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Abstract. We prove the conjecture that a monopole in three-dimensional
anti de Sitter space can be completely determined by its “holographic” image

on the conformal boundary two-sphere.

1. Introduction

Viewed from the conformal two-sphere at infinity there is a fundamental differ-
ence between hyperbolic space, which is anti de Sitter space with positive definite
metric, and flat Euclidean space. The isometries of hyperbolic space, H3, act as the
full three complex dimensional set of conformal transformations on the conformal
two-sphere at infinity, S2

∞, while the isometries of Euclidean space, R3, act with a
large isotropy subgroup on S2

∞, with only a three real dimensional set of conformal
transformations surviving. In particular, one may detect the location of points in
hyperbolic space from observations on S2

∞. More precisely, a point of H3 uniquely
determines a normal vector field on S2

∞ by extending geodesics from the point out
to infinity. By interpreting the normal vector fields as differential 2-forms on S2

∞,
one can deal with a collection of points in H3, showing that it uniquely determines
the sum of its 2-forms. In contrast, all points in Euclidean space appear the same
from S2

∞, and only the number of points in a collection, not the locations, can be
detected.

A magnetic monopole is considered to be an approximation to a collection of
points in space, given by nonlinear solitons concentrated at finitely many points. It
has a limit at infinity, that appears as a differential 2-form defined on the conformal
2-sphere at infinity. From the discussion above, it should not be surprising that
in Euclidean space all monopoles with the same charge—essentially the number
of points of concentration—look the same on the sphere at infinity, whereas in
hyperbolic space a monopole is uniquely determined by its limit at infinity. The
latter fact is proven in this paper. Previously, Austin and Braam [5] proved that for
a half-integer mass (defined below) SU(2) monopole in H3 the limit of the monopole
on the conformal boundary two-sphere completely determines the monopole, and
conjectured it to be true more generally. In this paper we prove the conjecture for
any positive real mass SU(2) monopole in H3.

The concept of field theories being represented by observations at the boundary
of spacetime has gained much recent interest. In particular, the AdS-CFT corre-
spondence proposes a relationship between string theory on anti de Sitter spacetime
and conformal field theory on the boundary [14, 20], and this generalises to produce
invariants of conformally compact Einstein manifolds with conformal boundary [7].
Both gravity and gauge theory require anti de Sitter space rather than flat space
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when gaining information from the conformal sphere at infinity. Further analogues
between gravity and gauge theory are suggested by various aspects of this paper
such as the tantalising similarity between the mass m of a monopole and the size N
of the matrix theory related to gravity. Also, the calculation of n-point functions
using solutions of the scattering equation along geodesics in H3 is analogous to an
approximation to the calculation of correlation functions using path integrals ap-
pearing in the AdS/CFT correspondence, since the stationary phase approximation
reduces the computation of the propagator to the study of the wave equation along
geodesics in H3. (For a closer analogy, perhaps it would be necessary to integrate
the n-point functions defined in this paper over the moduli space of monopoles.)
We will not comment further on these things in this paper.

The main tool in this paper is an n-point function 〈Pz1 . . . Pzn〉 defined for a
given monopole and any ordered collection of points on the conformal boundary
two-sphere {z1, .., zn} ⊂ S2

∞. Associated to the ordered collection of points is the
set of geodesics in H3 running from z1 to z2 and from z2 to z3 and so on until
zn to z1. The n-point function is a complex number assigned to the sequence of
geodesics continuously differentiable in its variables (z1, .., zn) obtained by solving a
scattering equation along the geodesics. The notation 〈Pz1 . . . Pzn〉 anticipates the
construction of an algebra with expectation values given by the n-point function.

The 2-point function is used to settle the open conjecture that the holographic
image of the monopole on the conformal boundary two-sphere determines the mono-
pole on hyperbolic space. One can construct an abstract algebra freely generated
by the points of S2

∞ satisfying relations that use the n-point functions. The 3-
point function is used to prove that the generators behave like projections, and the
4-point function encodes the fact that the algebra possesses a finite-dimensional
representation.

The two proofs that the holographic image of the monopole on the conformal
boundary two-sphere determines the monopole on hyperbolic space, given respec-
tively for half-integer mass by Austin and Braam [5] and for any mass using the
2-point function, have no a priori relation. The main role of the algebra assembled
out of the n-point functions is to supply a relationship between the two methods.
A representation of the algebra into a finite-dimensional vector space gives rise
to a holomorphic map from the two-sphere to lines in the vector space. Such a
holomorphic map arises in the proof by Austin and Braam.

1.1. Main results. Before describing the main results, we will define the objects
of the paper. Atiyah [1, 2], first studied monopoles over hyperbolic space H3. A
monopole (A,Φ) is a solution of the non-linear Bogomolny equation dAΦ = ∗FA

where A is a connection defined on a trivial rank two SU(2) bundle E over H3

with L2 curvature FA and the Higgs field Φ : H3 → su(2) satisfies limr→∞ ||Φ|| =
m, the mass of the monopole. The charge of the monopole is defined to be the
topological degree of the map Φ∞ : S2

∞ → S2
∞. The hyperbolic metric, featured

in the Hodge star ∗, may be replaced by the flat Euclidean metric, giving rise to
monopoles in Euclidean space. The gauge group of maps g : H3 → SU(2) acts
on the equations and we identify gauge equivalent monopoles. The construction
of an n-point function from a monopole is a gauge invariant procedure. On the
conformal boundary two-sphere, a monopole has a well-defined limit, given by a
U(1) connection, [11, 19], which we call the holographic image of the monopole.
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There is an integrable structure underlying hyperbolic monopoles, best seen on
the complex surface of geodesics, CP1 × CP1 − ∆̄ (where ∆̄ ⊂ CP1 × CP1 is the
anti-diagonal.) In the Euclidean case, over its surface of geodesics TCP1, twistor
space techniques are used in [8, 9] to understand the construction of monopoles, and
the conserved quantities of monopoles. The main tool is the scattering equation

(1) (∂A
t − iΦ)s = 0

defined for local sections s of E along a geodesic in R3 parametrised by t. In
particular, those geodesics along which an L2 solution of (1) exists, form a compact
algebraic curve inside TCP1, called the spectral curve. Analogously, solutions of
(1) along geodesics in H3 are used to study hyperbolic monopoles [1, 2, 17] and to
define the spectral curve of the monopole Σ ⊂ CP1 × CP1 − ∆̄.

For z1 6= z2, define the 2-point function 〈Pz1Pz2〉 to be a positive real number
associated to (A,Φ) and the geodesic in H3 joining z1 and z2 on the conformal
boundary two-sphere as follows. Along this geodesic, choose a solution s+(t) of (1)
that decays as t→∞. Notice that the parameter t involves a choice of orientation
of the geodesic. Choose a decaying solution r+ of (1) along the same geodesic
oriented in the opposite direction. In terms of the oppositely oriented parameter t
used in (1), r+(t) is a solution of the equation

(2) (∂A
t + iΦ)r = 0

and r+(t) decays as t→ −∞. The inner product (r(t), s(t)) of any two solutions of
(1) and (2) is independent of t. If we normalise r+(t) and s+(t) by

(3) lim
t→∞

exp(mt)‖s+‖ = 1, lim
t→−∞

exp(−mt)‖r+‖ = 1.

then the decaying solutions are well-defined up to phase and the number |(r+, s+)|2
depends only on the geodesic and (A,Φ). Define

〈Pz1Pz2〉 = |(r+, s+)|2

for r+, s+ defined along the geodesic joining z1 and z2. The n-point function is a
complex number defined similarly using decaying solutions of (1) along the set of
geodesics running between consecutive points of an ordered n-tuple of points in S2

∞.
For the definition of the n-point function and justification of parts of the definition
of the 2-point function given here see Section 2.

Theorem 1. The 2-point function uniquely determines the spectral curve of (A,Φ).

This theorem is rather straightforward. Its power comes from combining it with
the deeper theorem that the 2-point function also encodes the holographic image of
the monopole on the conformal boundary two-sphere, given by a U(1) connection.
The U(1) connection is expressed with respect to a family of gauges related to
the spectral curve of the monopole. More explicitly, for each point w ∈ S2

∞, the
2-point finction enables one to express the U(1) connection over the conformal
boundary two-sphere with respect to a gauge defined over the complement of the
points {z1, .., zk} that satisfy (w, zi) ∈ Σ, the spectral curve of the monopole. Each
such gauge is determined uniquely by properties described in Proposition 2.11. The
situation is rigid enough that the U(1) connection uniquely determines the 2-point
function.

Theorem 2. The 2-point function determines and is determined by the holographic
image of the monopole on the conformal boundary two-sphere.
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The spectral curve determines the monopole over hyperbolic space up to gauge
equivalence. This is a rather deep non-constructive property of monopoles. It uses
the (non-constructive) existence of a trivialisation of a holomorphic line bundle over
the spectral curve and sheaf cohomological constructions to retrieve the monopole.
Using this we are able to conclude:

Corollary 3. The holographic image of the monopole on the conformal boundary
two-sphere determines the monopole up to gauge equivalence.

An associative algebra can be studied via the values of a linear function, which
we call expectation values, defined over the algebra. In some cases, the structure
coefficients of the algebra, with respect to a generating set, can be retrieved from
the expectation values, thus uniquely determining the algebra. Conversely, one may
begin with an abstract set of generators with no a priori algebra structure and use
expectation values to define the structure coefficients of the algebra.

Consider the algebra freely generated by the points of the conformal boundary
two-sphere, where we notate the generators by Pz, z ∈ S2

∞, and add the relations

(4) ∃c = c(z1, z2, .., zn) ∈ C, Pz1Pz2 . . . Pzn
= cPz1Pzn

, when 〈Pz1Pzn
〉 6= 0.

We suppose that the n-point function defined by a monopole gives the expectation
value of the product Pz1Pz2 . . . Pzn

and we extend this function linearly to the
algebra. Then by taking the expectation values of each side of (4) we can calculate
the scalar c. This essentially defines the algebra structure.

The boundary algebra of a monopole is a slight modification of the construction
of the previous paragraph. We will add further relations to the algebra in the form
of “non-degeneracy” conditions, and enlarge the algebra using derivations.

Definition 1. Define the boundary algebra

S(A,Φ) = {A, ∗, Pz ∈ A, z ∈ S2
∞, 〈. . . 〉}

for any hyperbolic monopole (A,Φ), to consist of:
(1) an involutive algebra (A, ∗) defined over C,
(2) generators Pz = P ∗z , for all z ∈ S2

∞,
(3) derivations [∂z, ·] : A → A and [∂z̄, ·] : A → A,
(4) further generators [∂z, Pz], [∂z̄, Pz], [∂z, [∂z, Pz]], . . .
(5) a linear function 〈. . . 〉 : A → C that restricts to the n-point function of

(A,Φ) on products Pz1Pz2 ..Pzn
, satisfying 〈a∗〉 = 〈a〉, ∂z〈a〉 = 〈[∂z, a]〉,

with the relations:
6. 〈Pz1Pz2〉 = 0 ⇒ Pz1Pz2 = 0,
7. 〈aPz〉 = 0 for almost all z ∈ S2

∞ ⇒ a = 0,
8. ∃c = c(z1, z2, a, b) ∈ C, Pz1aPz2 = cPz1bPz2 when Pz1bPz2 6= 0.

where a, b ∈ A.

To give an indication of the various features of the algebra we will mention five
properties proven in the paper:

• one can make sense of the 1-point function as the constant function 〈Pz〉 ≡
1,

• the 2-point function takes its values on the unit interval,
• P 2

z = Pz,
• Pz1 6= Pz2 for z1 6= z2,
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• Pz[∂z, Pz] = 0.
Identities involving the 4-point function arise when trying to find a representation
of the algebra in which the expectation values of observables are given by traces.
We have been unable to directly prove these identities, described in the conclusion.
Instead we use the fact that such a representation produces a holomorphic map
S2
∞ → CPk, where k is the charge of (A,Φ), and compare the setup to something

more familiar.

Theorem 4. There exists a finite-dimensional representation of S(A,Φ) in which
the expectation values are given by traces.

The holomorphic sphere S2
∞ → CPk associated to the finite-dimensional repre-

sentation is reminiscent of that arising in the work of Austin and Braam [5], and
proves to be the source of many further interesting properties. It can be obtained
without the algebra and gives an alternative proof that the connection on the con-
formal boundary two-sphere determines the monopole up to gauge equivalence. It
also uncovers further features. Amongst these is an application of geometric in-
variant theory to define the centre of a hyperbolic monopole. One also gets new
information regarding rational maps associated to monopoles. Specifically, given a
point at infinity, there is a one-to-one mapping between gauge equivalence classes
of monopoles and degree k based rational maps S2

∞ → S2 well-defined up to a U(1)
action. It has never been understood how the rational maps for different points at
infinity are related. The holomorphic sphere gives such a relation. These results
will appear elsewhere [15].

One can take finite-dimensional sub-algebras of S(A,Φ) and find further struc-
ture. In the conclusion we describe a family of subalgebras parametrised by the
spectral curve of the monopole. This is particularly interesting due to the conjec-
ture of Atiyah and Murray [3, 4] that spectral curves of hyperbolic monopoles may
parametrise solutions of the Yang-Baxter equation.

Acknowledgements. The author would like to thank Peter Bouwknegt, Michael
Eastwood and Michael Murray for many useful conversations.

2. The n-point function

In this section we will define the n-point function associated to a monopole. As
mentioned in the introduction the geodesics pass near to approximate locations
of the monopole and produce an n-point function continuously differentiable in its
variables (z1, .., zn). We will prove that as a geodesic moves out to infinity and away
from the monopole, it feels little effect, and thus the limit of the n-point function as
two consecutive points come together is the (n− 1)-point function, and the 1-point
function is naturally given by the constant function 1.

2.1. Definition of 〈. . . 〉. The function 〈. . . 〉 defined on n-tuples of points in S2
∞

is invariant under cyclic permutations of the points (and hence behaves like a trace
on the boundary algebra.) In what follows, we first define the n-point function
〈Pz1 ..Pzn〉 for zi 6= zi+1, zn 6= z1. This is a fundamental quantity in that all other
values of 〈. . . 〉 are derived from it. We use limits to remove the restriction on the
n-tuples {z1, ..., zn}.

Along any geodesic of H3 parametrised by t, the scattering equations

(5) (∂A
t − iΦ)s = 0, (∂A

t + iΦ)r = 0
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are defined for local sections s, r of E. Any pair of solutions has the property that
the inner product (r(t), s(t)) is independent of t, since

∂t(r(t), s(t)) = ((∂A
t + iΦ)r(t), s(t)) + (r(t), (∂A

t − iΦ)s(t)) = 0.

It can be shown [9, 12] that that there are solutions s and r unique up to respective
constants that decay like O(exp(−mt)) as t → ∞, respectively like O(exp(mt) as
t → −∞. Thus two non-trivial solutions s+, r+ are uniquely determined up to
phase by the conditions that

(6) lim
t→∞

exp(2mt)‖s+‖2 = 1, lim
t→−∞

exp(−2mt)‖r+‖2 = 1.

〈Pz1 . . . Pzn
〉, zi 6= zi+1, zn 6= z1

For distinct {z1, . . . , zn}, 〈Pz1 . . . Pzn
〉 is a complex number associated to (A,Φ)

and the n oriented geodesics in H3 traveling from z1 to z2, then z2 to z3 and so
on, until zn to z1. Notate by r12, s12 the solutions r+, s+ of (5) along the geodesic
running from z1 to z2 and r23, s23 the solutions r+, s+ along the geodesic running
from z2 to z3 and so on up to rn1, sn1. Further, align the phases of each ri,i+1, si−1,i

as follows. The consecutive solutions s12 and r23 have the property that they define
a common subspace of the fibre of E at z2 at infinity, or in other words that

lim
t→∞

exp(mt)s12 = c lim
t′→−∞

exp(−mt′)r23

for c ∈ C∗. Choose r23 so that c = 1. Similarly, choose a phase for ri,i+1 using
si−1,i and for r12 using sn1. Define

(7) 〈Pz1 . . . Pzn
〉 = (r12, s12)(r23, s23) . . . (rn1, sn1)

which depends only on (A,Φ) and the oriented geodesics running in order through
z1, z2, . . . , zn, z1. The 2-point function defined in the introduction can be obtained
by setting n = 2 in this construction. In this case the function is real valued and
independent of the orientation of the geodesic and the choice of phases.

Lemma 2.1. When zi 6= zi+1, zn 6= z1, the n-point function 〈Pz1 . . . Pzn
〉 is con-

tinuously differentiable in z1, .., zn.

Proof. Fix z2, z3, . . . , zn and vary z1 = z. The product on the right hand side of (7)
defining 〈PzPz2 . . . Pzn〉 contains the z dependent sections r12(z), s12(z), rn1(z) and
sn1(z) with the others constant as z varies. In [9] (and [12] for hyperbolic mono-
poles) it was shown using a bijection between nearby solutions that the assignment
of r12(z), etc, is continuously differentiable in z. Thus, the same is true of inner
products involving the z dependent sections, such as 〈PzPz2 . . . Pzn

〉. �

For a general n-tuple of points {z1, ...zn}, we define 〈Pz1 . . . Pzn
〉 by continu-

ity. Lemma 2.1 shows that such a definition is consistent. The following lemma
explicitly calculates the limits that arise when two points zi and zi+1 come together.

Lemma 2.2. The 2-point function satisfies limz1→z2〈Pz1Pz2〉 = 1 and the n-point
function satisfies limz1→z2〈Pz1Pz2Pz3 . . . Pzn〉 = 〈Pz2Pz3 . . . Pzn〉.
Proof. We will prove only limz1→z2〈Pz1Pz2〉 = 1 since the proof of the limit of
the n-point function is essentially the same. We define 〈Pz1Pz2〉 = |(r+, s+)|2 for
solutions of (5) satisfying (6). If the connection is trivial and the Higgs field is
constant,

(8) ∂A
t ± iΦ = ∂t ± i

(
im 0
0 −im

)
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then r+ = exp(mt)(1 0) and s+ = exp(−mt)(1 0) so (r+, s+) = 1 as required.
As z1 → z2, the connection and Higgs field become more trivial and constant,

respectively. More precisely, there exists a gauge in which

(9) ∂A
t ± iΦ = ∂t ± i

(
im 0
0 −im

)
+ ε · C exp(−m|t|)

where C is constant and ε→ 0 as z1 → z2. This follows from Rade [19].
Levinson’s theorem [6] uses a contraction mapping argument to show that so-

lutions r+ on (−∞, 0] and s+ on [0,∞) of (9) (using iΦ and −iΦ respectively)
are in one-to-one correspondence with solutions of (8). Moreover, the norm of
the difference between corresponding solutions is controlled by the L1 norm of the
perturbation term ε · C exp(−m|t|).

In other words, as z1 → z2, the solutions r+ and s+ tend uniformly to the
solutions of (8) on (−∞, 0] and [0,∞) respectively, and in fact on any (−∞, R]
and [−R,∞). The inner product (r+, s+) can be calculated at any point t ∈ R, in
particular t ∈ [−R,R] so (r+, s+) → 1 uniformly. �

Thus, we define

(10) 〈P 2
z2
〉 := 1

(11) 〈P 2
z2
Pz3 . . . Pzn

〉 := 〈Pz2Pz3 . . . Pzn
〉.

Applying the relation 7 given in Definition 1 to (11), we get the relation

(12) P 2
z = Pz, z ∈ S2

∞

so (10) and (12) allow us to extend the definition of the n-point function to the
1-point function

(13) 〈Pz〉 := 1,

and from this it follows that

(14) 〈[∂z, Pz]〉 = 0 = 〈[∂z̄, Pz]〉.

As described in the introduction, expectation values are used to calculate the
constant c in relation 8. When Pz1Pz2 = 0, the expectation values of both sides of
8 are zero, so we instead choose z0 so that 〈Pz0Pz1bPz2〉 6= 0. (By relation 7, z0
always exists.) Then

(15) 〈Pz0Pz1aPz2〉 = c(z1, z2, a, b)〈Pz0Pz1bPz2〉

enables us to calculate c(z1, z2, a, b). This introduces the issue of consistency of the
algebra since the constant c(z1, z2, a, b) can be calculated in different ways. The
following lemma gives the required property of the n-point function.

Lemma 2.3. For a ∈ A, 〈Pz0Pz2〉〈Pz0Pz1Pz2a〉 = 〈Pz0Pz1Pz2〉〈Pz2aPz0〉.

Proof. For a = Pz3Pz4 . . . Pzn , where zi 6= zi+1, this follows simply from the defini-
tion. Taking limits and derivatives gives the result for general a ∈ A. �
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2.2. Properties. The Bogomolny equation implies that the Higgs field Φ satisfies
a maximum principle ‖Φ‖ < m where m is the mass of the monopole. This leads
to a type of dissipative behaviour of (∂A

t − iΦ) which can be used to show:

Lemma 2.4. For zi 6= zi+1, zn 6= z1, |〈Pz1 . . . Pzn〉| < 1.

Proof. Since 〈Pz1 . . . Pzn
〉 = (r12, s12)(r23, s23) . . . (rn1, sn1) it is sufficient to show

along any geodesic that the solutions s+, r+ of (5) satisfy |(r+, s+)| < 1, and in fact

|(r+, s+)|2 = lim
t→−∞

|(r+(t), s+(t))|2

= lim
t→−∞

|(exp(−mt)r+(t), exp(mt)s+(t))|2

≤ lim
t→−∞

‖ exp(−mt)r+(t)‖2‖ exp(mt)s+(t)‖2

= lim
t→−∞

‖ exp(mt)s+(t)‖2

so we will show that limt→−∞ ‖ exp(mt)s+(t)‖2 < 1. We have

|∂t‖s+‖2| = |((∂A
t + iΦ)s, s) + (s, (∂A

t − iΦ)s)|
= |(2iΦs, s)| < 2m‖s, s‖2

where the last inequality uses the maximum principle |Φ| < m. Thus

∂t‖ exp(mt)s+‖2 = (2m‖s, s‖2 + ∂t‖s+‖2) exp(2mt) > 0.

So the function ‖ exp(mt)s+‖2 is strictly increasing, and by construction of s+,
limt→∞ ‖ exp(mt)s+(t)‖2 = 1 yielding the required inequality

lim
t→−∞

‖ exp(mt)s+(t)‖2 < 1.

�

Corollary 2.5. Pz1 6= Pz2 for z1 6= z2.

Proof. If Pz1 = Pz2 then 〈Pz1Pz2〉 = 〈P 2
z2
〉 = 1 which contradicts Lemma 2.4. �

Until now, we have only used the fact that (A,Φ) satisfies the Bogomolny equa-
tion very mildly via the maximum principle for Φ and Rade’s estimates for the
monopole field. Using the full structure of the Bogomolny equation we can show
that the assignment z 7→ Pz possesses a holomorphic property. It is used to prove
the most striking properties of the 2-point function and the existence of a useful
finite dimensional representation of A.

With respect to particular local coordinate systems, the Bogomolny equation
dAΦ = ∗FA decomposes into a holomorphic part and a “moment map” part. Specif-
ically, this occurs for local coordinate systems that reflect the holomorphic structure
on the variety of geodesics. Two examples of this are the local coordinates (t, z)
in H3 obtained from a family of geodesics, each parametrised by t, travelling from
the fixed w ∈ S2

∞ to the varying z ∈ S2
∞, and the local coordinates (t, w) in H3

obtained from a family of geodesics, each parametrised by t, travelling from the
varying w ∈ S2

∞ to the fixed z ∈ S2
∞. The Bogomolny equation decomposes into

[∂A
z̄ , ∂

A
t − iΦ] = 0, or equivalently, [∂A

z , ∂
A
t + iΦ] = 0, and a second equation which

we will omit. Similarly, [∂A
w , ∂

A
t − iΦ] = 0 and the equivalent [∂A

w̄ , ∂
A
t + iΦ] = 0 are
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consequences of the Bogomolny equation. In particular, if r+ and s+ are decaying
solutions of (5) then

(16)
∂A

z r+ = µ1(w, z)r+, ∂A
z̄ s+ = λ1(w, z)s+

∂A
w̄r+ = µ2(w, z)r+, ∂A

ws+ = λ2(w, z)s+.

for (scalar) coefficients µi, λi independent of t. (These are used to obtain a holo-
morphic bundle, with sub-line bundles on the variety of geodesics of H3, [2, 8].)

Proposition 2.6. Pz[∂z, Pz] = 0 = [∂z̄, Pz]Pz and Pz[∂z̄, Pz] = [∂z̄, Pz].

Proof. In fact, the three relations are trivially equivalent, so we will prove only
Pz[∂z̄, Pz] = [∂z̄, Pz]. Consider the 3-point function

(17) 〈Pz1Pz2Pz3〉 = 〈Pz1Pz2Pz〉 = (r12, s12)(r23(z), s23(z))(r31(z), s31(z))

where z3 = z is allowed to vary, z1 and z2 are fixed and different from z, and rij ,
sij are the solutions of (5) along the geodesic running from zi to zj . We have

(18) ∂z̄〈Pz1Pz2Pz〉 = 〈[∂z̄, Pz1Pz2Pz]〉 = 〈Pz1Pz2 [∂z̄, Pz]〉
and this will be used to characterise Pz[∂z̄, Pz].

By (16) the Bogomolny equation implies that ∂A
z r23(z) = µ(z)r23(z) with z

dependent coefficient, and ∂A
z̄ s23(z) = λ(z)s23(z), since we are moving only one end

of the geodesic. The limit limt→−∞ r23(z) is independent of z so we can multiply
r23(z) by a function depending on z and arrange that µ(z) = 0, whilst preserving
its normalisation at t = −∞. (We cannot do the same for λ(z).) Thus

∂z̄(r23(z), s23(z)) = (∂A
z r23(z), s23(z)) + (r23(z), ∂A

z̄ s23(z))
= λ(z)(r23(z), s23(z)).

If we differentiate (17) then we get

〈Pz1Pz2 [∂z̄, Pz]〉 = λ(z)(r12, s12)(r23(z), s23(z))(r31(z), s31(z))
+(r12, s12)(r23(z), s23(z))∂z̄(r31(z), s31(z)).

Let z2 → z. Then as shown in the proof of Lemma 2.2, (r23, s23) → 1 so

lim
z2→z

〈Pz1Pz2 [∂z̄, Pz]〉 = λ(z)(r12, s12)(r31, s31) + (r12, s12)∂z̄(r31, s31)

= 〈Pz1 [∂z̄, Pz]〉.
Hence 〈Pz1Pz[∂z̄, Pz]〉 = 〈Pz1 [∂z̄, Pz]〉 for all z1, so we get the relation

Pz[∂z̄, Pz] = [∂z̄, Pz]

as required. �

We call this a holomorphic relation since it gives a type of integrability condition
whereby ∂̄ is preserved by P , and since it will translate precisely to an integrability
condition when we construct a representation of A.

By Proposition 2.6 ∂z̄〈PwPz〉 = 〈PwPz[∂z̄, Pz]〉 so that

〈PwPz〉 = 0 ⇒ ∂z̄〈PwPz〉 = 0.

This suggests that it might be fruitful to take some type of log derivative of the
2-point function. In the remainder of this section we will show that the 2-point
function, when viewed appropriately, is both a defining function for the spectral
curve of the monopole and a Hermitian metric for the connection on the conformal
boundary two-sphere.
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Lemma 2.7. The function

(19) λ(w, z) = (1/2)∂z̄ ln〈PwPz〉.
satisfies (i) λ(z, z) = 0, (ii) λ(w, z) is holomorphic in w, and (iii) ∂zλ(w, z) is real
and independent of w.

Proof. (i) We have 2λ(z, z) = limw→z ∂z̄ ln〈PwPz〉 = limw→z〈Pw[∂z̄, Pz]〉/〈PwPz〉.
This can be simplified to 〈Pz[∂z̄, Pz]〉 = 〈[∂z̄, Pz]〉 = 0 by Proposition 2.6 and (14).

(ii) In an open set of CP1 × CP1 choose solutions of (5) normalised by (6) so
that limt→∞ exp(mt)s+(w, z) is independent of w and limt→−∞ exp(−mt)r+(w, z)
is independent of z. (To achieve this choose a normalised solution of (5) s+(w0, z)
for a fixed w = w0 and use limt→∞ exp(mt)s+(w0, z) = limt→∞ exp(mt)s+(w, z)
to define s+(w, z) for nearby w. Do the same for r+(w, z) around z0.) Therefore,
∂A

ws+ = 0 = ∂A
z r+ and ∂A

z̄ s+ = µ1(z)s+, ∂A
w̄r+ = µ2(w)r+ for µ1(z) independent

of w and µ2(w) independent of z, since we can calculate the coefficients in (16) in
the infinite limits. Then (ii) follows from

∂w̄∂z̄ ln〈PwPz〉 = ∂w̄∂z̄ ln |(r+, s+)|2 = ∂w̄∂z̄(ln(r+, s+) + ln(s+, r+))
= ∂w̄µ1(z) + ∂z̄µ2(w) = 0.

(iii) For λ(w, z) defined in (19) we can choose a local gauge in which

∂A
z̄ s+(w, z) = λ(w, z)s+(w, z)

as follows. Choose r+(w, z) so that ∂A
z r+(w, z) = 0 (as in (ii).) Now choose s+(w, z)

so that (r+(w, z), s+(w, z)) is real. This uniquely determines s+ up to a constant
U(1) gauge transformation given by the ambiguity in the phase of r+. Then

∂z̄〈PwPz〉 = ∂z̄|(r+, s+)|2 = ∂z̄(r+, s+)2

= 2(r+, s+)(r+, ∂A
z̄ s+)

= 2λ(w, z)(r+, s+)2 = 2λ(w, z)〈PwPz〉.
For w′ 6= w choose the solutions of (5) normalised by (6) along each family of
geodesics, respectively r′+(z), s′+(z), r+(z) and s+(z), so that ∂A

z r+(z) = 0 and
(r+(z), s+(z)) ∈ R, and ∂A

z r
′
+(z) = 0 and ∂A

z̄ s
′
+(z) = λ(w, z)s′+(z) (define s′+ via

limt→∞ exp(mt)s′+(z, t) = limt→∞ exp(mt)s+(z, t).) We can compare λ(w′, z) and
λ(w, z) by defining θ(z) so that (r′+(z), exp(iθ(z))s′+(z)) ∈ R, then

λ(w′, z) = λ(w, z) + i∂z̄θ(z).

In particular the expression in (iii) is independent of w:

∂z∂z̄ ln〈Pw′Pz〉dzdz̄ = 2(∂zλ(w′, z) + ∂z̄λ̄(w′, z))dzdz̄
= 2(∂zλ(w, z) + ∂z̄λ̄(w, z) + i∂z̄∂zθ − i∂z∂z̄θ)dzdz̄
= ∂z∂z̄ ln〈PwPz〉dzdz̄

and real since it is the Laplacian of a real-valued function. �

If we replace w in λ(w, z) by its antipodal point ŵ = −1/w̄ then although λ(ŵ, z)
is defined only outside the set 〈PŵPz〉 = 0, the 2-form

(1/2)∂∂̄ ln〈PŵPz〉 = ∂zλ(ŵ, z)dzdz̄ + ∂wλ̄(z, ŵ)dwdŵ
+∂wλ(ŵ, z)dwdz̄ + ∂zλ̄(z, ŵ)dzdŵ

is well-defined everywhere. To see this, first notice that the term ∂wλ(ŵ, z) vanishes
by Lemma 2.7 (ii) and for the same reason ∂zλ̄(z, ŵ)dzdŵ vanishes. The term
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∂zλ(ŵ, z) is independent of w by Lemma 2.7 (iii) so in particular it is well-defined
everywhere since for any z we can choose a w such that 〈PwPz〉 6= 0, and the same
is true of ∂wλ̄(z, ŵ)dwdŵ. Thus the 2-form ∂∂̄ ln〈PŵPz〉 is a well-defined closed
(1, 1) form. We can use this to prove that the zero set of the real-valued function
〈PŵPz〉 is holomorphic, but instead we will rely on known facts about the spectral
curve of the monopole.

Proposition 2.8. The spectral curve of the monopole is encoded in the 2-point
function. It is given by

Σ = {(w, z) ∈ CP1 × CP1 | 〈PŵPz〉 = 0}

for ŵ the antipodal point of w in CP1.

Proof. This follows from the simple fact that 〈PŵPz〉 = 0 precisely when the solu-
tions r+, s+ of (5) decay at both ends, which is the same condition for a geodesic
to lie in the spectral curve. Notice that the invariance of Σ under the real structure
(w, z) 7→ (ẑ, ŵ) extends to the 2-point function since 〈PŵPz〉 = 〈PzPŵ〉. �

We could have equivalently stated Proposition 2.8 in terms of the multiplication
operation of the algebra S(A,Φ) in place of the 2-point function since PŵPz = 0 is
equivalent to 〈PŵPz〉 = 0.

Proposition 2.9. The connection on the conformal boundary two-sphere is encoded
in the 2-point function by λ(w, z) = (1/2)∂z̄ ln〈PwPz〉 and

A∞ = λ(w, z)dz̄ − λ̄(w, z)dz

where w is fixed and gives a choice of gauge. The curvature on the conformal
boundary two-sphere is given by FA∞ = −〈[∂z, Pz][∂z̄, Pz]〉dzdz̄.

Proof. Fix w and vary z. The Bogomolny equation implies that the solution s+ of
(5) normalised by (6) also satisfies ∂A

z̄ s+(z, t) = λ(z)s+(z, t) for λ(z) independent
of t. In the limit, the section limt→∞ exp(mt)s+(z, t) gives a unitary gauge for
the connection on the conformal boundary two-sphere, and hence λ(z)dz̄ is the dz̄
component of A∞. Any other choice of s+(z, t) satisfying (6) differs by exp(iθ(z))
and hence

λ(z) 7→ λ(z) + i∂z̄θ(z)

which is a change of the U(1) gauge. In fact, without the normalisation (6), the λ(z)
that arises gives the connection on the conformal boundary two-sphere which is Her-
mitian with respect to a Hermitian metric defined by limt→∞ ‖ exp(mt)s+(z, t)‖2.
As in the proof of Lemma 2.7 we can choose r+(z) and s+(z) so that ∂A

z r+(z) = 0
and (r+(z), s+(z)) is real. Then ∂A

z̄ s+ = λ(w, z)s+ so λ(w, z)dz̄ gives the (0, 1) part
of A∞ with respect to a well-defined U(1) gauge (up to a constant gauge transfor-
mation) determined by the choice of w. Thus the first part of the proposition is
proven.

The curvature is given by

FA∞ = (∂zλ(w, z) + ∂z̄λ̄(w, z))dzdz̄ = ∂z∂z̄ ln〈PwPz〉dzdz̄

since ∂zλ(w, z) is real-valued, and

∂z∂z̄ ln〈PwPz〉 = (∂z∂z̄〈PwPz〉)/〈PwPz〉 − (∂z̄〈PwPz〉∂z〈PwPz〉)/〈PwPz〉2

= 〈Pw[∂z, [∂z̄, Pz]]〉)/〈PwPz〉 − 〈Pw[∂z̄, Pz]〉〈Pw[∂z, Pz]〉/〈PwPz〉2.
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This is independent of w, since it is a gauge invariant 2-form or we see it explicitly
in Lemma 2.7. Thus we can take the limit w → z and since Pz[∂z, Pz] = 0 the
second term disappears to leave

∂z∂z̄ ln〈PwPz〉 = 〈Pz[∂z, [∂z̄, Pz]]〉.
Since 0 = 〈[∂z̄, Pz]]〉 = 〈Pz[∂z̄, Pz]]〉 then

0 = ∂z〈Pz[∂z̄, Pz]]〉 = 〈[∂z, Pz][∂z̄, Pz]〉+ 〈Pz[∂z, [∂z̄, Pz]]〉
thus

FA∞ = ∂z∂z̄ ln〈PwPz〉dzdz̄ = −〈[∂z, Pz][∂z̄, Pz]〉dzdz̄.
�

The construction of the gauge in which A∞ = λ(w, z)dz̄− λ̄(w, z)dz breaks down
if 〈PwPz〉 = 0. In that case, once r+(z) is chosen, there is not a unique choice of
s+(z) that satisfies (r+(z), s+(z)) is real. This simply says that the U(1) gauge
defined by w is well-defined, up to locally constant gauge transformations, on the
complement of the finite set of points {z1, . . . , zk} determined by 〈PwPzi〉 = 0, or
in other words, w defines a flat structure on a line bundle over S2 − {z1, . . . , zk}.

An understanding of the behaviour of A∞ with respect to the gauge in Propo-
sition 2.9 near its singularities is a key ingredient in the proof that the connection
on the conformal boundary two-sphere uniquely determines the 2-point function.
Equivalently, we must understand the behaviour of the 2-point function near its
zero set.

Lemma 2.10. Near a point (w0, z0) in the zero set, 〈Pŵ0Pz0〉 = 0, the function
〈PŵPz〉 vanishes like |ψ(w, z)|2, where ψ(w, z) is a local holomorphic defining func-
tion for the zero set.

Proof. In order to study the vanishing at 〈Pŵ0Pz0〉, we may ignore the normalisation
condition (6) of solutions r+(ŵ, z) and s+(ŵ, z) of (5) since that simply involves
multiplying the solutions by non-vanishing functions. Thus we may choose the
solutions so that ∂A

z r+ = 0 = ∂A
z̄ s+ and ∂A

w̄r+ = 0 = ∂A
ws+. The inner product

(r+(ŵ, z), s+(ŵ, z)) is generically a transverse local section of the line bundleO(k, k)
so |(r+(ŵ, z), s+(ŵ, z))|2 vanishes like |ψ(w, z)|2 and so too does 〈PŵPz〉. �

We will summarise the properties of the gauge for A∞ in the following proposi-
tion.

Proposition 2.11. The (0, 1) part of A∞, given by ηw(z) = λ(w, z)dz̄, satisfies
the properties:

(1) ηw(z) is well-defined outside a set of points {z1, . . . , zk};
(2) ηw(z) ∼ ln |z − zi|2dz̄ at each zi;
(3) dηw(z) is an imaginary valued 2-form;
(4) ηw|z=z0 is holomorphic in w;
(5) ηw(w) = 0.

Furthermore, this U(1) gauge is the unique gauge (up to a constant gauge transfor-
mation) satisfying properties 1-3.

Proof. The points {z1, . . . , zk} are determined by 〈PwPzi〉 = 0 and Lemma 2.10
determines the behaviour of the singularities there. Properties 3, 4 and 5 follow
from Lemma 2.7. Any other 1-form with these properties must differ from η(z) by
i∂z̄θ(z)dz̄ for a real-valued function θ(z). By 1, θ(z) is a function defined outside
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the set of points {z1, . . . , zk} and by 2 and 3 it is bounded and harmonic and hence
constant. Thus i∂z̄θ(z)dz̄ = 0 and the properties uniquely determine η. �

Properties 4 and 5 are automatically satisfied by any η(z) satisfying 1, 2 and 3.
This suggests that the connection on the conformal boundary two-sphere in some
sense feels the spectral curve. The next proposition will prove that the connection
on the conformal boundary two-sphere does determine the 2-point function and
hence the spectral curve.

Proposition 2.12. The connection on the conformal boundary two-sphere uniquely
determines the 2-point function.

Proof. Suppose we have two monopoles (A,Φ) and (A′,Φ′) with respective algebras
consisting of elements Pz and P ′z. Fix w and vary z. The two monopoles have the
same connection on the conformal boundary two-sphere precisely when

(20) ln〈PwPz〉 − ln〈P ′wP ′z〉

is harmonic in z, z̄, since the curvatures of the connections on the conformal bound-
ary two-sphere must coincide.

With respect to a local trivialisation of O(k, k) in the neighbourhood of a point
on ∆̄ denote by Ψ(w, z) a section with zero set the spectral curve of (A,Φ), and
similarly Ψ′(w, z) for (A′,Φ′). Then

(21) ln〈PŵPz〉 − ln〈P ′ŵP ′z〉+ ln |Ψ′(w, z)|2/|Ψ(w, z)|2 = ln |Ψ′(w, ŵ)|2/|Ψ(w, ŵ)|2

since the left hand side of (21) is well-defined everywhere, i.e. we have canceled
singularities, and for fixed w it is harmonic in z, z̄. Hence it is constant in z and
when we evaluate at z = ŵ we get the right hand side.

Now fix z and take ∂w∂w̄ of both sides of (21). The left hand side vanishes since
(20) is also harmonic in w, w̄ by symmetry. Thus ln |Ψ(w, ŵ)|2 − ln |Ψ′(w, ŵ)|2 is
harmonic in w, w̄. If ξ(w) is harmonic then it is the sum of a holomorphic and anti-
holomorphic function since ξ + iρ is holomorphic for some (locally defined ρ(w))
and ξ − iρ is anti-holomorphic. We can choose Ψ to be real and positive on ∆̄ so
ln |Ψ(w, ŵ)|2 = 2 lnΨ(w, ŵ) and similarly for Ψ′. Thus

Ψ(w, ŵ) = g1(w)g2(ŵ)Ψ′(w, ŵ)

for g1(w) holomorphic and g2(ŵ) anti-holomorphic. We conclude that

Ψ(w, z) = g1(w)g2(z)Ψ′(w, z)

since the real analytic function Ψ(w, ŵ) on ∆̄ has a unique extension in a neigh-
bourhood of ∆̄ ⊂ CP1 ×CP1. But then g1 and g2 are both constant since Ψ|∆̄ 6= 0
so the zero set of Ψ cannot contain lines w = w0 or z = z0.

Thus, 〈PwPz〉 − 〈P ′wP ′z〉 is constant and hence 0 since they agree on w = z. �

Remark. This completes the proof of Theorem 2 and Corollary 3. On closer
observation, one soon realises that one of the key facts in the proof of Proposi-
tion 2.12—Ψ(w, ŵ), defined up to multiplication by the norm squared of a holo-
morphic function, uniquely determines Ψ(w, z) up to a constant—leads to another
proof of Corollary 3. This viewpoint is taken in [15].
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3. Representation

Consider a representation of S(A,Φ) on a Hilbert space H that satisfies

(22) 〈a〉 = tr a and a∗ is the adjoint of a,

where we abuse notation and denote a ∈ A to also mean its image in the space of
endomorphisms of H. The properties P 2

z = Pz = P ∗z and tr Pz = 〈Pz〉 = 1 imply
that Pz is a projection with one-dimensional image. The image of each projection is
a line inH so each Pz corresponds to a point in PH and we have a map q : S2

∞ → PH
defined by q(z) = im P (z). In this section we will describe the properties of A in
terms of the map q. We will defer the proof of existence of a representation until
the end of the section. Let k be the charge of the monopole.

Proposition 3.1. A representation of S(A,Φ) on a Hilbert space H satisfying (22)
gives rise to a 1-1 degree k holomorphic map q : S2

∞ → CPk.

Proof. We will use |q(z)〉 to label a unit vector in the line q(z) = im P (z) ⊂ H, and
〈q(z)| its conjugate transpose, so 〈q(z)|q(z)〉 = 1. Thus |q(z)〉 is still ambiguous up
to a phase, although

|q(z)〉〈q(z)| = Pz

is well-defined.
To show that q(z) is smooth at z0, choose a w so that PwPz0 6= 0 and choose a

neighbourhood U of z0 so that PwPz 6= 0 for z ∈ U . Then fix a unit vector |q(w)〉
and for each z ∈ U choose a unit vector |q(z)〉 so that 〈q(w)|q(z)〉 is real. Then
by Lemma 2.1 〈PwPz〉 = tr PwPz = 〈q(w)|q(z)〉2 is smooth in z so 〈q(w)|q(z)〉 is
smooth in z. Thus the component Pwq(z) of q(z) is smooth. This is true for almost
all w so q(z) is smooth on the linear span of the image of q. We may replace H by
this linear span, since the representation annihilates the complement. Thus q(z) is
a smooth map.

The holomorphicity of q(z) is equivalent to the property Pz[∂z̄, Pz] = [∂z̄, Pz]
proven in Proposition 2.6. This can be seen by setting Pz = |q(z)〉〈q(z)|. Then

|q(z)〉〈q(z)|(|∂z̄q(z)〉〈q(z)|+ |q(z)〉〈∂zq(z)|) = (|∂z̄q(z)〉〈q(z)|+ |q(z)〉〈∂zq(z)|)

⇒ |q(z)〉〈q(z)|∂z̄q(z)〉〈q(z)| = |∂z̄q(z)〉〈q(z)|
and by acting on the left by any vector orthogonal to |q(z)〉 we see that

∂z̄|q(z)〉 = λ(z)|q(z)〉

for some function λ(z), so q(z) is holomorphic. (We use ∂z̄|q(z)〉 and |∂z̄q(z)〉 to
mean the same thing.)

The degree of q(z) is obtained by intersecting its image with a hyperplane. This
corresponds to asking for the number of solutions z to PwPz = 0 for a generic w,
which is k, the charge of the monopole. Furthermore, the degree of q(z) determines
an upper bound for the dimension of the span of its image, thus q : S2

∞ → CPk ⊂
PH. The map q(z) is one-to-one since the proof of Corollary 2.5 shows not only
that Pw 6= Pz in A but also that their images under the representation are unequal
via tr PwPz < 1. �

Proposition 3.2. The spectral curve of a charge k SU(2) hyperbolic monopole with
associated holomorphic sphere q : S2

∞ → CPk is given by

Σ = {(w, z) ∈ CP1 × CP1 | (q(ŵ), q(z)) = 0}
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where ŵ is the antipodal point of w and (·, ·) is the natural Hermitian product on
Ck+1. Equivalently, wk(q(ŵ), q(z)) = ψ(w, z), the defining polynomial of Σ.

Proof. This is simply a restatement of Proposition 2.8 since the product of two pro-
jections is zero precisely when their images are orthogonal. The function (q(ŵ), q(z))
is quite different from the corresponding function 〈PŵPz〉. In particular it is holo-
morphic, and hence can be represented by a polynomial. �

Recall from [5] that to an SU(2) integral mass charge k hyperbolic monopole
one can associate a solution of the discrete Nahm equations. In the following
m ∈ Z + 1/2.

γj = γT
−j −2m+ 2 ≤ j ≤ 2m− 2, j odd

βj = βT
−j −2m+ 1 ≤ j ≤ 2m− 1, j even

βj−1γj − γjβj+1 = 0 −2m+ 2 ≤ j ≤ 2m− 2, j odd
[β∗j , βj ] + γ∗j−1γj−1 − γj+1γ

∗
j+1 = 0 −2m+ 3 ≤ j ≤ 2m− 3, j even

[β∗2m−1, β2m−1] + vv̄T − γ∗2m−2γ2m−2 = 0

where βi, γj ∈ gl(k,C) and v ∈ Ck admit an action of {gj ∈ U(k) | j = −2m +
1,−2m+ 3, . . . , 0, . . . , 2m− 3, 2m− 1, gj = ḡ−j} by

βj 7→ gjβjg
−1
j

γj 7→ gj−1γjg
−1
j+1

v 7→ g−2m+1v

(Note that we have replaced v with vT from [5] so that the vector v is a column
vector and matrices act on its left.) The pair (β−2m+1, v) determines the full
solution of the discrete Nahm equations. It was shown in [5] that the map

(23)
(
β−2m+1 − z

vT

)
: Ck → Ck+1

is a monad on S2 which determines the boundary value of the hyperbolic monopole.
The monad can be interpreted as a degree k holomorphic map β : S2 → CPk given
explicitly by

(24) β(z) =
(
−det(β−2m+1 − z) · (βT

−2m+1 − z)−1v
det(β−2m+1 − z)

)
.

The map is well-defined up to the U(k) action on the first k coordinates, since
β−2m+1 admits a U(k) action. The map β has the properties that the pull-back
of the Kähler form β∗ω gives the curvature of the monopole on the conformal
boundary two-sphere (and hence its gauge equivalence class). Furthermore, by a
theorem of Calabi the pull-back of the Kähler form, and hence the curvature of the
monopole on the conformal boundary two-sphere, uniquely determines the map β.
Thus the boundary value of the monopole determines the monopole.

Proposition 3.3. The spectral curve of (A,Φ) is given by

Σ = {(w, z) ∈ CP1 × CP1 | (β(ŵ), β(z)) = 0}.

Proof. This is a simple result from linear algebra. For any two vectors u, v ∈ Cn,

(25) det(1 + uv̄T ) = 1 + (v, u)

since (u, v) 7→ (g−1u, ḡT v) preserves (25) for any g ∈ GL(n,C), so we may assume
u = (1, 0, 0, . . . ), in which case (25) is easy.
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Put d(w, z) = det(β̄−2m+1 + 1/w) det(β−2m+1 − z) for ease in reading the next
set of formulae.

(β(ŵ), β(z)) = d(w, z)(v̄T (β̄−2m+1 + 1/w)−1(βT
−2m+1 − z)v + 1)

= d(w, z) det(1 + (βT
−2m+1 − z)vv̄T (β̄−2m+1 + 1/w)−1) by (25)

= det((β−2m+1 − z)(β̄−2m+1 + 1/w) + vv̄T )

and the last expression defines the spectral curve by specialising the expression in
[16] to the boundary value of the discrete Nahm equations. �

Corollary 3.4. For half-integer mass, the holomorphic map q : S2
∞ → CPk associ-

ated to the algebra S(A,Φ) coincides up to the action of U(k+1) on its image with
the holomorphic map β : S2 → CPk arising from the discrete Nahm equations.

Strictly, we should say that in the U(k + 1) orbit of the map q : S2
∞ → CPk

associated to the algebra S, there is a U(k) orbit of the map β.

Proof. The expressions

wk(β(ŵ), β(z)) and wk(q(ŵ), q(z))

coincide since they both define holomorphic sections of O(k, k) with the same zero
set. Thus β(z) = uq(z) for some u ∈ U(k + 1). �

Remark. Another corollary of Proposition 3.3 is a new proof of the fact that the
boundary value of the monopole determines the monopole when the mass is a half
integer.

Proposition 3.5. There exists a representation of S(A,Φ) on a Hilbert space H
that satisfies 〈a〉 = tr a and a∗ is the adjoint of a for a ∈ A.

Proof. In [15] it is proven that for each charge k monopole (A,Φ) there exists a
holomorphic map q : S2

∞ → CPk with two key properties. It determines and is
determined by the spectral curve of (A,Φ) and satisfies the statement of Proposi-
tion 3.2, and it determines and is determined by the boundary value A∞ of (A,Φ).
The curvature of A∞ is obtained as the pull-back of the Kahler form on CPk by q.

As in the proof of Proposition 3.1, use |q(z)〉 to label a unit vector in the line
q(z), and 〈q(z)| its conjugate transpose, so |q(z)〉〈q(z)| = Rz is well-defined. We
will prove that Rz = R∗z is the image of Pz in a representation of A acting on
Ck+1 satisfying 〈Pz1 ..Pzn

〉 = tr Rz1 ..Rzn
= 〈q(z1)|q(z2)〉〈q(z2)|q(z3)〉..〈q(zn)|q(z1)〉.

Since 〈a〉 for any a ∈ A is obtained from derivatives and limits of such quantities,
this is enough to show the representation satisfies (22).

The functions 〈PwPz〉 and |〈q(w)|q(z)〉|2 vanish to the same order on (an image
under w 7→ ŵ of) the spectral curve of (A,Φ) and vanish nowhere else. Thus,

〈PwPz〉 = ξ(w, z)|〈q(w)|q(z)〉|2

for a real valued nowhere vanishing function ξ(w, z). Fix q(w) and choose q(z) so
that 〈q(w)|q(z)〉 ∈ R for each z. Take the derivative of each side with respect to ∂z̄

so
2λ(w, z)〈PwPz〉 = (2λ(w, z) + ∂z̄ ln ξ(w, z))ξ(w, z)|〈q(w)|q(z)〉|2

since both 〈PwPz〉 and |〈q(w)|q(z)〉|2 define A∞ = λ(z)dz̄ − λ̄(z)dz. Hence

∂z̄ ln ξ(w, z) = 0

so ξ(w, z) is constant. It is identically 1 since 〈P 2
z 〉 = 1 = |〈q(z)|q(z)〉|2.
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Note that our assumption that 〈PwPz〉 and |〈q(w)|q(z)〉|2 define the same gauge
for A∞ is unnecessary since if they differ by the gauge transformation

λ(w, z) 7→ λ(w, z) + i∂z̄θ(w, z)

for a real-valued θ(w, z), then we are left with ∂z̄ ln ξ(w, z) = −2i∂z̄θ(w, z) in which
case ξ is harmonic and hence constant, thus θ ≡ 0.

The general case is proved analogously. Again since we know the vanishing
behaviour of the respective functions, we have

〈Pz1 ..Pzn〉 = ξ(z1, ..zn)〈q(z1)|q(z2)〉〈q(z2)|q(z3)〉..〈q(zn)|q(z1)〉

for a nowhere vanishing ξ. Vary z1 and fix the other variables. Choose q(z1) so
that 〈q(z1)|q(z2)〉 ∈ R for each z1. Then again

2λ(z2, z1)〈Pz1 ..Pzn〉 = (2λ(z2, z1) + (∂z̄1 ln ξ))〈Pz1 ..Pzn〉

and ∂z̄1 ln ξ(z1, .., zn) = 0. Thus ξ is constant and it is 1 on the diagonal zi = z1,
so it is identically 1. �

Proposition 2.9 shows that the charge at infinity is

FA∞ = −〈[∂z, Pz][∂z̄, Pz]〉dzdz̄

and we expect that it takes on only one sign, i.e. FA∞/2πi to be non-negative with
respect to the orientation idzdz̄ since it is true for half-integer mass monopoles.
This is a consequence of the following corollary of Proposition 3.5 which uses the
positivity of the trace on the product of a matrix with its adjoint.

Corollary 3.6. 〈a∗a〉 ≥ 0 for any a ∈ A, with equality precisely when a = 0.

Furthermore, using knowledge of when 〈a∗a〉 is zero, we can understand the
singularities of q in terms of the curvature. Since ∂z̄|q(z)〉 = λ(z)|q(z)〉, q is singular
at z0 if and only if ∂z|q(z)〉|z0 = µ|q(z0)〉 for some µ ∈ C. Now

0 = ∂z〈q(z)|q(z)〉|z0 = 〈∂z̄q(z)|q(z)〉|z0 + 〈q(z)|∂zq(z)〉|z0 = λ(z0) + µ

thus [∂z, Pz]|z0 = ∂z|q(z)〉〈q(z)||z0 = (λ(z0) + µ)|q(z0)〉〈q(z0)| = 0. So by Corol-
lary 3.6, q has a singularity at z0 if and only if FA∞(z0) = 0.

4. Conclusion

The important features of S(A,Φ) have thus far used the bounded, real-valued
2-point function 〈PwPz〉. The 3-point function was needed to prove some of the
properties of 〈PwPz〉. Since the 2-point function determines the algebra it might be
that one need look not much further to the n-point functions. On the other hand,
there are features of S(A,Φ) that have yet to be understood and may require the
higher order functions.

(i) The existence of a finite-dimensional representation of S(A,Φ) with expecta-
tion values of observables given by the trace implies relations amongst the 4-point
functions. More precisely, for a charge k monopole, choose a generic set of points
{zi|i = 0, .., N} (where N is the dimension of the span of the image of q(z), so
N = k if q is “full”) and set Pi = Pzi

. Then the finite dimensional representation
allows any Pw to be expressed as αij(w)PiPj (sum repeated indices) where the
αij(w) are determined via 〈PwPkPl〉 = αij(w)〈PiPjPkPl〉. Set gijkl = 〈PiPjPkPl〉.
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Then (for generic choice {zi|i = 0, .., N}) there exists an “inverse” gijkl satisfying
gijklgklmn = δimδjn, so αij(w) = gijkl〈PwPkPl〉. Then,

〈PwPz〉 = gijkl〈PwPkPl〉〈PzPiPj〉.
If we multiply both sides by the “determinant” of gijkl then the relation holds for
all sets {zi|i = 0, .., N}, and not just generic sets. It would be more satisfying to
be able to prove the relations directly and use this to get the representation.

(ii) It would be interesting to recognise the mass of the monopole in S(A,Φ).
The mass is encoded in the spectral curve but it is difficult to extract.

(iii) Since S(A,Φ) brings the spectral curve of (A,Φ) and the connection on the
conformal boundary two-sphere closer together, one might hope to understand both
the metrics of Austin and Braam [5] and Hitchin [10] from a similar perspective.

(iv) One can take finite-dimensional subalgebras of S(A,Φ) to possibly un-
cover further structure. In the case k = 2, define Sw(A,Φ) ⊂ S(A,Φ) to be
the sub-algebra generated by P1(w) = Pz1 and P2(w) = Pz2 where PwPzi

= 0.
This is a finite-dimensional algebra, generated as a vector space by P1(w), P2(w),
P1(w)P2(w) and P2(w)P1(w). The algebra Sw(A,Φ) actually depends on a point
in the spectral curve of the monopole, since the elements P1(w) and P2(w) are
ordered.

The algebra S(A,Φ) of an SU(2) hyperbolic monopole generalises to any gauge
group. In such a case, the scattering equations (5) admit solutions with various
rates of decay. To each point z ∈ S2

∞ we associate finitely many operators, one for
each level of decay of solutions of the scattering equation, with given relations. The
n-point functions are obtained from pairing solutions of the scattering equations
with specified decay in each direction. For higher rank Lie groups, just as the
operators Pz define one-dimensional subspaces of a very large vector space to give
a holomorphic map q : S2

∞ → CPk, the finitely many operators associated to z ∈ S2
∞

will define a flag inside a very large vector space with a corresponding holomorphic
map. The dimension of the vector space will be determined by the charge of the
monopole, as in Proposition 3.1.
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