
Periodic instantons and the loop groupPaul Norburynorbs@ms.unimelb.edu.auAbstractWe construct a large class of periodic instantons. Conjecturally we pro-duce all periodic instantons. This con�rms a conjecture of Garland andMurray that relates periodic instantons to orbits of the loop group actingon an extension of its Lie algebra.AMS classi�cation: 81T13, 53C07, 55P101 IntroductionPeriodic instantons are solutions of the anti-self-dual equationsFB = � � FBfor a connection B on a trivial vector bundle with structure group G overS1 �R3. In this paper, G is a compact Lie group with complexi�cationGc equipped with a representation acting on Cn that is unitary on G.Put B = A+�d� so �FA = dA�� �@�A (1)where we use the three-dimensional Hodge star operator and � is the re-ciprocal of the radius of the circle. One can think of the connection andHiggs �eld as de�ned over R3 and dependent on the circle-valued �.Nahm studied periodic instantons, calling them calorons [17]. Later,Garland and Murray studied periodic instantons from the twistor view-point [7]. To remedy the fact that there was so far no existence theoremfor periodic instantons nor an understanding of the topology of the modulispace of instantons (if they were to exist), they conjectured that periodicinstantons can be constructed using holomorphic spheres in a 
ag mani-fold associated to the loop group. This conjecture is con�rmed by the mainresult of this paper, Theorem 1.Recently the study of super-symmetric Yang-Mills theory over S11=��R3has been used as further evidence for the existence of dualities in physical1



theories. In [21] Seiberg and Witten obtained a result for periodic instan-tons analogous to their 1994 work on instantons, [20], by studying thelimiting behaviour when � ! 0 and � ! 1. This led to the Rozansky-Witten invariants, [19]. We will not discuss these developments here.2 Loop groups.De�ne LG to be the group of smooth gauge transformations of the trivialG-bundle over the circle. Equivalently, LG is the space of smooth mapsfrom S1 to the compact Lie group G. Following [7], intertwine the gaugetransformations with the isometries of the circle to get the twisted productdLG = LG~�S1 where the action of S1 is given by rotation. It has Lie algebracLg �= Lg�Rd with Lie bracket[X + xd; Y + yd] = [X;Y ]� y@X=@� + x@Y=@�:Put Â = A+ ad, �̂ = �+�d. Then the Bogomolny equations over R3 forthis pair are given by �FÂ = dÂ�̂: (2)The d-component is given by �da = d� so a �nite energy condition willforce a = 0 and � =constant= �, say. The remaining part of (2) is then(1). Thus, one can think of periodic instantons as monopoles over R3 withstructure group dLG.Monopoles for �nite-dimensional groups are well-studied [10, 16, 18].In particular, the topology of the moduli space of monopoles is understood.The moduli space of monopoles with structure group G is di�eomorphicto the space of holomorphic maps from the two-sphere to a homogeneousspace of G, or equivalently to an adjoint orbit of G, [4, 12]. In analogywith the �nite-dimensional case this led Garland and Murray to conjec-ture that periodic instantons are in one-to-one correspondence with basedholomorphic maps from S2 to orbits of dLG in cLg. The following theoremaddresses half of this conjecture. The action of dLG is really an action ofLG. For (�; �) 2 cLg denote its orbit by LG � (�; �).Theorem 1 There is an injective map from(i) the space of based holomorphic maps from S2 to LG � (�; �), to(ii) the moduli space of instantons over S11=� �R3.The basing condition on the space of holomorphic maps distinguishes anelement of the orbit of LG that is conjecturally the asymptotic value of theHiggs �eld. See Section 6. The moduli space consists of gauge equivalenceclasses of connections where the gauge group consists of gauge transforma-tions independent of � in the limit at in�nity.The full conjecture, that the map is also surjective, is equivalent to aconjecture for decay properties of �nite energy periodic instantons analo-gous to known decay properties for monopoles. We discuss this in Section 6.2



Theorem 1 can be thought of as an extension of [13] from �nite dimen-sional Lie groups to the loop group.2.1 Orbits of the loop group.The loop group LG acts on cLg by
 � (�; �) = (
 � � � �
0
�1; �):For � = 0 the orbit is given by the based loop group 
G. More generally,we get LG � (�; �) �= LG=Z� where the isotropy subgroup Z� is describedexplicitly in the following proposition.Proposition 2.1 (Pressley and Segal) For �1G = 0 and � 6= 0 theorbits of LG on cLg correspond precisely to the conjugacy classes of G underthe map (�; �) 7! M� 2 G where M� is obtained by solving the ordinarydi�erential equation h0h�1 = ���1� and noticing h(� + 2�) = h(�)M�.The isotropy subgroup of � is given byZ� = f
 2 LGj
(0) 2 C[M�]; 
(�) = h(�)
(0)h(�)�1g (3)where C[M�] is the centraliser of the conjugacy class of M� in G.Equivalently, the orbits are given by gauge equivalence classes of connec-tions on a trivialised bundle over the circle of radius 1=�. Each orbit islabeled by the underlying connection which is determined by its holonomy.In the next section we will equip the orbit of the loop group with acomplex structure.2.2 Loop groups and 
at connections.Donaldson [5] re-interpreted elements of the loop group in terms of holo-morphic bundles over the disk framed on the boundary, and the factori-sation theorem in terms of 
at connections on these bundles. He showedthat each framed holomorphic bundle over the disk possesses a uniqueHermitian-Yang-Mills (
at) connection.Theorem 2.2 (Donaldson) There is a 1� 1 correspondence between(i) holomorphic bundles over D framed over @D;(ii) unitary Hermitian-Yang-Mills connections over D on a bundle witha unitary framing over @D.Donaldson's argument generalises to parabolic bundles|holomorphicbundles over the disk with a 
ag speci�ed over the origin [15]. In this casethe 
at connection must be singular at the origin.3



Proposition 2.3 There is a 1� 1 correspondence between(i) parabolic bundles over D framed over @D;(ii) unitary Hermitian-Yang-Mills connections over D�f0g on a bundlewith a unitary framing over @D. The singularity of the connection at 0encodes the 
ag at 0.Following Donaldson, we can re-interpret this result in terms of a factori-sation theorem for loop groups as follows.A parabolic bundle over the disk has an underlying trivial holomorphicbundle and a trivialisation compared to the framing over the boundaryproduces a loop 
 2 LGc. Any other trivialisation that preserves theparabolic structure at 0 2 D changes 
 by an element of L+P|those loopsthat are boundary values of holomorphic maps from the disk to GL(n;C)with value at 0 lying in P . So (i) in the statement of Proposition 2.3 isequivalently to choosing an element of LGc=L+P .A unitary Hermitian-Yang-Mills (or, equivalently, 
at) connection overD�f0g is determined uniquely by the parabolic structure at 0 2 D. (Thiswould not be true if there was more than one puncture.) With respectto the unitary framing over the boundary, the 
at connection de�nes anelement of the orbit LG � � 2 cLg. We saw in the previous section that theorbit is isomorphic to LG=Z�. Thus we get the following restatement ofProposition 2.3.Corollary 2.4 For any � 2 Lg we haveLGc=L+P �= LG=Z�:We could have proven the factorisation theorem in a di�erent way. Inthe special case that Z� consists of only constant loops then Corollary 2.4follows from the standard factorisation theorem for loop groups. In gen-eral, each orbit of LG possesses a nice representative which simpli�es theisotropy subgroup to consist only of constant loops so the general casefollows from the special case.The importance of the treatment here is that at the same time asestablishing a complex structure on the orbit space, � remains the naturalbase-point for the holomorphic map and we get an interpretation of theorbit space in terms of 
at connections over the disk on a bundle framedover the boundary. In the next section we will see how a holomorphic mapfrom S2 into a space of 
at connections is related to an instanton over anassociated four-manifold.3 Instantons and holomorphic maps intospaces of 
at connections.Atiyah showed that there is a one-to-one correspondence between instan-tons over the four-sphere and holomorphic maps from the two-sphere to the4



loop group [1]. The interpretation of elements of the loop group in terms of
at connections means that Atiyah's result can be viewed as a relationshipbetween instantons and holomorphic maps from the two-sphere to a spaceof 
at connections. This approach was exploited in [14]. Another result ofthis type was obtained by Dostoglou and Salamon [6] in their proof of theAtiyah-Floer conjecture. They showed that the instanton Floer homologyassociated to the three-manifold given by a mapping torus S1 ~�� is thesame as the symplectic Floer homology of the space of 
at connectionsover �.The relationship between instantons and holomorphic maps into spacesof 
at connections can be understood as follows. Suppose that locally afour-manifold is given by a product of two complex curves U �V equippedwith the product metric. The anti-self-dual equations with respect to localcoordinates fwg � fzg are given by:[@A�w ; @A�z ] = 0[@A�z ; @Az ] = �(w; z)[@A�w ; @Aw ] ) (4)where �(w; z) depends on the metrics on U and V .Let f : U !MV be a holomorphic map from U into the space of 
atconnections MV over V . (The conformal structure on V equips the spaceof 
at connections with a natural complex structure.) De�ne a connectionover U � V by A = df + f(w) (5)where df is a Lie algebra valued 1-form over U � V and f(w) is a 
atconnection over fwg � V . Then A satis�es the following equations whichresemble (4): [@A�w ; @A�z ] = 0[@A�z ; @Az ] = 0 ) (6)The �rst equation is equivalent to the holomorphic condition on the mapf and the second equation uses the fact that f maps to a space of 
atconnections.We can think of the second equation of each of (4) and (6) as a type ofmoment map. One can move from solutions of (6) to solutions of (4) usingthe Yang-Mills 
ow, as we do in this paper or, say, by using the implicitfunction theorem.In order to apply this to periodic instantons we exploit the conformalinvariance of the anti-self-dual equations. Let � be the punctured diskD2 � f0g equipped with the complete hyperbolic metric jdzj2=(jzj ln jzj)2.There is a conformal equivalence:S1 � (R3 � f0g) ' S2 � �;where S1 � (R3 � f0g) is equipped with the 
at metric and S2 � � isequipped with the product metricds2 = 4d �wdw(1 + jwj2)2 + d�zdzjzj2(ln jzj)2 : (7)5



On S2 � � the anti-self-dual equations are given by (4) with�(w; z) =  1 + jwj2jzj ln jzj!2 :Our course is set. We have shown that a holomorphic map from S2 toLG �(�; �) is the same as a holomorphic map from S2 to a space of 
at con-nections which gives an approximate instanton over S2 � �. In Section 4we will use rather standard techniques to move from an approximate in-stanton to an exact one. Under the conformal equivalence described above,this instanton will correspond to a periodic instanton.3.1 Approximate instantons.Beginning with a holomorphic map from the two-sphere to an orbit of LG,we will construct an approximate instanton over S1 �R3. This will be anexplicit realisation of (5).The map f : S2 ! LG=Z� is holomorphic whenf�1@ �wf : S2 ! L+pwhere L+p � L+gc is given by those loops that extend to a holomorphicmap of the disk whose value at the origin lies in p.Put � equal to the holomorphic extension of f�1@ �wf to the disk. OverS2 � � = f(w; z)g, de�ne a connectionA = �d �w �H�1� ��H�dw + i�dz=z (8)which is Hermitian with respect to the Hermitian metricH� = exp(i� ln z)�exp(i� ln z) (9)and 
at on each fwg �D. Over S1 �R3 in a radially-free gauge we get:(A;�) = (exp(i�r)� exp(�i�r)d �w � exp(�i�r)�� exp(i�r)dw; �)Furthermore, �FA = dA�� �@�A+ (1 + jwj2)2F �wwdr=r2 (10)which resembles the periodic instanton equation, (1).4 ConstructionIn this section we will use the Yang-Mills 
ow to move from the \approxi-mate" periodic instanton (8) to an exact one. Instead of working directlywith the connections, we will follow Donaldson [3] and work with a Hermi-tian metric on a holomorphic bundle which gives a Hermitian connection.6



In fact, we will work with a pair (H; �) consisting of a Hermitian metric Hon a holomorphic bundle and a map � : S2�D2 ! gc that is holomorphicin the second factor. A connection A is obtained from the pair (H; �) by:A = H�1@zHdz + �(w; z)d �w + (H�1@wH �H1�(w; z)H)dw: (11)Associate to the pair (H; �) the Hermitian-Yang-Mills tensorB(H; �) = jzj2(ln jzj)2@�z(H�1@zH) + (1 + jwj2)2f@ �w(H�1@wH)�@ �w(H�1��H)� @w� + [�;H�1@wH �H�1��H]g:When B(H; �) � 0, the connection (11) is anti-self-dual.Following Donaldson [3] we study the heat 
ow for the Hermitian metricH in place of the Yang-Mills 
ow for the associated connection. Since theHermitian metrics we deal with here are not bounded we need to extendDonaldson's results and their generalisations due to Simpson [23]. Essen-tially we need to understand properties of the Laplacian of the Kahlermanifold S2 � � with metric (7) and properties of the initial Hermitianmetric (9). Similar results specialised to other non-compact Kahler mani-folds exist in [8, 14].4.1 The heat 
ow.Associate to a holomorphic map f : S2 ! LG=Z� the map � : S2�D2 ! gcgiven by the holomorphic extension of f�1@ �wf to the disks in the secondfactor. We would like to construct a Hermitian metric H that satis�es theequation B(H; �) = 0. This would produce an anti-self-dual connectionassociated to the map f .Consider the heat 
ow equation over S2 � �H�1@H=@t = B(H; �); H(w; z; 0) = H� (12)where H� is de�ned in (9). A solution of (12) will converge to the requiredsolution of B(H; �) = 0 as t ! 1. Instead of solving (12) we will workwith a family of boundary value problems. PutS2 � ��;� = f(w; z) 2 S2 � � j � � jzj � �gso the S2 � ��;� exhaust S2 �� as � ! 1 and �! 0.Proposition 4.1 Over each S2 � ��;� there is a unique solution of theboundary value problem H�1@H=@t = B(H; �)H(w; z; 0) = H�Hj@S2���;� = H� 9>=>; (13)given by H�;�(w; z; t) and converging to a smooth metric H�;�(w; z;1) thatsatis�es B(H�;�(w; z;1); �) = 0. 7



Proof. Since we have �xed S2���;� for the moment we will omit the super-script in H�;�(w; z; t) during this proof. Short-time existence of a solutionof (13) is automatic since B(H; �) is elliptic in H and we have Dirichletboundary conditions. In order to extend this to long-time existence wewill take the approach given by Donaldson [3] and extended by Simpson[23] and show that a solution on [0; T ) gives a limit at T which is a goodinitial condition to start the 
ow again. The lemmas we need to prove onthe way use the details of our particular case and allow us to proceed withDonaldson's proof.A Hermitian metric H takes its values in the space Gc=G which comesequipped with the complete metric d given locally by tr(H�1�H)2. Follow-ing Donaldson, we will use both this metric and the convenient function�(H1;H2) = tr(H�11 H2) + tr(H1H�12 )� 2n that satis�es c1d2 � � � c2d2for constants c1; c2. (Aside: if we take the loop group perspective describedin [7], then a Hermitian metric takes its values in the space LGc=LG. Wehave not checked that this is a complete metric space.)Lemma 4.2 If H1 and H2 are two solutions of the heat equation then@t� +�� � 0 (14)for � = �(H1;H2).Proof. See [14]. 2Apply (14) to H(w; z; t) and H(w; z; t + �), the 
ow at two times.Since they obey the same boundary conditions on S2���;�, � vanishes onthe boundary. By the maximum principle supS2���;� � is a non-increasingfunction of t. By continuity, for any � > 0 there exists a � small enoughso that supS2���;� �(H(w; z; t);H(w; z; t0)) < �for 0 < t; t0 < � . It follows from the non-increasing property of � thatsupS2���;� �(H(w; z; t);H(w; z; t0)) < �for T � � < t; t0 < T . Since � can be made arbitrarily small, H(w; z; t) is aCauchy sequence in the C0 norm as t! T . The metrics take their valuesin a complete metric space (described below) and the function � acts likethe metric so there is a continuous limit HT of the sequence. Notice alsothat (14) and the maximum principle show that this short-time solutionto the heat 
ow equation is unique.Using the heat equation and the metric on Gc=G, we haved(H(w; z; t);H(w; z; 0)) � Z t0 jB(H(w; z; s); �)jdswhere jB(H(w; z; s); �)j2 = tr(B�B) and the adjoint is taken with respectto the metric Hs. Notice that B� = B so jB(H(w; z; s); �)j2 = tr(B2).8



Lemma 4.3 If H(w; z; t) is a solution of the heat equation then(d=dt+�)jB(H(w; z; t); �)j � 0 whenever jBj > 0 (15)Proof. See [14]. 2The next two lemmas use the particular features of the Kahler manifoldS2�� together with the initial Hermitian metric H� to get C0 control onH(w; z; t) during the 
ow.Lemma 4.4 When � is the holomorphic extension of f�1@ �wf , for a givenholomorphic map f : S2 ! 
LG=Z�, there exists a constant M such thatjB(H�; �)j �M(1� jzj) on S2 � �.Proof.B(H�; �) = �(1 + jwj2)2(@w� + @ �w(H�1� ��H�) + [�;H�1� ��H�])and since [�(0); �] = 0, jB(H�; �)j is bounded near z = 0. Since f takes itsvalues in the unitary loop group and H� = I on jzj = 1, we can identifyB(H�; �) with the curvature of a 
at connection which is 0. Furthermore,B(H�; �) is continuous and di�erentiable up to jzj = 1 so it vanishes like1� jzj there. 2Lemma 4.5 There is a constant C independent of � and � such thatd(H�;�(w; z; t);H�) � C ln(1� ln jzj)for all (w; z; t) 2 S2 � ��;� �R.Proof. It follows from (15) and the maximum principle that if there is afunction b(w; z; t) de�ned on S2���;��R that satis�es (@t+�)b = 0 andjB(H�; �)j � b(w; z; 0) then jB(H(w; z; t); �)j � b(w; z; t) for all t.Put b(w; z; 0) = M(1 � jzj). Notice that b(w; z; 0) = b(jzj), so we onlyneed use the one-dimensional Laplacian and b(w; z; t) = b(jzj; t). From the
ow equation (13) we haved(H(w; z; t);H�(w; z)) = Z t0 B(H(w; z; �))d�� Z t0 b(w; z; �)d�� Z 10 b(w; z; �)d� (16)Now, b(jzj; t) = R b(s; t)k(jzj; s; t)ds where k is the one-dimensional heatkernel operator. Since R10 k(jzj; s; t)dt = G(jzj; s), the Green's operator, is9



�nite, Fubini's theorem allows us to interchange the order of integration in(16). So d(H(w; z; t);H�(w; z)) � M Z �0 (1� s)G(jzj; s)ds� M Z 10 (1� s)G(jzj; s)ds :With respect to the Laplacian� = �(1 + jwj)2@ �w@w � 4jzj2(ln jzj)2@�z@z = �(ln jzj)2@2ln jzjreduced to one dimension, the Green's operator is given byG(jzj; s) = minf� ln jzj;� ln sg=s(ln s)2 :Actually, this Green's operator is only valid for the entire interval (� = 1)and Fubini's theorem doesn't apply there. There is a monotone propertyof heat kernels which means that our choice of G is simply an overestimatewhen � < 1 so the calculation is valid. Thusd(H(w; z; t);H�(w; z)) � M  � ln jzj Z jzj0 (1� s)dss(ln s)2 � Z 1jzj (1� s)dss ln s !� C ln(1� ln jzj)where the last inequality simply encodes the fact that the distance vanishesas jzj ! 1 and grows like ln(1� ln jzj) as jzj ! 0. 2The preceding lemmas have shown that there is a solution to the heatequation that satis�es H(w; z; t)! H(w; z; T ) in C0 and H(w; z; t) is uni-formly bounded with bound independent of t (though depending on �).These are the conditions required to use Simpson's extension of Donald-son's result to show that H(w; z; t) is bounded in Lp2 uniformly in t. Hamil-ton's methods [9] then give control of all higher Sobolev norms. Thus weget a solution, H(w; z; t), of (13) for all t that converges to a smooth limitH�;�(w; z;1) de�ned on S2 � ��;� and satisfying B(H�;�(w; z;1); �) = 0and H�;�(w; z;1) = H� on @S2 � ��;� so Proposition 4.1 is proven. 2Proposition 4.6 For each holomorphic map f : S2 ! LG=Z� there is aperiodic instanton Af on S1 �R3.Proof. We have proven the existence of a family of hermitian metricsH�;� respectively de�ned over S2 � ��;� and satisfying B(H�;�; �) = 0.Since �(H�;�;H�0;�0) is subharmonic its maximum occurs at the boundaryof the set on which it is de�ned. For �0 � � � � � �0, the common setis S2 � ��;�. If we �x � = �0 and let � ! 1, then � = 0 on jzj = � and10



the maximum of � occurs on jzj = �. Since the metrics � and d on Gc=Gare equivalent, the maximum value of � is bounded by a constant timesd(H�;�0 ;H�) � C ln(1 � ln �) using Lemma 4.5. This tends to 0 as � ! 1,thus we have a Cauchy sequence that converges uniformly to a Hermitianmetric H� de�ned on jzj � �. The convergence can be improved to Lp2 toensure that B(H�; �) = 0, [23].In order to deal with � ! 0, notice that since ln jzj is harmonic onS2 � �, � + a ln jzj is subharmonic for any a. Put a = supjzj=� �=j ln �j.Then � + a ln jzj � 0 on jzj = 1 and jzj = �. Thus� � � ln jzj supjzj=��=j ln �j: (17)By Lemma 4.5, d(H�;�0 ;H�) � C ln(1� ln �) so � = o(j ln �j) as �! 0. Thusthe right hand side of (17) tends uniformly to 0 on compact sets away fromz = 0. Again we conclude that the fH�g form a Cauchy sequence as �! 0,converging uniformly on the complement of any neighbourhood of S2�f0gto a Hermitian metric H that satis�es B(H; �) = 0 on S2 � �.Using S1 � (R3 � f0g) �= S2 � � we see that the limit H is smoothon S1 � (R3 � f0g) and continuous on all of S1 � R3, converging to Ion S1 � f0g. The connection A obtained from H via (11) is de�ned andanti-self-dual on S1 � (R3 � f0g). By the following lemma, A has �nitecharge. Since codimension three singularities of �nite charge anti-self-dualconnections can be removed [22], A is smooth on all of S1 �R3. 2Lemma 4.7 The curvature of the limiting connection A has �nite L2norm.Proof. The Yang-Mills 
ow decreases the L2 norm of a connection, and anybubbling in the limit just decreases the L2 norm further, so it is su�centto show that the initial connection has �nite L2 norm.For any connection A, we have8�2kFAk22 = 2 Z jF+A j2 � Z FA ^ FA (18)where F+A is the self-dual part of the curvature. We can calculate thisexplicitly for the initial connection de�ned in (8).Notice that F+A = B(H�; �) and by Lemma 4.4 we have jB(H�; �)j �M(1� jzj). This is square-integrable over S2 �� since S2 is compact and� has �nite area near z = 0 and grows like 1=(1 � jzj)2 near jzj = 1.As one might expect, the topological term in (18) will coincide withthe topological degree of the map f : S2 ! LG=Z�.k(E) = 18�2 ZS2�D tr(F 2A) = � 18�2 ZS2�D tr(@�z��@z�)d�zdzd �wdw11



since only the Fz �w and F�zw terms contribute. Since � is holomorphic in z,then on the disk dftr(��@z�)dzg = tr(@�z��@z�)d�zdz sok(E) = � 18�2 ZS2 Zjzj=1 tr(��@z�)dzd �wdw= 14� ZS2 kf�1@ �wfk2 d �wdwiwhere kf�1@ �wfk2 uses the Kahler metric on LG=Z�. This expression is thedegree of f . 2Remark. In the construction of this section we started with parabolicbundles over the disk. However, the reverse is not true that a periodicinstanton gives rise to a family of parabolic bundles. By this we mean thatthe holomorphic structure de�ned on each punctured disk by the restrictionof the periodic instanton does not extend to the entire disk. The curvaturejust fails to satisfy FA 2 Lp for p > 1 as required in [2].5 InjectionIn this section we will show that the map produced in Section 4 is injective.Proposition 5.1 Let f : S2 ! LG=Z� and g : S2 ! LG=Z� be two basedholomorphic maps. Then the instantons Af and Ag are gauge equivalentprecisely when � � � is in the root lattice and g = f � exp(i(� � �) ln z).Proof. The instanton Af is given by the expression (11) which depends ona pair (H; �) consisting of a Hermitian metric, H, and the holomorphic ex-tension of f�1@ �wf denoted by � and likewise for Ag. These expressions areindependent of the unitary gauge so Af � Ag only if Af = Ag or possiblyif we have used di�erent holomorphic trivialisations of the holomorphicallytrivial bundle restricted to each fwg � � for Af and Ag.If Af = Ag then f�1@ �wf = � = g�1@ �wg, so @ �w(gf�1) = 0 and thisis global over S2 thus g = 
(z)f for some loop 
(z) independent of w.The requirement that f and g map 1 2 S2 to the constant loop I forces
(z) = I.If Af 6= Ag and Af � Ag then Af uses the pair (H; �) in (11) and Aguses the pair (p�Hp; p�1�p+ p�1@ �wp) for a map p : S2 ��! Gc which isholomorphic on each fwg�� and unitary on its boundary. Note that thisimplies that g = fp though since p is not a priori in L+P , the maps f andg can be distinct.The proof of the proposition is completed by the following two lemmasthat show that g = fp together with the known growth of the Hermitianmetrics associated to f and g forces p to be constant or to be a standardholomorphic gauge change.Lemma 5.2 If � = � then Af � Ag only if f = gu for u 2 P \G �= Z�.12



Proof. We can apply Lemma 4.5 to the Hermitian-Yang Mills metric Hover all of S2 � � even though it is only stated for 0 < � < � < 1. Thusd(H;H�) + d(p�Hp;H�) � C ln(1� ln jzj)for the initial metric H� de�ned in (9). Using the identity d(p�Hp;H�) =d((p�)�1H�p�1;H�)) and the triangle inequality we haved(H;H�) + d(p�Hp;H�) � d((p�)�1H�p�1;H�)) (19)and the right hand side is bounded by C ln(1� ln jzj) only if p is boundednear z = 0 by C ln(1� ln jzj). Since it satis�es limz!0 zp(z)! 0, p extendsacross z = 0 and is holomorphic there. Furthermore we must have p(0) 2 Pin order that the right hand side of (19) is bounded by C ln(1 � ln jzj).Since p is holomorphic on the disk and unitary on the boundary it must beunitary on the disk (by the maximum principle applied to the subharmonicfunction tr(p�p) + tr((p�p)�1)), and thus constant there, and moreover liein P \G. 2Lemma 5.3 If Af � Ag then � � � lies in the root lattice andg = f exp(i(� � �) ln z):Proof. As described above, g = fp. Then limz!0 zp�1@zp = � � �. Sincezp�1@zp is bounded and holomorphic on the punctured disk, it extends toa holomorphic function of the disk. In fact p�1@zp = q(z)=z so p(z) =exp(R z q(�)d�=�) and � � � = q(0) must lie in the integer lattice. Thus p �exp(�i(���) ln z) is holomorphic on the disk and unitary on the boundaryand hence constant which we absorb in the unitary ambiguity of f . Sog = f � exp(i(� � �) ln z). 2The proposition allowed for gauge transformations that have angulardependence at in�nity (corresponding to z = 0). When we restrict thegauge transformations to have no angular dependence at in�nity then themaps f and f � exp(i(� � �) ln z) de�ne inequivalent connections. Thus themap f 7! Af is injective.6 Boundary conditionsThere are natural boundary conditions that the periodic instantons con-structed in this paper conjecturally satisfy: as r !1k�� �k = O(1=r)@k�� �k=@
 = O(1=r2)kr(�� �)k = O(1=r2)where � is a given constant Higgs �eld, r is the radial coordinate in R3,@=@
 is an angular derivative, and the asymptotic constants are uniformin �. 13
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