
Compacti�cation of hyperbolic monopolesStuart Jarvis and Paul NorburyMerton College, Oxford, UKMathematics Institute, University of Warwick, UKAbstractWe prove that the space of SU(2) hyperbolic monopoles based atthe centre of hyperbolic space is homeomorphic to the space of (un-based) rational maps of the two-sphere. The homeomorphism extendsto a map of the natural compacti�cations of the two spaces. We alsoshow that the scattering methods used in the study of monopoles applyto the con�guration space for hyperbolic monopoles giving a homo-topy equivalence of this space with the space of continuous self-mapsof the two-sphere.AMS classi�cation: 81T13, 53C07, 55P101 Introduction.It has long been known that moduli spaces of monopoles and holomor-phic maps of the two-sphere are intimately related. In [1, 2] Atiyahintroduced the space of hyperbolic monopoles showing that for inte-gral mass the space of charge k SU(2) monopoles based at in�nity isisomorphic to the space of degree k based holomorphic self-maps ofthe two-sphere. His approach was to identify hyperbolic monopoles asinstantons over the four-sphere invariant under a circle action. Sib-ner and Sibner [19] justi�ed this identi�cation using the natural decayconditions on monopoles suggested by Atiyah.The similarity between the natural compacti�cations of the spaceof monopoles and the space of rational maps of the two-sphere suggeststhat Atiyah's map extends to the compacti�cations. This paper aroseout of the study of that question. Unfortunately the framing conditionobstructs the desired compacti�cation since bubbling at the basepointis forbidden. To get around this it is quite natural to put the basepoint,instead, at an interior point of hyperbolic space. Murray suggestedthe study of such spaces in [16]. Uniform bounds on the curvatureof hyperbolic monopoles at interior points prevents bubbling there,allowing our study to proceed. 1



This novel choice of basepoint means that we cannot use Atiyah'sresults. In particular, we are considering a moduli space that hasa bigger dimension. Still, we will prove there is a correspondencebetween monopoles and rational maps in this setting. The algebro-geometric methods employed by Atiyah seem to be limited in the studyof the question of compactifying since the natural compacti�cationassociated to holomorphic bundles is the Gieseker compacti�cationrather than the Uhlenbeck compacti�cation of instantons which werequire. Jun Li [15] showed how the Gieseker compacti�cation ofthe space of holomorphic bundles is in some sense bigger than theUhlenbeck compacti�cation. In this paper we use the more suitablescattering methods used by Hitchin [12] in his study of Euclideanmonopoles and suggested by Atiyah for hyperbolic monopoles.The homotopy theory of the underlying con�guration spaces re-spectively given by connections that do not satisfy the Bogomolnyequations and continuous self-maps of the two-sphere is well-under-stood [4]. Using the holonomy of the connections or the uniquenessof classifying spaces the respective con�guration spaces can be shownto be homotopy equivalent. One satisfying part of the scattering ap-proach described here is that it produces the homotopy equivalencedirectly, avoiding the usual separate treatment.We consider monopoles only with integer mass m. This is becausethe methods we use rely heavily on estimates supplied by workingover the four-sphere. Still, one might expect that our results canbe extended to arbitrary mass, especially considering the studies in[14, 17].De�ne Bmk to be the space of C1 connections modulo gauge trans-formations on a framed SU(2) bundle E over S4 invariant under aU(1)-action where the weight of the U(1)-action is m and 2km =c2(E). Equivalently,k�k ! m at 1 and ZH3 FA ^ dA� = 4�mk :We think of S4 � S2 � H3 � S1 where � denotes the conformalequivalence of metrics on the two spaces. The gauge transformationsare required to be the identity at the basepoint and we choose thebasepoint to lie o� the �xed point sphere.We will equivalently describe any element of Bmk by a pair (A;�).Given such a pair, along radial geodesics beginning at 0 2 H3 considerbounded solutions of the scattering equationrts� i�s = 0 (1)Each radial geodesic corresponds to a point (u; v) 2 S2. De�neF(u; v) : Bmk ! CP1 byF(u; v)(A;�) = s(u;v)(0) 2 C2 (2)2



where, up to a constant multiple, s(u;v)(t) is the unique bounded solu-tion of (1) along the geodesic corresponding to (u; v). It is well-de�nedsince any gauge transformation �xes the frame at 0. Let 
2kS2 be thespace of continuous self-maps of S2 of degree k equipped with the uni-form topology. The following theorem says that for each pair (A;�),its image F(A;�) is continuous in (u; v) and that as we vary (A;�)continuously in the C1 sense, the image F(A;�) varies uniformly in
2kS2.Theorem 1 The map F : Bmk ! 
2kS2 is continuous.This map restricted to a deformation retract of Bmk realizes thehomotopy equivalence proven by Gritsch [11]. The space of hyperbolicmonopoles is de�ned byMmk = f(A;�) 2 Bmk j dA� = �FAg=Gwhere G is the group of gauge transformations that are the identity at0 and the Hodge star is taken with respect to the hyperbolic metric.De�ne Ratk(S2) to be the space of degree k rational self-maps of S2.Theorem 2 The restriction of F to monopoles de�nes a homeomor-phism F :Mmk ! Ratk(S2) :Note that there is no natural map between the space of based rationalmaps in Atiyah's theorem [1] and the space of unbased rational mapsappearing here. The quotients of these spaces by U(1) and SU(2)respectively are both isomorphic to the space of monopoles on theunframed bundle however there is still no natural map between them.The space Ratk(S2) naturally compacti�es to CP2k+1 [8] andMmkpossesses the Uhlenbeck compacti�cation [6].Theorem 3 The map F extends to a continuous map between therespective natural compacti�cations of the spaces of monopoles andrational maps.Atiyah and Hitchin [3] proved a weaker result for Euclidean monopolesto demonstrate the type of superposition properties of monopoles.Let 
 : R ! H3 be a (complete) geodesic. De�ne V
 � Mmk tobe the set of monopoles that possess a non-trivial bounded solution of(rt � i�)s = 0 along 
.Theorem 4 For each geodesic 
, V
 is a codimension 2 submanifoldof Mmk which extends to the compacti�cation.This is the analogue of Donaldson's �-map [10]. The spectral curve ofa monopole is a dual notion of the �-map.This paper is organized as follows. In Section 2 we describe hyper-bolic space and its relationship with the four-sphere. Sections 3, 4, 5,6 are devoted respectively to the proofs of Theorems 1, 2, 3, 4.3



2 Hyperbolic spaceWe will use spherical coordinates (u; v; r) or (u; v; t) onH3 where (u; v)parametrises spheres of constant radius and w = u+ iv is the inducedconformal structure. The coordinate t gives the hyperbolic distancefrom the centre of hyperbolic space while the alternative coordinate,r, gives the distance from the centre of hyperbolic space in terms ofthe round metric on S4 where we think of H3 � S4.The hyperbolic metric in (u; v; r) coordinates isds2 = 16r2(du2 + dv2)(1� r2)2(1 + u2 + v2)2 + 4dr2(1� r2)2 :We may put this also in terms of t; using r = tanh(t=2); as well as4r2=(1 � r2)2 = sinh2(t); to get:ds2 = 4sinh2(t)(du2 + dv2)(1 + u2 + v2)2 + dt2:2.1 From S4 to H3.As mentioned in the introduction, each U(1)-invariant connection de-�ned over S4 gives rise to a pair (A;�) de�ned over H3. To go fromH3to S4, one uses the removable singularities theorem of Sibner and Sib-ner [19] that says that a pair (A;�) with integral mass gives rise to aconnections over S4. Furthermore, since the natural metrics on S4 andH3�S1 are conformally equivalent, instantons give rise to monopoles.We work only with di�erentiable connections over S4 which gives arestricted space of pairs (A;�) over H3 since the theorem of Sibnerand Sibner only produces a W 1;2 connection over S4 in general.It is worth remembering here that U(1) invariance requires a liftingof the action to the bundle, so it follows that the connection and Higgs�eld must be abelian on the �xed S2 � S4. This �xed sphere manifestsitself as the boundary sphere in the ball model of H3. In contrast tothe Euclidean case, where the connection on the `sphere at in�nity' isof a standard type (the curvature is just the volume form of the spheremultiplied by the charge k), there is an entire moduli of connectionsin this hyperbolic case, and indeed Austin and Braam [5] have shownthat this `boundary value' actually determines the whole monopole.The following two lemmas show that connections over S4 give scat-tering coe�cients in (1) that decay fast enough for the appropriateanalysis, and that we can choose a gauge so that the L1 norm ofthe scattering coe�cients in (1) is controlled by the C1 norm of theconnections on S4.Lemma 2.1 rt � i� = d=dt� i�(1) +O(e�2t) :4



Proof. Let ~A be a smooth U(1)-invariant connection on S4. In aU(1)-invariant gauge put ~A = A + �d� where (A;�) is de�ned overH3. A natural coordinate system for H3 considered as a boundedsubset of S4 is the spherical coordinates (u; v; r) where (u; v) gives localcoordinates on S2 and r 2 [0; 1). If we replace r by the hyperbolicdistance from 0 2 H3, t = logf(1 + r)=(1 � r)g then since dt =2dr=(1 � r2) = 2 cosh2(t=2)dr we havert�dtd� = Ft�dtd� = Fr�drd� ) rt� = Fr�=2 cosh2(t=2)and similarly At = Ar=2 cosh2(t=2) :From rt� = @�=@t+ [Ar;�]=2 cosh2(t=2) we get@�=@t = (Fr� � [Ar;�])=2 cosh2(t=2)so j�(t)� �(1)j = j Z 1t ([Ar;�]� Fr�)=2 cosh2(t=2)dtj� Z 1t M=2 cosh2(t=2)dt =M=(e2t + 1)where jFr� � [Ar;�]j �M . Thusrt � i� = d=dt� i�(1) +O(e�2t)as required. 2Lemma 2.2krAt � i�� g � (rBt � i	)kL1(R+) � Ck ~B � ~AkC1(S4)where C depends only on a neighbourhood of ~A.Proof. If ~A; ~B are U(1)-invariant connections on S4 satisfyingk ~B � ~AkC1(S4) < �then on H3 the Higgs �eld 	 associated to ~B satis�es	(t)�	(1) = Z 1t ([Br;	]� FBr�)=2 cosh2(t=2)dtand the similar expression for � associated to ~A is given in the proof ofthe previous lemma. Let g be a U(1)-equivariant gauge transformationover S4 that satis�es g �	(1) = �(1). Then�(t)�	(t) = �(1)�	(1)+ Z 1t ([Ar;�]� FAr� � [Br;	] + FBr�)dt2 cosh2(t=2)	(t)� g �	(t) = 	(1)� g �	(1)+ Z 1t ([Br;	]� FBr� � g � [Br;	] + g � FBr�)dt2 cosh2(t=2)5



so if we choose g so that kg � ~B � ~Bk1 < �k ~Bk1 thenj�(t)� g �	(t)j � C�e�2tfor a constant C that depends only on the � neighbourhood of ~A.Similarly At � g � Bt � C�e�2t. ThuskrAt � i�� g � (rBt � i	)kL1(R+) � Ck ~B � ~AkC1(S4)where C depends only on a neighbourhood of ~A. 23 Scattering.In this section we will prove Theorem 1. The metric enters here only inthe �nite action condition. The Bogomolny equations are not neededuntil the next section. We will show that the solution of (1) variescontinuously with a continuous change of the geodesic 
 and the pair(A;�). It will follow that F(A;�) is both continuous and varies con-tinuously in (A;�) with respect to the uniform topology on 
2kS2.3.1 Levinson's Theorem.We begin by giving the proof of the following standard result on ordi-nary di�erential equations. This is a minor variation on the Euclideanmonopole treatment [12] combined with the better estimates suppliedfrom working over S4.Theorem 3.1 (Levinson [7]) For m1 � 0 � m2, the solutions ofthe `unperturbed' equationdzdt +  m1 00 m2 ! z = 0 (3)which are bounded as t ! 1; are in bicontinuous 1-1 linear corre-spondence with those of the `perturbed' equationdxdt +  m1 00 m2 !x+ f(t)x = 0 (4)on [0;1); where jf(t)j is bounded and lies in L1[0;1) Furthermore, ifx(t); z(t) are corresponding solutions then jx(t)� z(t)j ! 0 as t!1:Proof. Let P1 be the projection of C2 onto the subspace de�nedby the �rst basis vector and let P2 be the (complementary) projection6



onto that spanned by the second basis vector. Notice that we have a`fundamental matrix' solutionZ(t) =  e�m1t 00 e�m2t ! ;and that the �rst diagonal entry gives a solution which is bounded ast!1: Notice thatjZ(t)P1Z�1(s)j � 1 for t0 � s � t;jZ(t)P2Z�1(s)j � 1 for t0 � t � s:From the conditions on f; it follows that we can choose t1 > 0 suchthat � = Z 1t1 jf(t)j < 1:Let x(t) be any continuous function with k x k= supt�t1 jx(t)j <1; and de�neTx(t) = Z 1t Z(t)P2Z�1(s)f(s)x(s)ds� Z tt1 Z(t)P1Z�1(s)f(s)x(s)ds:This is well de�ned by the above properties, and alsok Tx k� Z 1t1 jf(s)jjx(s)jds � � k x k :In particular, the map x 7! z+Tx for any bounded continuous vectorfunction z(t) is a contraction mapping, so there exists a unique �xedpoint, i.e. a bounded continuous map x(t) such thatx(t) = z(t) + Tx(t): (5)But, ddt (Tx)(t) = � m 00 �m ! (Tx)(t) � f(t)x(t); so that if z(t)satis�es the unperturbed equation (3), then x(t) satis�es the perturbedequation (4), giving us our 1-1 correspondence. Also, equation (5)shows that this correspondence is linear. For bicontinuity, supposethat we have two correspondences, xi = zi + Txi; i = 1; 2; then:k z1 � z2 k � k x1 � x2 k + k Tx1 � Tx2 k� (1 + �) k x1 � x2 k;k x1 � x2 k � k z1 � z2 k + k Tx1 � Tx2 k;so that(1 + �)�1 k z1 � z2 k�k x1 � x2 k� (1� �)�1 k z1 � z2 k (6)which gives us bicontinuity on the interval [t1;1): But since solutionsare determined by their initial values, the same applies to [0;1):7



Finally, then, notice that jx� zj(t) = jTxj(t); and given � > 0; wecan �nd t2 > t1 such thatZ 1t2 k x k f(s)ds < �:Then, for t > t2; we have:jTx(t)j � �+ Z(t)P1 Z t2t1 jZ(s)�1f(s)j k x k ds� 2�;for t su�ciently large, since Z(t)P1 ! 0 as t!1: 2We can now analyse F(A;�) : S2 ! S2 de�ned in (2) for a given(A;�) 2 Bmk .Corollary 3.2 The map F(A;�)(u; v) is continuous in (u; v).Proof. We need to compare the solutions to (1) at nearby geodesics.Since the U(1)-invariant connection over S4 corresponding to the pair(A;�) is uniformly continuous and has uniformly continuous �rstderivatives, the results of Section 2.1 apply to give us L1 convergenceof the scattering coe�cients. Put m1 = m and m2 = �m into Theo-rem 3.1 and consider the solutions ofdxdt +  m 00 �m !x+ f(t)x = 0;dydt +  m 00 �m ! y + g(t)y = 0:We wish to show that if kf � gkL1 is small enough then the complexlines determined by x(0) and y(0) are close. For the moment let'sassume that kfkL1 is very small and g � 0 so y = z, the boundedsolution of (3). Then we can choose t1 = 0 in the proof of Theorem 3.1(kfkL1 < 1). Thusjx(0)� z(0)j = jTx(0)j � kfkL1kxk1 :Of course we need to normalize the vectors so that we are not simplyshowing that two small vectors have small norm. For this reason,choose jz(0)j = 1. Bicontinuity (6) gives us kxk1 � 1=(1 � kfkL1) sojx(0)� z(0)j � kfkL1=(1 � kfkL1)and this tends to zero as kfkL1 tends to zero as required. More gen-erally, when g is not identically zero, Theorem 3.1 gives the existenceof a fundamental matrix solution Y satisfyingdY=dt+  m 00 �m !Y + g(t)Y = 0 :8



The unbounded solution comes from considering the equationdydt +  m 00 �m ! y + f(t)y +mI = 0when we set m1 = 2m and m2 = 0 in the theorem. PutS = Y  emt 00 e�mt ! :This is a bounded matrix and z = S�1y satis�es the unperturbedequation (3) so we are back to the previous case of g � 0 by substi-tuting x and f with S�1x and S�1(f � g)S. Since S is bounded thesetwo substitutions satisfy the requirements. 2Corollary 3.3 The map F : Bmk ! 
2kS2 is continuous.Proof. We use the C1 topology on Bmk and the uniform topologyon 
2kS2. The proof is just a uniform version of the previous corol-lary. We could have proven both at once, however this way makes itclear that there are two issues. Again Section 2.1 applies here. Given(A;�) 2 Bmk , we get solutions y(t) along each geodesic that de�nethe continuous self-map of S2. Let x(t) denote the solutions alonggeodesics corresponding to a nearby connection. Using the terminol-ogy of the proof of the previous corollary, if we choose S to be unitaryat t = 0 and set jy(0)j = 1 we getjx(0)� y(0)j = jS�1(x(0)� y(0))j� kS�1(f � g)SkL1=(1� kS�1(f � g)SkL1)� Mkf � gkL1=(1�Mkf � gkL1)for some M depending on g (and hence on (A;�)) and independent off . Thus, connections that are C1 close to (A;�) produce continuousmaps that are C0 close. Of course, the rate of convergence dependson M(A;�) as expected. 2Corollary 3.4 The map F(A;�)(u; v) is di�erentiable in (u; v).Proof. In order not to confuse the parameter from the variable twe will notate the parameter value by a subscript. Suppose that in(4) fu(t) is di�erentiable in a parameter u, that k@fu=@u(t)kL1 isuniformly bounded in u and further, for simplicity, that kfu(t)kL1is small for each u. In order to show that @xu(0)=@u exists at u = 0we will study the following equation there.@x0@u (t) = Z 10 Z(t)P1Z�1(s)f@f0@u (s)x0(s) + f0(s)@x0@u (s)gds:9



We think of this as a contraction mapping for @x0=@u(t) sinceZ 10 Z(t)P1Z�1(s)@f0@u (s)x0(s)dsis bounded in t. We want to show that the unique �xed point of thisequation is the actual derivative of x as suggested by the notation.Lemma 3.5 limu!0 ����xu � x0u � @x0@u ���� (0) = 0 :Proof.����xu � x0u � @x0@u ���� (0) = Z 10 Z(t)P1Z�1(s)[fu(s)� f0(s)u (s)x0(s)� @f0@u (s)x0(s) + f0(s)xu � x0u � f0(s)@x0@u (s)]dsThis is a contraction mapping for (xu � x0)=u� @x0=@u sinceZ 10 Z(t)P1Z�1(s)[fu(s)� f0(s)u (s)� @f0@u (s)]x0(s)ds (7)is bounded. In fact, by the mean value theorem on the derivative ofthe connection over S4 (7) tends to 0 as u ! 0. Bicontinuity thenshows us that j(xu � x0)=u� @x0=@uj tends to zero as required. 2As in the proof of Corollary 3.2, the simplifying assumption on the sizeof kfu(t)kL1 can be removed by using a fundamental matrix solution Yto change the gauge. This completes the proof of the corollary. Whatwe have seen is that the continuous derivative of the connection overS4 gives both continuity and di�erentiability of the map on S2. Still,the continuity is uniform which gives uniform convergence of mapswhile the limit for the derivative is only pointwise. 2It is also true that when the pair (A;�) is smooth then F(A;�) issmooth.3.2 Homotopy equivalence.We will now show that F is onto and that the degree of F(A;�)corresponds to the charge of (A;�). This will follow from a discussionof the homotopy implications of the map F .It seems reasonable to conjecture that when restricted to the com-ponent Bmk , the map F is a homotopy equivalence. We have beenunable to show this however there is a deformation retract of Bmkwhere this is true. (After this deformation hyperbolic monopoles inBmk do not map to holomorphic maps in Ratk(S2).)10



First we will choose a gauge so that we may ignore the action ofthe gauge group. In each gauge orbit there is a unique connection thatis radially trivial. The existence follows from parallel transport andthe uniqueness from the fact that gauge transformations are requiredto be the identity at 0 2 H3. Now, de�neeAmk = f(A;�) 2 Bmk jAt = 0; � = tanh(t)�(u; v)g:This is easily seen to be a deformation retract of Bmk using the retrac-tion �(u; v; t) 7! �(u; v; �t) tanh(t)= tanh(�t) as � runs from 1 to 1and leaving A in radial gauge.Proposition 3.6 The restrictionF : eAmk ! 
2kS2is a homotopy equivalence.Proof. In order to show that F is onto we will construct a map� : 
2kS2 ! eAmk(de�ned only on the di�erentiable maps) such that F � � is the iden-tity. Then we will check that the �bre in eAmk of a point in 
2kS2 iscontractible.Let f : S2 ! S2 be a C1 map. De�ne �f : S2 ! su(2) bycomposing f with the embedding S2 ,! su(2) given by mapping S2to the sphere of radius m. It satis�es �(w)f(w) = i �m � f(w) whenwe think of f as taking values in the space of non-zero complex linesin C2. Let Bk(w) be a connection on the line bundle of Chern class kover S2. De�ne �(f) = (tanh(t)Bk(w); tanh(t)�f (w)) (8)It is easy to see that (tanh(t)Bk(w); tanh(t)�f (w)) 2 eAmk since itextends to a connection over S4 andZH3 FA ^ dA� = ZS21hFA;�i= 2m ZS2 iFB = 4�mk :To calculate F(�(f)) we must solve the scattering equation (1). When(A;�) is given by (8) we have _s(t) = i tanh(t)�f (w)s(t). By construc-tion, f(w) is an eigenvector of �f (w) with eigenvalue i � m. Thus(cosh(t))�mf(w) is the required solution and F(�(f)) = f .The �bre of f 2 
2kS2 is given byf(A;�) 2 eAmk j � = tanh(t)m�fg (9)The �bre is the a�ne space of radially trivial connections with U(1)-reduction at S2 determined by the Higgs �eld, which is contractible. 211



Corollary 3.7 For (A;�) 2 Bmk we have degF(A;�) = k.Proof. Simply move (A;�) to an element of eAmk under the contrac-tion. Then use the continuity of the degree, the charge and F . 2Corollary 3.8 For each k and m, the space Bmk is homotopy equiva-lent to 
2kS2.Proof. This just combines the homotopy equivalence de�ned by Fand the retraction described at the beginning of this section. Wehave also used the fact that the di�erentiable self-maps of S2 de�ne asubspace homotopy equivalent to the space of all continuous maps.24 Monopoles.From now on we will study only those pairs (A;�) (with integral mass)that satisfy the Bogomolny equationsdA� = �FAon H3. We will show that the monopoles correspond to rational mapsand this correspondence is a di�eomorphism.We write the Bogomolny equations �FA = dA� in these coordi-nates: put FA = Fuvdu ^ dv + Futdu ^ dt+ Fvtdv ^ dt; and so we getthree equations:Fut = �rv�; Fvt = ru�; Fuv = 4sinh2(t)(1 + jwj2)2rt�:We can re-express the �rst two of these equations in terms of w: ifwe set �@Aw = 12(ru + irv) then the two equations [ru;rt] = �rv�and [rv;rt] = ru� appear as the real and imaginary parts of the`integrability condition': [ �@Aw ;rt � i�] = 0:It is this fact which enables us to prove analytically that when (A;�)is a hyperbolic monopole the scattering de�nition of a map S2 ! CP 1is indeed a rational map.Proposition 4.1 The restriction of F to monopoles de�nes a mapF :Mmk ! Ratk(S2) :
12



Proof. Let (A;�) satisfy the Bogomolny equations and consider thebounded solution of the scattering equation(rt � i�)s = 0:Since [ �@Aw ;rt�i�] = 0 and s(w; t) is di�erentiable in w by Lemma 3.4,then �@Aws(w; t) is also a solution of the scattering equation. Moreover,�@Aws(w; t) is bounded in t since the derivative is bounded by construc-tion, and the connection matrix A �w is also bounded. Since there isexactly one bounded solution of the scattering equation we must have�@Aws(w; t) = �(w)s(w; t) for some function � independent of t. Att = 0 the connection matrix A �w(w; t) vanishes due to the choice ofcoordinate system, thus�@ws(w; 0) = �(w)s(w; 0)which is exactly the condition that a family of complex lines be holo-morphic. By Corollary 3.7 the map s(w; 0) has degree k so it is arational map. 24.1 Uniqueness of the rational mapIn this section, we show that each rational map CP 1 ! CP 1 is as-sociated to at most one monopole (up to framed gauge equivalence).This is fairly straightforward: we show that a monopole, and moregenerally any pair (A;�) satisfying 2/3 of the Bogomolny equations,is determined by a `metric' H on a trivialized bundle over H3: Fur-thermore, if (A;�) is a monopole then H satis�es a certain di�erentialequation. There is also a relative version of this: if H1;H2 are twomonopoles, then h = H�11 H2 satis�es a similar di�erential equation.Also, there is a measure �(h) = tr(h) � 2 of the size of h � I; andhence the distance between H1 and H2; which satis�es a di�erentialinequality D(�) � 0:Finally, we notice that if two monopoles have the same rationalmap, then �(h) is bounded on H3; and that the only such solutionsof D(�) � 0 are constants. Since h(0) = I; it follows that � must beidentically zero, and that the two monopoles must be framed gaugeequivalent.First of all, then, suppose we have a pair (A;�) satisfying theintegrability condition [ �@Aw ;rt � i�] = 0:Suppose also that it is framed at the origin. Then we simply solve theequation (rt � i�)g = 013



for g 2 End(E); starting with g(0) = I; given by the framing. Itfollows that the equation �@Awg = 0 is then automatically satis�ed fort > 0: Set H = g�g: This is the metric in the gauge de�ned by g;which depends only on the framing. It is straightforward to calculateA and � in terms of H in this new gauge: A0;1 = At � i� = 0by de�nition, and since the connection is unitary, we get A1;0 =H�1@wH; At + i� = H�1@tH: (For example, we can transform toa unitary gauge by g�1; where the (0,1) part of the connection mustbe ��@wg:g�1: Thus by unitarity the w part of the connection formmust be ��@wgg�1 + g��1@g�; and transforming back by g; we getg�1(��@wgg�1 + g��1@wg�)g + g�1(@w + �@w)g = h�1@wh; as claimed).By di�erentiating these formulae, we get formulae for the curvaturetensor, the Bogomolny tensor B(A;�) = �FA � dA�:B(A;�) = idt2  (1 + jwj2)2sinh2(t) �@w(H�1@wH) + @t(H�1@tH)! :Next, we have the relative version of this: if H1;H2 are two metricsobtained as above, then write (A1;�1); (A2;�2) for the two pairs onthe trivialized bundles (which we can thus identify if we wish). Seth = H�11 H2 2 End(E): Then we have@A1w + h�1@A1w h = @A1w + h�1@wh+ h�1[H�11 @wH1; h] = @A2w ;and so by the same calculation as before, or by replacing H with h;and @ by @A1 we get the gauge-invariant formula:B(A2;�2) = B(A1;�1)+ idt2  (1 + jwj2)2sinh2(t) �@A1w (h�1@A1w h) + @A1t (h�1@A1t h)! :Thus, if (A1;�1) and (A2;�2) are two monopoles, then we get aquantity h satisfying the (almost elliptic) equation(1 + jwj2)2 �@A1w (h�1@A1w h) + sinh2(t)@A1t (h�1@A1t h) = 0:De�ne D = (1 + jwj2) �@w@w + sinh2(t)@2t :If we multiply the last equation for h on the left by h; and take traces,we are able to deduce:Lemma 4.2 With h = H�11 H2 as above coming from two monopoles,D(tr(h)) � 0on H3 � f0g: 14



Remarks: (i) We have excepted the origin here since our coordinatesystem and D blow up there. However, h = I there, so it will notconcern us.(ii) This lemma, and indeed the whole line of attack, draws inspi-ration from [9].Proof. Since @w(tr(h)) = tr(@Awh); and so on, we haveD(tr(h)) = (1 + jwj2)2tr( �@A1w h:h�1@A1w h) + sinh2(t)tr(@A1t h:h�1@A1t h):Near any point, we can �nd an H1-orthogonal basis in which h isdiagonal. In such a basis, @A1t h and @A1w h will be Hermitian-adjointto @A1t h and �@A1w h respectively. It follows that the right-hand sideis positive. (The quantities involved are clearly gauge-invariant andreal). 2The crucial ingredient now is:Proposition 4.3 If (A1;�1) and (A2;�2) are framed monopoles thathave the same rational map, then tr(h) is uniformly bounded on H3:Then we useLemma 4.4 If � is a bounded real-valued function on H3 which sat-is�es D(�) > 0 whenever � > 0; and �(0) = 0; then in fact � � 0 onall H3:Remarks:(i) This is supposed to be just the maximum principle forthis Laplacian-like operator.(ii) Setting � = tr(h)� 2; it follows immediately that at most onemonopole can give rise to any particular rational map, since � = 0implies that h = I:Proof of Lemma 4.4. First of all notice that D(a+ bt) = 0 for anya; b 2 R: Hence, for any a; b > 0; � = � � a � bt satis�es D(�) � 0;and �(0) < 0; �(w; t) < 0 for all t� 0: It su�ces to prove that � � 0everywhere, for letting a; b! 0; the lemma follows. So suppose not fora contradiction: then there is some �nite point x where � is positiveand has a maximum. Also, � < 0 for t < t0 and t > t1; say. Onthe complement of this set, D is uniformly elliptic, and so � cannothave an interior maximum by the maximum principle. Thus � < 0everywhere, as required. 2Proof of Proposition 4.3. Suppose that the rational map is rep-resented by the family of complex lines �(w) = (a(w); b(w)) wherej�(w). Then there is some bounded function �(w) on CP 1 such thatthe section satisfying (rt � i�)s = 0 and s(0) = �(w) looks like�(w)e�mte1 for some unit vector e1 as t!1:We can �nd �(w) such that j�(w)j = 1 and the two vectors �(w)and �(w) form the columns of a unitary matrix F�1(w), say. If we15



solve (rt � i�)s = 0 starting at p�(w) + q�(w); with q 6= 0; then slooks like q�(w)�1emte2 for a unit vector e2 orthogonal to e1. Thusstarting with g(0) = F�1; g(t)�g(t) looks like� =  e�mt�(1 + o(1)) o(1)o(1) emt��1(1 + o(1)) !as t!1:And so, starting instead with g(0) = I; the term g(t)�g(t) lookslike F (w)��F (w) as t ! 1: But this is of course just our H: Thusthe asymptotic behaviour is determined by F; which depends only onthe rational map, and a bounded function �: (A di�erent choice of Fwill only change the o(1) terms, or �).Finally, then, suppose we have two metrics Hi; i = 1; 2; comingfrom monopoles with the same rational map. Then h = H�11 H2 lookslike F�1��11 �2F as t!1: Here �i are as above, depending on per-haps di�erent functions �i: An easy check shows that tr(h) is indeedbounded as t!1 (indeed the limit is determined only by �1=�2), asrequired. 24.2 A linearized version of uniquenessIn this section, we shall describe the linearized map from the modulispace of monopoles to the moduli space of rational maps. That is, wedescribe the derivative of our map, as a map on tangent spaces. Wewill show that the derivative is an isomorphism at each point. Thiswill allow us to employ the inverse function theorem and deduce thatthe image of F is open.First of all, we need to describe what the tangent spaces are. LetRk denote the space of rational maps from CP 1 to itself of degree k:Then clearlyTf (Rk) = H0(CP 1; f�(T (CP 1)))= H0(CP 1; f�(O(2))) �= H0(CP 1;O(2k));which has dimension 4k + 2:Linearising the Bogomolny equations, we get the following condi-tion on a tangent vector (a; �) to the space of pairs at (A;�):�dAa = dA�+ [a;�]:Braam [6] described the tangent space of the moduli space of hyper-bolic monopoles in detail. He represented the pairs (a; �) as U(1)-invariant elements of the kernel of a Dirac operator on S4. The di-mension he gets, from an equivariant index calculation, is 4k�1. Since16



we have an extra factor of su(2) coming from in�nitesimal change ofthe frame we get a 4k + 2-dimensional tangent space as expected.Note. One might impose the condition of orthogonality to com-pactly-supported gauge transformations, to give a second equation:�dA � a+ [�; �] = 0:Over R3, Taubes [21] has shown that the resulting space has di-mension 4k, and includes the special vector dA�; corresponding toa non-compactly-supported gauge transformation. David Stuart [20]has shown that the vectors (a; �) in this 4k-dimensional space arefairly well-behaved: they're all in L2; and indeed when split intothe usual `longitudinal' and `transverse' components, the former de-cay like r�2; and the latter decay exponentially. As pointed out byAustin and Braam [5], the di�erent values of the curvature of hyper-bolic monopoles on the sphere at in�nity prevent a similar result fromholding over H3.Lemma 4.5 For any smooth pair (a; �) satisfying the linearized Bo-gomolny equations at a monopole (A;�); one can de�ne � 2 
0(sl2)by �(0) = 0 and (rt � i�)� = �(ar � i�)along rays out of the origin. Then(1 + jwj2)2 �@Aw@Aw (� + ��) + sinh2(t)(@At � i�)(@At + i�)(� + ��) = 0:Remark: If (a; �) comes from a sequence (At;�t) of monopoles, thenwe get a sequence gt satisfying (rAtt � i�t)gt = 0; and � will be@tg � g�1; evaluated at t = 0: Also, setting Ht = g�t gt, g�1(� + ��)g =H�1@tH. We don't need to assume this sequence, though, and thisremark merely serves as motivation.Proof. We di�erentiate the de�ning equation for � with respect tow; to give: �@Aw (@At � i�)� = ��@Aw (at � i�):The Bogomolny equations tell us that [@At � i�; �@Aw ] = 0; and so thelinearized equations (just di�erentiate this) tell us that(@At � i�)(a �w) = �@Aw (at � i�);where here we have written a �w for the d �w component of a: Hence(@At � i�)(�@Aw�) = �(@At � i�)(a �w):But a �w = �@Aw� = 0 at t = 0; so we deduce that a �w = �@Aw� for all (r; w):We can take the adjoints of these equations to give us:(@At + i�)�� = (at + i�); @Aw�� = aw:17



We now use the third of the linearized Bogomolny equations, namely(@At � i�)(ar+ i�)�(@At + i�)(ar� i�) = �(1 + jwj2)2sinh2(t) (�@Awaw�@Awa �w):Putting all this in terms of �; then, we get: (@At � i�)(@At + i�) + (1 + jwj2)2sinh2(t) �@Aw@Aw! (� + ��)= " i(1 + jwj2)22sinh2(t) Fw �w + @t�; �# ;and the right hand side is zero since (A;�) satis�es the Bogomolnyequations. 2Corollary 4.6 With � as in lemma 4.5,D(j� + �j2) � 0:Proof. We have j�+��j2 = tr((�+��)2):Writing hB;Ci = tr(BC); itis easy to see that �@w@whB;Bi = 2h�@Aw@AwB;Bi+ 2h@AwB; �@AwBi: WithB = (� + ��); B = B�; and so h@AwB; �@AwBi � 0: A similar calculationwith (@Aw ; �@Aw ) replaced by (@t+i�; @t�i�); together with the previouslemma, then proves the claim. 2With this corollary and our previous knowledge of D; we see thatif � is bounded, then j� + ��j must be constant (and so zero). Noticethat if � = ���; then a = �dA�; � = �[�; �];that is, � corresponds to an in�nitesimal gauge transformation. Weshall show that � determines a tangent vector to the space of rationalmaps, and that if this tangent vector is zero then � is bounded on H3:Proposition 4.7 If the image of (a; �) in Tf (Rk) is zero, then �; asde�ned above, is bounded on H3; and so by the preceding corollary,� = ���:Proof. Over each ray w = constant, consider sections s� which satisfy(@A�r � i�� )s� = 0; and which decay as t!1; for a (smooth) path ofpairs (A� ;�� ): We proved in Section 3 that s� depends di�erentiablyon � . The value of f� (w) 2 CP 1 is then represented by s� (0) 2 C2:Suppose that s0(0) = (a; b) and @�s� (0)j�=0 = (c; d). The value of@� (f� )(w) is proportional to ad� bc:18



In terms of the tangent vector (a; �) = (@� (A� ); @� (�� )); then, wehave to consider the di�erential equation(rt � i�)� = �(at � i�)s;where s is a solution to (rt � i�)s = 0 which decays as t!1 alongeach line. This will have a one-dimensional space of solutions whichdecay as t ! 1 (we are using some nice decay properties of (a; �)here), each element di�ering by a multiple of s; and in fact decayingat least as fast as e�mt as t!1. Thus setting s = (a; b) and � = (c; d)as before, the quantity ad� bc will depend only on s; and whether itis zero or not will depend only on (a; �):So we have to deal with the situation where � as de�ned above issuch that �(0) is proportional to s(0): First of all, notice that(rt � i�)(�g � s(0)) = �(at � i�)s:Here we let rt and � act on �:g(s(0)) by multiplication on the left(rather than the adjoint action that we were using for � before). Thisequation follows by using (rt � i�) = g � @t � g�1; and s = g � s(0):Since �(0) = 0; �g � s(0) will be � plus a multiple of s in the casewe are considering. Thus we have proved that � � s decays like e�mtas t!1: The proof is thus completed by the following lemma. 2Lemma 4.8 With s; � as above, if � � s decays like e�mt as t ! 1then � is bounded on H3:Remark: Since � is continuous, it su�ces to show that it is boundedas t!1 along each line.Proof. Applying Levinson's theorem to the adjoint representation,one gets a (complex) basis ei for sl2 such that g(e1)g�1 tends to aconstant, g(e2)g�1 grows, and g(e3)g�1 decays as t!1: Indeed onecan �nd � 2 SL2(C) such that ei = Ad(�)(fi); where fi is the followingbasis for sl2:  1 00 �1 ! ;  0 01 0 ! ;  0 11 0 ! :Put another way, we can set ĝ(t) =  e�mt 00 emt ! ; and then wecan �nd � such that Ad(g�ĝ�1)(fi) tends to a (non-zero) constant ast!1 for each i: Hence g�ĝ�1 itself tends to a constant (in SL2(C))as t!1:Thus we can write � = Pi �i(t)Ad(g�)(fi); and we have s =g�(1; 0), up to a constant which we can ignore. So � � s = g�(�1; �2),and since g�ĝ�1 tends to a constant, we deduce that e�mt�1 and emt�219



decay as t!1: We thus deduce that �2 must decay, at least as fastas e�2mt: (Notice that Ad(g)(e2) grows like e2mt; so this tells us thatthe second component of � is O(1); as we require).To get the desired bound on the remaining components of � is morestraightforward: We have �i(0) = 0; and (@At � i�)� = �(at � i�)becomes Xi @t(�i)Ad(g�)(ei) = Ad(g�ĝ�1)(O(t�2));so we get�1 = Z t0 O(r�2)dr; �2 = Z t0 O(r�2) �e�2mrdr; �3 = Z t0 O(r�2) �e2mrdr:So we are able to deduce that �1; �2 tend to constants as t!1; andsee that �3 grows no faster than e2mt: Hence �iAd(g)(ei) is boundedfor i = 1; 3: Together with the previous result for i = 2; we are done.24.3 Surjection.Here we complete the proof of Theorem 2 by showing that the image ofF is closed and combining this with the result of the previous sectionthat the image of F is open.Proof of Theorem 2. Since we know something about the com-pacti�cation of the space of monopoles we can show that the imageof F is closed. Let ffng � imageF be a sequence that is Cauchy inthe C0 topology in Ratk(S2). It converges to f 2 Ratk(S2) and thequestion is whether f lies in the image of F . Let f(An;�n)g be a se-quence of monopoles mapping under F respectively to fn. There is asubsequence of this sequence of monopoles that converges to an idealmonopole (A;�). The continuity argument in Corollary 3.2 extendedto the compacti�cation then implies that F(A;�) = f as required(and in particular that (A;�) is a true monopole). An essentiallyequivalent way of looking at this is to leave the closedness issue un-til after the compacti�cation result (F extends) so closedness of theimage simply follows from the continuity of F .Now, the C0 norm gives a Banach manifold structure to the spaceof holomorphic maps. We have shown that with respect to this normthe map F :Mmk ! Ratk(S2)is di�erentiable. The linearized uniqueness proof together with thefact that the dimensions of the respective tangent spaces are 4k + 2shows us that at each point DF is an isomorphism. Thus we caninvoke the inverse function theorem so F is locally a homeomorphismand in particular its image is open.20



Since the space of rational maps of a �xed degree is connected itremains to show that the image of F is non-empty in each componentso then an open and closed non-empty set must consist of the entirecomponent and F is onto. Atiyah [1] proved the existence of hyper-bolic monopoles of integral mass and arbitrary charge. The techniquesused in [13] for Euclidean monopoles adapt to the hyperbolic case togive another proof of existence for arbitrary mass as well as an alter-native proof that F is onto. The global uniqueness then completesthe proof of Theorem 2. 25 Compacti�cation.In this section we will study the compacti�cation of the space of hy-perbolic monopoles. As usual we will think of a hyperbolic monopoleas an instanton on S4 invariant under the circle action.Theorem 5.1 (Uhlenbeck) There is a constant � > 0 such that ifeA is an anti-self-dual connection over B4 with kFeAkL2(B4) < � thenwe can put eA = d+ a in Coulomb gauge withkakW l;2(B41=2) � clkFeAkL2(B4) :The following lemma shows that we can apply Uhlenbeck's theoremat each point of H3 � S1.Lemma 5.2 Let eA be a U(1)-invariant instanton on H3 � S1 ofcharge 8�2mk. Given � as in Theorem 5.1 and x 2 H3 � S1 thenthe ball B around x of radius �sech2(t=2)=16�mk, where t is the hy-perbolic distance of the component of x in H3 from 0 2 H3 satis�eskFeAkL2(B) < �.Proof. The proof follows from the rather trivial observation that theradius of the circle through x is sech2(t=2)=2 so there are �=8�2mkdisjoint balls each of which contributes the same to the charge byU(1)-invariance. Since the total charge is 8�2mk a ball can contributeat most �. 2On the �xed S2 � S4 we can use Uhlenbeck's theorem exceptat �nitely many points. This follows from the usual convergence ofmeasures argument. Thus, we can put any family of monopoles inCoulomb gauge and get uniform bounds on the 1-forms and theirderivatives. By the Arzela-Ascoli theorem there is a uniformly (in factsmoothly) convergent subsequence and the limiting 1-form representsan anti-self-dual connection. We can see that the limiting instanton isa monopole, i.e. it is U(1)-invariant, in two ways. Braam [6] showed21



that the sequence of gauges chosen by Uhlenbeck can be chosen to beU(1)-equivariant so that the limiting connection is U(1)-invariant. Healso showed that the singularity is removed with a U(1)-equivariantgauge transformation. Alternatively, we can use the estimates ob-tained in four dimensions on the connection in three dimensions to-gether with uniform estimates on the Higgs �eld to get convergenceon H3. The uniform estimates on the Higgs �eld follow easily fromthe fact that it satis�es the maximum principle. Braam also showedthat a sequence of monopoles loses charge in multiples of m.Thus, the moduli space of hyperbolic monopoles can be compact-i�ed by considering ideal connectionsMmk = [lMml � Sk�l(S2)where Sk�l(S2) is the (k�l)-fold symmetric product of the two-sphere.Similarly we can de�ne a compacti�cation of Ratk(S2) byRatk(S2) = [lRatl(S2)� Sk�l(S2) :These spaces are topologized using limits of sequences. We haveRatk(S2) �= CP2k+1 [8].Away from the singular points on S2 we have uniform convergenceso the results of Section 3 apply to show that locally the rational mapsconverge to the expected rational map. Thus, the limiting monopoleof lower charge corresponds, as expected, to the limiting rational mapof lower charge. It remains to show that the points in Sk�l(S2) corre-spond.Lemma 5.3 Given x 2 S2 and a sequence of monopoles f(An;�n)gwith corresponding rational maps fF(An;�n)g the monopoles bubbleo� at x if and only if the rational maps bubble o� at x.Proof. By the results of Section 3 if f(An;�n)g does not bubble o�at x then there is a uniformly convergent subsequence in a neighbour-hood of the geodesic 
 joining x to 0 2 H3 and thus the solutionsof (rnt � i�n)sn = 0 along 
 converge to a non-trivial solution of(r1t � i�1)s1 = 0. For the rational map to bubble o� s1(0) mustvanish. Thus s1(t) would vanish identically, contradicting the non-triviality of the limit.In the other direction, if the sequence of rational maps does notbubble o� at x then we can de�ne a sequence of good gauges in aneighbourhood of the geodesic 
 as in Section 4.1 that converge to agood gauge. With respect to these good gauges the monopoles aresmooth. 2
22



Proposition 5.4 Let f(An;�n)g be a sequence of monopoles thatconverges to the ideal monopole (A1;�1; P ) where (A1;�1) 2Mmland P 2 Sk�l(S2). Then fF(An;�n)g converges to the ideal rationalmap (F(A1;�1); P ).Proof. We will solve the scattering equation (1) for (A1;�1) in thegauge supplied by Uhlenbeck's compactness theorem before removingthe singularity with a gauge transformation. Suppose the rationalmap loses charge lj at xj 2 S2. For z in a neighbourhood of xj thesolution sz(t) of (1) along the geodesic de�ned by z looks like((z � xj)ljp(z); (z � xj)ljq(z))when evaluated at t = 0. Choose the unitary gauge transformationg in this neighbourhood de�ned by multiplying the one-dimensionalsubspace generated by sz(t) by exp (�ilj�) and multiplying the orthog-onal subspace by (exp ilj�). It is easy to see that this has removed thesingularity of the rational map. By Lemma 5.3 this new gauge is non-singular. Kronheimer and Mrowka [18] show that the winding numberof g at xj times the mass exactly measures charge of the monopolethat is lost. Thus the result follows. 2We can use the topology on CP2k+1 and the map F to inducea good topology on the compacti�cation of the space of monopoles.What we have shown in this section is that this topology agrees withthe C1 topology away from ideal connections. We have proven Theo-rem 3, i.e. F :Mmk ! Ratk(S2)extends to a continuous map between their compacti�cations.6 The �-map on geodesics.In this section we will show how to associate a codimension two sub-manifold in the moduli space to a geodesic in H3. This is the analogueof the �-map of Donaldson.Let 
 : R! H3 be a geodesic. De�neG
 :Mmk �PW 1;2(R)! L2(R)by G
(A;�; s) = 
�(rA� i�)s. By PW 1;2(R) we mean the projectivespace (W 1;2(R)nf0g)=C� . Put V
 = �(G�1
 (0)) where the map� :Mmk �PW 1;2(R)!Mmkgives projection onto the �rst factor. So V
 is the space of monopolesthat have 
 as a `spectral line'. 23



Lemma 6.1 The subspace V
 is a submanifold of codimension 2.Proof. This lemma follows from the fact that along each geodesic thescattering operator is an index 0 Fredholm operator with kernel atmost 1-dimensional. We omit some details since the lemma will alsofollow from the symmetry argument in Lemma 6.3. The map G
 isthe section of a bundle overMmk �PW 1;2(R) with linearisation givenby D(A;�;s)G
(a; �; �) = (at � i�)s+ (rAt � i�)�for (a; �; �) 2 T(A;�)Mmk � TsW 1;2(R). This is a surjective Fredholmoperator so G
 is transverse to the zero section and its zero set isa submanifold. The restriction of the projection � to this zero setde�nes a homeomorphism to V
 . The dimension of V
 follows fromthe calculation of the index of DG
 . Alternatively, one can use DG
to construct a determinant line bundle to see the (real) codimension2 property more easily. 2Lemma 6.2 For any two geodesics 
 and 
0 there is an isomorphismV
 �= V
0 .Proof. First notice that SL(2;C), the isometries of H3, acts transi-tively on the space of geodesics in H3. Since the submanifold V
 doesnot depend on the framing of the bundle the induced SL(2;C) actionon Mmk =SU(2) gives the result. 2Proposition 6.3 The submanifold V
 extends to the compacti�cationof Mmk .Proof. By Lemma 6.2 we can choose 
 to contain 0 2 H3. Let(A;�) 2 V
 . Then there exists s 2W 1;2(R) with(rt � i�)s = 0 (10)where t parametrizes 
. For t > 0 this is just the scattering equation(1) so s(0) gives F(A;�) evaluated at the point z corresponding to
. Put � = �t for t < 0. Then (10) becomes (r� + i�)s = 0along the geodesic corresponding to ẑ, the antipodal point of z. Letr 2W 1;2(R+) satisfy (r� � i�)r = 0 so r(0) gives F(A;�) evaluatedat ẑ. Then 0 = Z 10 h(r� + i�)s; rid�= Z 10 dhs; ri=d� � Z 10 hs; (r� � i�)rid�= �hs(0); r(0)i 24



so (in a�ne coordinates)F(A;�)(z)F(A;�)(ẑ) = �1 (11)The converse is also true: if (A;�) satis�es (11) then there existss 2W 1;2(R) satisfying (10) along 
.This is easily seen to be a codimension 2 submanifold of the spaceof rational maps and hence of the space of monopoles. Furthermore,this description makes it clear that V
 extends to a closed submanifoldin the compacti�cation since (11) makes sense in CP2k+1. 2Since SL(2;C) is the group of isometries of H3 it acts on the spaceof (unframed) monopoles. If we choose a trivialisation of the bundleover H3 then the action lifts to an action on the space of framedmonopoles. This induces an action of SL(2;C) on Ratk(S2) which isa perturbation of the natural action of SL(2;C) on Ratk(S2) com-ing from acting on the domain S2. The two actions coincide whenrestricted to the subgroup SU(2). In order to see V
 or the spectralcurve of a monopole more explicitly we would need to better under-stand the perturbed action of SL(2;C) on Ratk(S2) or similarly thecomplex structure on the moduli space. The action of SL(2;C) isintimately related to the issue of choosing a di�erent base point inH3 and understanding the relationship between the di�erent rationalmaps obtained each way. A limit case of this issue would bring inthe relationship between the rational map we have obtained and thebased rational map obtained by Atiyah [1].Acknowledgements. We would like thank the referess for usefulcomments. The second author would also like to express his gratitudeto Professor Ralph Cohen for many useful conversations.References[1] M.F. Atiyah. Magnetic monopoles in hyperbolic space. In Pro-ceedings of the International Colloquium on Vector Bundles, TataInstitute, Bombay, 1984.[2] M.F. Atiyah. Instantons in two and four dimensions. Comm.Math. Phys., 93 (1984), 437-451.[3] M.F. Atiyah and N.J. Hitchin. The geometry and dynamicsof magnetic monopoles. Princeton University Press, Princeton,1988.[4] M.F. Atiyah and J.D.S. Jones. Topological aspects of Yang-Millstheory. Comm. Math. Phys., 61 (1978), 97-118.25
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