermitian metris is zero.4. Approximate monopoles.In this setion we will prove Theorem 1. Our strategy is as follows. For eahholomorphi map and mass we an �nd an approximate monopole and a uniqueexat monopole nearby. The smaller the mass, the better the approximation. Forany two holomorphi maps, the distane between the asymptoti values of theorresponding approximate monopoles is independent of the mass and positive.Thus, for small enough mass, when the two approximations are quite good, theremust also be a positive distane between the asymptoti values of the two exatmonopoles and the theorem is proven. We will atually use Hermitian metrisin plae of monopoles sine there is a good notion of distane between Hermitianmetris and there are tehniques to estimate this distane.A Hermitian metri H : H 3 ! G=G an be assoiated to a more general set ofpairs (A;�) than monopoles over H 3 . In fat, to any pair (A;�) that satis�es[�A�w ; �Ar � i�℄ = 0



ASYMPTOTIC VALUES OF HYPERBOLIC MONOPOLES 7we an assoiate a Hermitian metri H and (A;�) is retrieved from H by (8) and(9). This is the lass of pairs we will onsider.Given � 2 g and a holomorphi map f : S2 ! G=K� de�neHf = p� exp(2i�r)p(11)where p : C ! P� is a map into the paraboli subgroup with the property that upis a lift of f to an algebrai map from C to G and u is a lift of f to a map fromC to G. The map u is ambiguous up to an ation of K� on the right and hene pinherits this ambiguity on the left. The expression for Hf is independent of thisambiguity.In order to show the existene of a monopole for any given mass and holomorphimap we use the non-linear heat ow for Hermitian metris with initial value givenby Hf . H�1(w; r; t)�H(w; r; t)=�t = B(H(w; r; t)); H(w; r; 0) = Hf (w; r)(12)Theorem 4.1. [10, 12℄ There is a unique solution H(w; r; t) of (12).The solution H(w; r; t) of the heat ow onverges to a Hermitian metri thatsatis�es B(H(w; r;1)) = 0 and gives rise to a monopole with holomorphi mapf . Together with the sattering onstrution desribed in Setion 3 this gives theproof of Theorem 3.1.It is worth pointing out that the onstrution of monopoles from holomorphimaps is treated di�erently in [10℄ and [12℄ and here it is treated slightly di�erentlyagain. In [10℄ the initial hoie of Hermitianmetri used expliitly known symmetrihyperboli monopoles. In [12℄, sine both instantons and hyperboli monopoleswere treated together it was more onvenient to hoose an initial Hermitian metrithat was independent of suh information (and also to use something more generalthan a Hermitian metri.) Neither of these suÆe for our purposes here. In orderthat the limiting onnetions at in�nity of di�erent monopoles an be ompared weneed to ensure that a ommon redution of the monopoles to a subgroup (usually amaximal torus) is used. This is why the paraboli subgroup is spei�ed and featuresin the Hermitian metri above. In partiular, the approximate monopole de�nedby Hf has the same asymptoti mass as the monopole assoiated to H(w; r;1), sod(H(w; r;1);Hf ) is �nite.The metri on the spae of Hermitian metris is given by tr(H�1dH) so the heatow gives an estimate of the distane from the initial Hf and the �nal H(w; r;1):d(H(w; r;1);Hf ) � Z 10 jB(H(w; r; t))jdt(13) � Z 10 maxj�j=sjB(Hf (w; �))j2G(s; r)ds(14)where the seond inequality omes from the fat that jB(H(w; r; t))j is dominatedby a solution of the linear heat ow for a Laplaian like operator that redues tothe usual Laplaian on radially symmetri funtions. When we maximise jB(Hf )jover spheres of onstant radius we get a funtion of the radius so we an use aone-dimensional Green's funtion G(s; r). See [10, 12℄ for the proof of this and also[3, 22℄ where this tehnique is introdued.The following two propositions estimate how well (11) approximates a monopoleby using (14). The �rst proposition is enough to prove Theorem 1. We go on toprove more in the seond proposition. It relates the estimate in the �rst proposition



8 PAUL NORBURYwith jf�!j, the two-form on S2 pulled bak by the holomorphi map, where f�!is ompared to the standard two-form on S2 to get its magnitude. This preiseinformation is inluded partiularly to show how good the approximation is as theholomorphi maps bubble.Proposition 4.2. d(H(w; r;1);Hf ) � Cj�j maxS21 jFAj.Proof. By (14) we have to get an upper bound for jB(H(w; r))j on eah sphere r =onstant. Using (8) and (9) with H = Hf , and going to a unitary gauge we get� = �; Ar = 0; A �w = exp(i�r)u�1� �wu exp(�i�r); Aw = exp(�i�r)u�1�wu exp(i�r)and B(H(w; r)) = �i(1 + jwj2)2F �ww.The onnetion A splits into a radially independent K� onnetion and an ex-ponentially deaying onnetion. More preisely, putg = k� � n+� � n��where k� = ker[�; �℄ is the Lie algebra of K� and k� � n+� = p�, the Lie algebra ofP�. Alternatively, we an haraterise the sub-spaes by(exp (i�r)� I) � k� = 0 = limr!+1 exp (�i�r) � n�:Deompose v 2 g aordingly as v = v0 + v+ + v�.The onnetion A deomposes as A = A0 + a for a = A+�wd �w + A�wdw with theproperty that A0 is a K� onnetion independent of r, and a is a 1-form that deaysexponentially as r !1. Then F �ww = FA0 + dA0a+ a ^ a and FA0 is independentof r whilst the rest deays exponentially, so FA0 = FAjS21 .De�ne � > 0 to be the smallest eigenvalue of the ation of exp(i�r) on g. Theneah time we say that a term deays exponentially, it deays at least as fast ase��r. Notie that � � j�j. We have jFAj �M1jFA0 j(1� e��r) for some onstantM1 � 1 and thusd(H(w; r;1);Hf ) � Z maxj�j=sjB(H)(w; �)j2G(s; r)ds� M1maxS21 jFAj Z 10 (1� e��s)minfr; sgsinh2 s dswhere minfr; sg= sinh2 s is the one-dimensional Green's funtion.NowZ 10 (1� e��s)minfr; sgsinh2 s ds = Z r0 (1� e��s)ssinh2 s ds+ r Z 1r (1� e��s)sinh2 s dsand the seond term of the right hand side onverges to 0 as r ! 1. Sine1� e��s � �s, the �rst term is dominated by �M2 for a onstant M2. Sine � �j�j the proposition follows. The onstant C in the statement of the proposition doesdepend on the holomorphimap f , and is bounded below by a onstant independentof f .In partiular, the estimate depends only on the holomorphi map and the mass.For small mass, the distane is small. For any two holomorphi maps f and g,notie that restrited to S21 the distane d(Hf ;Hg) is independent of the masssine it depends onH�1f Hg = p�1f exp(�2i�r)(p�f )�1p�g exp(2i�r)pg



ASYMPTOTIC VALUES OF HYPERBOLIC MONOPOLES 9whih is independent of � in the limit r ! 1. Of ourse the holomorphi maps fand g use � to be de�ned, but they ould equally well use a mass that gives thesame homogeneous manifold, like �� for � 2 R� .Thus, if we take any two holomorphi maps and hoose the mass small enough,then the nearby monopoles must have di�erent asymptoti values. This argumentextends to two disjoint ompat subsets of the spae of holomorphi maps andTheorem 1 is proven.Proposition 4.3. hFA;�ijS21 = f�!:Proof. In the proof of the previous proposition we saw that FA has a radiallyindependent part FAjS21 and an exponentially deaying part. Sine F �ww vanishesat r = 0 we get an identity relating FAjS21 with the term that anels it.In the notation of the previous proof, F 0�wwd �wdw = FAjS21 + [A+�w ; A�w ℄0d �wdw sohFA;�ijS21 = h�[A+�w ; A�w ℄0d �wdw;�ijr=0 = h�[A+�w ; A�w ℄d �wdw;�ijr=0where the last equality follows from the fat that � is orthogonal to n�. But atr = 0, A �w = u�1� �wu;Aw = u�1�wu sohFA;�ijS21 = �h[u�1� �wu; u�1�wu℄; �id �wdw = f�!:The previous proposition shows that the heat ow gives bad estimates for well-separated monopoles. That is, if a sequene of holomorphi maps bubble thenthe pull-bak of the Kahler form will bubble and hFA; FAi whih determines theauray of the approximate monopole, gets a ontribution from hFA;�i, and henegets large. (It may even be true that hFA;�i ontrols hFA; FAi.)Well-separated monopoles are Dira-like and are the soure of our intuition thathyperboli monopoles have interesting asymptoti limits. So far we have not beenable to produe good approximate well-separated monopoles. It would be veryinteresting to see suh approximations sine they would ombine the linear natureof Dira monopoles with the soliton nature of gluing together holomorphi maps.Given the intuition that asymptoti values of well-separated monopoles look likeasymptoti values of Dira hyperboli monopoles, we would be able to relax theondition in Theorem 1 allowing one set to be non-ompat and in partiular applythe theorem to a point and a deleted neighbourhood of the point.Conjeture 2. Given a ompat subset and a disjoint subset in the parameterspae of monopoles, if the mass is small enough then the asymptoti values of theorresponding hyperboli monopoles respetively give two distint subsets.A related and interesting issue is to know if the set of monopoles with boundedurvature on S21 and bounded mass, gives rise to a ompat set in the spae ofholomorphi maps. Suh a result would also prove the onjeture. In speial ases itan be shown that for a �xed holomorphi map the maximum value of the urvatureat in�nity is a monotone dereasing funtion of the mass so the onjeture follows.5. Comparison with Eulidean monopoles.The asymptoti value of a Eulidean monopole gives a symmetri onnetionon the sphere at in�nity, and in partiular, all monopoles (with the same massand harge) give rise to the same onnetion at in�nity. This ontrasts with the



10 PAUL NORBURYhyperboli ase and it is interesting to see where the point of departure from thebehaviour of hyperboli monopoles ours.The proof of Proposition 4.2 goes through for Eulidean monopoles with theonly hange being in the one-dimensional Green's funtion. We use minfr; sg=s2instead of minfr; sg= sinh2 s. Nowd(H(w; r;1);Hf ) � C maxS21 jFAj�Z r0 (1� e��s)s ds+ r Z 1r (1� e��s)s2 ds�and the seond term is bounded whilst the �rst term is O(ln r). This is enoughto show that the heat ow onverges and thus Theorem 3.1 is true for Eulideanmonopoles, [10, 19℄. But we see that the asymptoti value of the monopole anmove arbitrarily far and a posteriori we know that all of the asymptoti valuesonverge to the same onnetion.This is an appropriate plae to mention the result of Murray and Singer [16℄regarding asymptoti values of hyperboli monopoles. They show that an SU(n)hyperboli monopole is determined by (r0jS21)0;1 and (b+jS21)0;1, using their no-tation. The �rst term is the asymptoti value of the monopole and the seondterm is an artifat of the holomorphi gauge they use giving o�-diagonal terms.In the good unitary gauge de�ned by Rade [20℄ the asymptoti value is a U(1)nonnetion. The term (b+jS21)0;1 essentially enodes the holomorphi map whihis also enough to give a Eulidean monopole so no new behaviour is seen there. Itis not so surprising sine their methods are similar to those applied to Eulideanmonopoles.Finally, we mention a maximum priniple whih a priori may have led to a proofthat hyperboli monopoles are determined by their asymptoti values. It ends upthat the maximum priniple also applies to Eulidean monopoles so it proves aresult that is true for both ases.As in Setion 3 de�ne h = H�11 H2 for two Hermitian metris satisfying B(Hi) =0. Consider �(h) = tr(h)+ tr(h�1)�2n; (n = trI). This is a non-negative quantitythat vanishes preisely when H1 = H2. The problem of showing that a monopole isdetermined by its asymptoti values then beomes the problem of showing that ifthe asymptoti value of �(h) vanishes then �(h) vanishes identially. The followinginequality leads to a maximum priniple.sinh2(r)�2r� + (1 + jwj2)2� �w�w� � 0:It applies to Eulidean monopoles alsor2�2r� + (1 + jwj2)2� �w�w� � 0:The maximum priniple states that �(h) is dominated by any funtion that dom-inates �(h) on the boundary and lies in the kernel of the seond order partialdi�erential operator above. The important point here is that there are two bound-ary omponents, r = 0 and r = 1, sine �(h) depends on w at r = 0. Thefuntion a+ br is a good omparison funtion for onstants a and b hosen so thata � maxr=0�(h) and b > 0. As b! 0 we see thatmaxr=0�(h) � maxr=1�(h):This is true of both hyperboli monopoles and Eulidean monopoles. In the latterase, maxr=1 �(h) = 0 so the inequality is trivial.
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