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Abstract

We prove that the space of SU(2) hyperbolic monopoles based at
the centre of hyperbolic space is homeomorphic to the space of (un-
based) rational maps of the two-sphere. The homeomorphism extends
to a map of the natural compactifications of the two spaces. We also
show that the scattering methods used in the study of monopoles apply
to the configuration space for hyperbolic monopoles giving a homo-
topy equivalence of this space with the space of continuous self-maps
of the two-sphere.

AMS classification: 81T13, 53C07, 55P10

1 Introduction.

It has long been known that moduli spaces of monopoles and holomor-
phic maps of the two-sphere are intimately related. In [1, 2] Atiyah
introduced the space of hyperbolic monopoles showing that for inte-
gral mass the space of charge k& SU(2) monopoles based at infinity is
isomorphic to the space of degree k based holomorphic self-maps of
the two-sphere. His approach was to identify hyperbolic monopoles as
instantons over the four-sphere invariant under a circle action. Sib-
ner and Sibner [19] justified this identification using the natural decay
conditions on monopoles suggested by Atiyah.

The similarity between the natural compactifications of the space
of monopoles and the space of rational maps of the two-sphere suggests
that Atiyah’s map extends to the compactifications. This paper arose
out of the study of that question. Unfortunately the framing condition
obstructs the desired compactification since bubbling at the basepoint
is forbidden. To get around this it is quite natural to put the basepoint,
instead, at an interior point of hyperbolic space. Murray suggested
the study of such spaces in [16]. Uniform bounds on the curvature
of hyperbolic monopoles at interior points prevents bubbling there,
allowing our study to proceed.



This novel choice of basepoint means that we cannot use Atiyah’s
results. In particular, we are considering a moduli space that has
a bigger dimension. Still, we will prove there is a correspondence
between monopoles and rational maps in this setting. The algebro-
geometric methods employed by Atiyah seem to be limited in the study
of the question of compactifying since the natural compactification
associated to holomorphic bundles is the Gieseker compactification
rather than the Uhlenbeck compactification of instantons which we
require. Jun Li [15] showed how the Gieseker compactification of
the space of holomorphic bundles is in some sense bigger than the
Uhlenbeck compactification. In this paper we use the more suitable
scattering methods used by Hitchin [12] in his study of Euclidean
monopoles and suggested by Atiyah for hyperbolic monopoles.

The homotopy theory of the underlying configuration spaces re-
spectively given by connections that do not satisfy the Bogomolny
equations and continuous self-maps of the two-sphere is well-under-
stood [4]. Using the holonomy of the connections or the uniqueness
of classifying spaces the respective configuration spaces can be shown
to be homotopy equivalent. One satisfying part of the scattering ap-
proach described here is that it produces the homotopy equivalence
directly, avoiding the usual separate treatment.

We consider monopoles only with integer mass m. This is because
the methods we use rely heavily on estimates supplied by working
over the four-sphere. Still, one might expect that our results can
be extended to arbitrary mass, especially considering the studies in
(14, 17].

Define BY" to be the space of C' connections modulo gauge trans-
formations on a framed SU(2) bundle E over S* invariant under a
U(1)-action where the weight of the U(1)-action is m and 2km =
co(E). Equivalently,

||®]| = m at oo and / FxNda® = 4nmk .
H3

We think of S* — 82 ~ H3 x S' where ~ denotes the conformal
equivalence of metrics on the two spaces. The gauge transformations
are required to be the identity at the basepoint and we choose the
basepoint to lie off the fixed point sphere.

We will equivalently describe any element of B}” by a pair (4, ®).
Given such a pair, along radial geodesics beginning at 0 € H? consider
bounded solutions of the scattering equation

Vis —ids =0 (1)

Each radial geodesic corresponds to a point (u,v) € S2.  Define

F(u,v) : B® — CP' by
F(u,0) (A, @) = 5(,,)(0) € C? (2)



where, up to a constant multiple, s, ,)(t) is the unique bounded solu-
tion of (1) along the geodesic corresponding to (u,v). It is well-defined
since any gauge transformation fixes the frame at 0. Let Q252 be the
space of continuous self-maps of S? of degree k equipped with the uni-
form topology. The following theorem says that for each pair (A, ®),
its image F(A, ®) is continuous in (u,v) and that as we vary (A, ®)
continuously in the C' sense, the image F(A, ®) varies uniformly in
0252

Theorem 1 The map F : B — Q252 is continuous.
p k k

This map restricted to a deformation retract of B} realizes the
homotopy equivalence proven by Gritsch [11]. The space of hyperbolic
monopoles is defined by

M ={(A, @) € B'| da® = +Fa}/G

where G is the group of gauge transformations that are the identity at
0 and the Hodge star is taken with respect to the hyperbolic metric.
Define Rat;,(S?) to be the space of degree k rational self-maps of S2.

Theorem 2 The restriction of F to monopoles defines a homeomor-
phism
F : M = Rat(5?) .

Note that there is no natural map between the space of based rational
maps in Atiyah’s theorem [1] and the space of unbased rational maps
appearing here. The quotients of these spaces by U(1) and SU(2)
respectively are both isomorphic to the space of monopoles on the
unframed bundle however there is still no natural map between them.

The space Raty,(S?) naturally compactifies to CP%**! [8] and M}
possesses the Uhlenbeck compactification [6].

Theorem 3 The map F extends to a continuous map between the
respective natural compactifications of the spaces of monopoles and
rational maps.

Atiyah and Hitchin [3] proved a weaker result for Euclidean monopoles
to demonstrate the type of superposition properties of monopoles.

Let v : R = H? be a (complete) geodesic. Define V, C M} to
be the set of monopoles that possess a non-trivial bounded solution of
(Vi —i®)s = 0 along 7.

Theorem 4 For each geodesic vy, V., is a codimension 2 submanifold
of MJ* which extends to the compactification.

This is the analogue of Donaldson’s u-map [10]. The spectral curve of
a monopole is a dual notion of the y-map.

This paper is organized as follows. In Section 2 we describe hyper-
bolic space and its relationship with the four-sphere. Sections 3, 4, 5,
6 are devoted respectively to the proofs of Theorems 1, 2, 3, 4.



2 Hyperbolic space

We will use spherical coordinates (u, v,7) or (u,v,t) on H? where (u,v)
parametrises spheres of constant radius and w = u + 4v is the induced
conformal structure. The coordinate ¢ gives the hyperbolic distance
from the centre of hyperbolic space while the alternative coordinate,
r, gives the distance from the centre of hyperbolic space in terms of
the round metric on §* where we think of H? C S*.

The hyperbolic metric in (u,v,r) coordinates is

1672 (du? + dv?) 4dr?
(1—7r2)2(1 +u? +v2)2 (1 -r2)%

ds® =

We may put this also in terms of ¢, using r = tanh(¢/2), as well as
472 /(1 — r?)? = sinh?(t), to get:

2 _ 4sinh®(t)(du® + dv?)

dt’.
(14 u? + v?)? *

ds

2.1 From S* to H3.

As mentioned in the introduction, each U(1)-invariant connection de-
fined over S* gives rise to a pair (A, ®) defined over H3. To go from H?
to S*, one uses the removable singularities theorem of Sibner and Sib-
ner [19] that says that a pair (A4, ®) with integral mass gives rise to a
connections over S*. Furthermore, since the natural metrics on S* and
H? x S' are conformally equivalent, instantons give rise to monopoles.
We work only with differentiable connections over S* which gives a
restricted space of pairs (A, ®) over H? since the theorem of Sibner
and Sibner only produces a W'? connection over S* in general.

It is worth remembering here that U (1) invariance requires a lifting
of the action to the bundle, so it follows that the connection and Higgs
field must be abelian on the fixed S? ¢ S*. This fixed sphere manifests
itself as the boundary sphere in the ball model of H3. In contrast to
the Euclidean case, where the connection on the ‘sphere at infinity’ is
of a standard type (the curvature is just the volume form of the sphere
multiplied by the charge k), there is an entire moduli of connections
in this hyperbolic case, and indeed Austin and Braam [5] have shown
that this ‘boundary value’ actually determines the whole monopole.

The following two lemmas show that connections over S* give scat-
tering coefficients in (1) that decay fast enough for the appropriate
analysis, and that we can choose a gauge so that the L' norm of
the scattering coefficients in (1) is controlled by the C' norm of the
connections on S4.

Lemma 2.1

Vi —i® =d/dt —i®(c0) + O(e ) .



Proof. Let A be a smooth U(1)-invariant connection on S*. In a
U(1)-invariant gauge put A = A 4+ ®df where (A, ®) is defined over
H?. A natural coordinate system for H? considered as a bounded
subset of S is the spherical coordinates (u, v, ) where (u, v) gives local
coordinates on $% and r € [0,1). If we replace r by the hyperbolic
distance from 0 € H®, t = log{(1 + r)/(1 — r)} then since dt =
2dr/(1 — r?) = 2 cosh?(t/2)dr we have

V,0dtdf = Fjydtdd = Fgdrdd = V,® = F,5/2 cosh?(t/2)

and similarly
Ap = A, /2cosh?(t/2) .

From V;® = 9®/0t + [A,, ®]/2 cosh?(t/2) we get
00/0t = (Fpg — [Ar, ®])/2 cosh?(t/2)
SO

0(0) -~ 0()| = | [ (14 8] - ) 2c05m 1/2)d

IN

/°° M2 cosh®(£/2)dt = M/ (e + 1)

where |Frg — [A,, ®]| < M. Thus
Vi —i® =d/dt — i®(c0) + O(e™ )

as required. O

Lemma 2.2
IV} —i®—g- (V] —i0)| 1y r+) < ClIB — Al| o1 (g4
where C depends only on a neighbourhood of A.
Proof. If A, B are U(1)-invariant connections on S* satisfying
||B - 1‘1||(11(S4) <e€
then on H? the Higgs field U associated to B satisfies
W(t) — W(o0) = /toc([Br, W] — FB)/2.cosh?(t/2)dt

and the similar expression for ® associated to A is given in the proof of
the previous lemma. Let g be a U(1)-equivariant gauge transformation
over S* that satisfies g - ¥(00) = ®(oc). Then

O(t) —U(t) = P(oo) — V(o)
< ([A,, ®] — F4 — [By, V] + F5)dt
- /t 2cf)sh2(t/2) :
U(t)—g-U(t) = W(oo)—g-¥(0)
o° ([Bra\IJ]_FrB_g[Bra\Ij]_*—gFrB)dt
- /t 6200sh2(t/2) ;



so if we choose ¢ so that ||g - B — B||os < €||B]|lo then
|B(t) —g - W(t)] < Cee ™

for a constant C' that depends only on the e neighbourhood of A.
Similarly A4; — ¢ - B; < Cee?t. Thus

IV} —i® —g- (VP —i0)| 1 r+) < C|IB — Al| o1 (g4

where C depends only on a neighbourhood of A. O

3 Scattering.

In this section we will prove Theorem 1. The metric enters here only in
the finite action condition. The Bogomolny equations are not needed
until the next section. We will show that the solution of (1) varies
continuously with a continuous change of the geodesic v and the pair
(A, ®). It will follow that F(A, ®) is both continuous and varies con-
tinuously in (A, ®) with respect to the uniform topology on Q252

3.1 Levinson’s Theorem.

We begin by giving the proof of the following standard result on ordi-
nary differential equations. This is a minor variation on the Euclidean
monopole treatment [12] combined with the better estimates supplied
from working over S*.

Theorem 3.1 (Levinson [7]) For my > 0 > mag, the solutions of
the ‘unperturbed’ equation

dz my; 0

dt ( 0 mo > ( )
which are bounded as t — oc, are in bicontinuous 1-1 linear corre-
spondence with those of the ‘perturbed’ equation

dx my; 0 _
E+< 0 m2>m+f(t).7:—0 (4)

on [0,00), where |f(t)| is bounded and lies in LEO 00) Furthermore, if
x(t), z(t) are corresponding solutions then |z(t) — z(t)| — 0 as t — oo.

Proof. Let P; be the projection of C? onto the subspace defined
by the first basis vector and let P, be the (complementary) projection



onto that spanned by the second basis vector. Notice that we have a
‘fundamental matrix’ solution

e mt 0
Z(t) = ( 0 e*TI’LQt ) 3

and that the first diagonal entry gives a solution which is bounded as
t — oo. Notice that

Z(t)PZ 7 (s)| < 1 for tg < 5 < t,

Z(t)PyZ (s)| < 1 for tg < t < s.

From the conditions on f, it follows that we can choose t; > 0 such
that

o= [Tl <1

t1

Let z(t) be any continuous function with || z ||= sup;>, |z(?)] <
oo, and define

Txz(t) = '/too Z(t)PoZ  (s) f(s)z(s)ds — tZ(t)PIZA(s)f(s)m(s)ds.

Jt

This is well defined by the above properties, and also
oC
ITal< [ 1@ lats)ds <0z -
1

In particular, the map z — z 4+ Tz for any bounded continuous vector
function z(¢) is a contraction mapping, so there exists a unique fixed
point, i.e. a bounded continuous map z(t) such that

2(t) = 2(t) + Ta(t). (5)
But, 4(Tz)(t) = — ( o _2n ) (Tz)(t) — f(t)z(t), so that if z(t)

satisfies the unperturbed equation (3), then x(¢) satisfies the perturbed
equation (4), giving us our 1-1 correspondence. Also, equation (5)
shows that this correspondence is linear. For bicontinuity, suppose
that we have two correspondences, x; = z; + T'z;,1 = 1,2, then:

21 =2 | < o1 =22l + || Tor —Txa [[< (1+0) | 1 — 22 ],
fz1 =z || < (21 =2+ | Tz — Tz |,
so that

A+ "z —z <z -2 <=0 21—z (6)

which gives us bicontinuity on the interval [t;, o0). But since solutions
are determined by their initial values, the same applies to [0, o).

7



Finally, then, notice that |z — z|(¢) = |T'z|(¢), and given € > 0, we
can find t9 > 1 such that

[Tl fs)ds < e

L2

Then, for ¢t > to, we have:

Ta(t) <e+ZwHAbZ®1ﬂ@WxH%
< 2e,

for ¢ sufficiently large, since Z(t)P; — 0 as t — oo. a

We can now analyse F(A4, ®) : §2 — S? defined in (2) for a given
(A, D) € B}

Corollary 3.2 The map F(A, ®)(u,v) is continuous in (u,v).

Proof. We need to compare the solutions to (1) at nearby geodesics.
Since the U(1)-invariant connection over S* corresponding to the pair
(A, ®) is uniformly continuous and has uniformly continuous first
derivatives, the results of Section 2.1 apply to give us L' convergence
of the scattering coefficients. Put m; = m and mo = —m into Theo-
rem 3.1 and consider the solutions of

dx
—T+<73 70 )m#—f(t)sz,

dt m
dy m 0
%Jr(() _m>y+g(t)y0-

We wish to show that if ||f — ¢||z1 is small enough then the complex
lines determined by z(0) and y(0) are close. For the moment let’s
assume that [|f]|;1 is very small and ¢ = 0 so y = z, the bounded
solution of (3). Then we can choose t; = 0 in the proof of Theorem 3.1
(Ifllz+ < 1). Thus

2(0) = 2(0)] = [Tz(O)] < [Ifll L+ [#lloo -

Of course we need to normalize the vectors so that we are not simply
showing that two small vectors have small norm. For this reason,
choose |z(0)| = 1. Bicontinuity (6) gives us ||z|co < 1/(1 —||f]/z1) so

|2(0) = 2(0)] < [[fllr /(L =1 fll11)

and this tends to zero as ||f]|;: tends to zero as required. More gen-
erally, when g is not identically zero, Theorem 3.1 gives the existence
of a fundamental matrix solution Y satisfying

m 0

dY/dt+< 0 _m>Y+g(t)Y:0.



The unbounded solution comes from considering the equation

—m

d 0
—y+<7;')7 >y+f(t)y+mf—0

when we set m; = 2m and m9 = 0 in the theorem. Put

emt 0
sr (70

This is a bounded matrix and z = S~!y satisfies the unperturbed
equation (3) so we are back to the previous case of ¢ = 0 by substi-
tuting z and f with S~ 'z and S~'(f —¢)S. Since S is bounded these
two substitutions satisfy the requirements. O

Corollary 3.3 The map F : B} — QzSQ 18 continuous.

Proof. We use the C! topology on B} and the uniform topology
on Q75?%. The proof is just a uniform version of the previous corol-
lary. We could have proven both at once, however this way makes it
clear that there are two issues. Again Section 2.1 applies here. Given
(A,®) € B}*, we get solutions y(t) along each geodesic that define
the continuous self-map of S2. Let x(t) denote the solutions along
geodesics corresponding to a nearby connection. Using the terminol-
ogy of the proof of the previous corollary, if we choose S to be unitary
at t = 0 and set |y(0)] = 1 we get

2(0) ()] =[S~ (z(0) — y(0))]
ISTH(f = 9) Sl /(1 = IISTH(f = 9)Sllin)
MIf =gl /(L= M[f =gllp)

for some M depending on g (and hence on (A, ®)) and independent of
f. Thus, connections that are C' close to (A4, ®) produce continuous
maps that are C? close. Of course, the rate of convergence depends
on M(A,®) as expected. |

VANVAN

Corollary 3.4 The map F(A, ®)(u,v) is differentiable in (u,v).

Proof. In order not to confuse the parameter from the variable £
we will notate the parameter value by a subscript. Suppose that in
(4) fu(t) is differentiable in a parameter w, that |0f,/0u(t)| 1 is
uniformly bounded in u and further, for simplicity, that || fy(¢)|71
is small for each u. In order to show that dz,(0)/0u exists at u = 0
we will study the following equation there.

0o
ou

0= [ Z200R7 6 0l + o) 2 ).

9



We think of this as a contraction mapping for dxg/0u(t) since

|7 2Pz )L )0 s)as

is bounded in . We want to show that the unique fixed point of this
equation is the actual derivative of = as suggested by the notation.

Lemma 3.5

. |z —z0  Oxg
lm | —— — —
u—0

(0)=0.

U ou

Proof.
fu(s ) — fo(s)

Ty — X0 87’0

/ 2ty 2 () 220D ()
8’1’0

- m() o(s) + fols )17*1%()8“()](]g

u

This is a contraction mapping for (z, — zo)/u — 0z¢/0u since

/ 2tz () 22 = 1ol)
is bounded. In fact, by the mean value theorem on the derivative of
the connection over S* (7) tends to 0 as u — 0. Bicontinuity then
shows us that |(z, — zo)/u — 0z¢/0u| tends to zero as required. O
As in the proof of Corollary 3.2, the simplifying assumption on the size

of || fu(t)]|71 can be removed by using a fundamental matrix solution Y’
to change the gauge. This completes the proof of the corollary. What
we have seen is that the continuous derivative of the connection over
S* gives both continuity and differentiability of the map on S2. Still,
the continuity is uniform which gives uniform convergence of maps
while the limit for the derivative is only pointwise. O

It is also true that when the pair (A, ®) is smooth then F(A, ®) is
smooth.

3.2 Homotopy equivalence.

We will now show that F is onto and that the degree of F(A, ®)
corresponds to the charge of (A, ®). This will follow from a discussion
of the homotopy implications of the map F.

It seems reasonable to conjecture that when restricted to the com-
ponent B}", the map F is a homotopy equivalence. We have been
unable to show this however there is a deformation retract of B}
where this is true. (After this deformation hyperbolic monopoles in
B do not map to holomorphic maps in Raty(S5?).)

10



First we will choose a gauge so that we may ignore the action of
the gauge group. In each gauge orbit there is a unique connection that
is radially trivial. The existence follows from parallel transport and
the uniqueness from the fact that gauge transformations are required
to be the identity at 0 € H3. Now, define

A = {(A,®) € B"|A; = 0, & = tanh(t)$(u, v)}.

This is easily seen to be a deformation retract of B}* using the retrac-
tion ®(u,v,t) — ®(u,v, At) tanh(¢)/tanh(At) as A runs from 1 to oo
and leaving A in radial gauge.

Proposition 3.6 The restriction
F o Af— 0387
18 a homotopy equivalence.

Proof. In order to show that F is onto we will construct a map
V28?5 AT

(defined only on the differentiable maps) such that F o v is the iden-

tity. Then we will check that the fibre in A7 of a point in Q752 is

contractible.

Let f : S — S? be a C' map. Define ¢y : S* — su(2) by
composing f with the embedding S? < su(2) given by mapping S?
to the sphere of radius m. It satisfies ¢(w)f(w) = i -m - f(w) when
we think of f as taking values in the space of non-zero complex lines

in C2. Let B*(w) be a connection on the line bundle of Chern class k
over S2. Define

v(f) = (tanh(t) B* (w), tanh ()¢ (w)) (8)

Tt is easy to see that (tanh(#)B*(w),tanh(t)¢;(w)) € A since it
extends to a connection over S* and

/ FyNdp® = / <FA,(I)>
JH3 JS2

= 2m 1Fg = 4mmk .
JS2

To calculate F(v(f)) we must solve the scattering equation (1). When
(A, @) is given by (8) we have $(t) = i tanh(t)¢s(w)s(t). By construc-
tion, f(w) is an eigenvector of ¢f(w) with eigenvalue i - m. Thus
(cosh(t)) ™™ f(w) is the required solution and F(v(f)) = f.

The fibre of f € Q752 is given by

{(A,®) € A | @ = tanh(t)me;} (9)

The fibre is the affine space of radially trivial connections with U(1)-
reduction at S? determined by the Higgs field, which is contractible. O

11



Corollary 3.7 For (A, ®) € B' we have degF (A, ®) = k.

Proof. Simply move (A, ®) to an element of .%TZ% under the contrac-
tion. Then use the continuity of the degree, the charge and F. O

Corollary 3.8 For each k and m, the space B} is homotopy equiva-
lent to QiSQ.

Proof. This just combines the homotopy equivalence defined by F
and the retraction described at the beginning of this section. We
have also used the fact that the differentiable self-maps of S? define a
subspace homotopy equivalent to the space of all continuous maps. O

4 Monopoles.

From now on we will study only those pairs (A, ®) (with integral mass)
that satisfy the Bogomolny equations

da® = xFy

on H3. We will show that the monopoles correspond to rational maps
and this correspondence is a diffeomorphism.

We write the Bogomolny equations xF4 = d4® in these coordi-
nates: put F4 = Fy,du A dv + Fydu A dt + Fydo A dt, and so we get
three equations:

4sinh?(t)

Fut = *vv(I)aE)t = vuq)aFm; = W t

We can re-express the first two of these equations in terms of w: if
we set 0 = %(Vu +iV,) then the two equations [V,,V,] = =V, ®
and [V,,V;] = V,® appear as the real and imaginary parts of the
‘integrability condition’:

04,V —i®] = 0.

It is this fact which enables us to prove analytically that when (A, ®)
is a hyperbolic monopole the scattering definition of a map $? — C'P!
is indeed a rational map.

Proposition 4.1 The restriction of F to monopoles defines a map

F : M — Rat(S?) .

12



Proof. Let (A, ®) satisfy the Bogomolny equations and consider the
bounded solution of the scattering equation

(Vt - ’L(I))S = 0.

Since [0/}, V;—i®] = 0 and s(w, t) is differentiable in w by Lemma 3.4,
then 9. s(w, 1) is also a solution of the scattering equation. Moreover,
04 s(w,t) is bounded in ¢ since the derivative is bounded by construc-
tion, and the connection matrix Ay is also bounded. Since there is
exactly one bounded solution of the scattering equation we must have
0ds(w,t) = A w)s(w,t) for some function A independent of . At
t = 0 the connection matrix Agz(w,t) vanishes due to the choice of

coordinate system, thus
Ows(w,0) = Mw)s(w,0)

which is exactly the condition that a family of complex lines be holo-
morphic. By Corollary 3.7 the map s(w,0) has degree k so it is a
rational map. O

4.1 Uniqueness of the rational map

In this section, we show that each rational map CP! — CP! is as-
sociated to at most one monopole (up to framed gauge equivalence).
This is fairly straightforward: we show that a monopole, and more
generally any pair (A, ®) satisfying 2/3 of the Bogomolny equations,
is determined by a ‘metric’ H on a trivialized bundle over H3. Fur-
thermore, if (A, ®) is a monopole then H satisfies a certain differential
equation. There is also a relative version of this: if Hy, Hy are two
monopoles, then h = Hf]Hg satisfies a similar differential equation.
Also, there is a measure o(h) = tr(h) — 2 of the size of h — I, and
hence the distance between H; and Hs, which satisfies a differential
inequality D(o) < 0.

Finally, we notice that if two monopoles have the same rational
map, then o(h) is bounded on H?, and that the only such solutions
of D(0) < 0 are constants. Since h(0) = I, it follows that o must be
identically zero, and that the two monopoles must be framed gauge
equivalent,.

First of all, then, suppose we have a pair (A, ®) satisfying the
integrability condition

02, v, —i®] = 0.

Suppose also that it is framed at the origin. Then we simply solve the
equation
(Vi—i®)g =0

13



for ¢ € End(FE), starting with g(0) = I, given by the framing. Tt
follows that the equation 09;'g = 0 is then automatically satisfied for
t > 0. Set H = g*¢g. This is the metric in the gauge defined by g,
which depends only on the framing. It is straightforward to calculate
A and ® in terms of H in this new gauge: A% = A4, —i® = 0
by definition, and since the connection is unitary, we get A0 =
H'0,H, Ay +i® = H'0,H. (For example, we can transform to
a unitary gauge by g~ !, where the (0,1) part of the connection must
be —0,¢.g7". Thus by unitarity the w part of the connection form
must be —d,g9~ " + ¢*"'d¢*, and transforming back by g, we get
g (—0wgg ' + ¢* ' 0wg ) g + g7 (0w + Ouw)g = h~'Oyh, as claimed).

By differentiating these formulae, we get formulae for the curvature
tensor, the Bogomolny tensor B(A, ®) = xFy — d,®:

Coddt (L4 |w?)? L 1
B(A,®) = 5 ( SinhQ(t) Ow(H “0pH)+ 0(H "0,H) | .

Next, we have the relative version of this: if Hy, Hy are two metrics
obtained as above, then write (A, ®1), (Ag, P9) for the two pairs on
the trivialized bundles (which we can thus identify if we wish). Set
h = H;'Hy € End(E). Then we have

oM 4 B 19AE — 0N 4 1Ok + hfl[H;]athh] = 9

w w w w

and so by the same calculation as before, or by replacing H with h,
and 0 by 01 we get the gauge-invariant formula:

B(A3,®5) = B(A;, )

1dt (1 + ‘71)‘2)2 = _ A _ A
+5 (W@f}](h Yodin)y + 0 (h 1o h) ) .

Thus, if (A7, ®;) and (Ag, ®y) are two monopoles, then we get a
quantity h satisfying the (almost elliptic) equation

(14 [w|?)202 (h= 102 h) + sinh?(£)8;" (h~'8{* h) = 0.

Define -
D = (1 + |w|*)0y0y + sinh?(t)d}.

If we multiply the last equation for h on the left by h, and take traces,
we are able to deduce:

Lemma 4.2 With h = Hf]HQ as above coming from two monopoles,
D(tr(h)) >0

on H® —{0}.
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Remarks: (i) We have excepted the origin here since our coordinate
system and D blow up there. However, h = I there, so it will not
concern us.

(ii) This lemma, and indeed the whole line of attack, draws inspi-
ration from [9].

Proof. Since d,,(tr(h)) = tr(dh), and so on, we have

w

D(tr(h)) = (14 |w|/?)2tr (02 h.h = 0 h) 4 sinh? (8)tr (0] h.h 20" h).

w w

Near any point, we can find an Hj-orthogonal basis in which A is
diagonal. In such a basis, BtAlh, and 9;''h will be Hermitian-adjoint
to 8''h and ' h respectively. It follows that the right-hand side
is positive. (The quantities involved are clearly gauge-invariant and

real). a

The crucial ingredient now is:

Proposition 4.3 If (A1, ®1) and (Ag, ®9) are framed monopoles that
have the same rational map, then tr(h) is uniformly bounded on H?.

Then we use

Lemma 4.4 If o is a bounded real-valued function on H> which sat-
isfies D(o) > 0 whenever o > 0, and o(0) = 0, then in fact 0 <0 on
all H3.

Remarks:(i) This is supposed to be just the maximum principle for
this Laplacian-like operator.

(ii) Setting o = tr(h) — 2, it follows immediately that at most one
monopole can give rise to any particular rational map, since o0 = (0
implies that h = 1.

Proof of Lemma 4.4. First of all notice that D(a+ bt) = 0 for any
a,b € R. Hence, for any a,b > 0, 7 = 0 — a — bt satisfies D(7) > 0,
and 7(0) < 0,7(w,t) <0 for all £>> 0. It suffices to prove that 7 <0
everywhere, for letting a,b — 0, the lemma follows. So suppose not for
a contradiction: then there is some finite point  where 7 is positive
and has a maximum. Also, 7 < 0 for ¢t < tg and ¢ > 1, say. On
the complement of this set, D is uniformly elliptic, and so 7 cannot
have an interior maximum by the maximum principle. Thus 7 < 0
everywhere, as required. O

Proof of Proposition 4.3. Suppose that the rational map is rep-
resented by the family of complex lines a(w) = (a(w),b(w)) where
|a(w). Then there is some bounded function A(w) on C'P! such that
the section satisfying (V; —i®)s = 0 and s(0) = a(w) looks like
Mw)e ™ e; for some unit vector e; as t — oo.

We can find f(w) such that |G(w)| = 1 and the two vectors a(w)
and B(w) form the columns of a unitary matrix F~!(w), say. If we
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solve (Vy —i®)s = 0 starting at pa(w) + gqB(w), with g # 0, then s
looks like q)\(w)’]emteg for a unit vector ey orthogonal to e;. Thus
starting with ¢g(0) = F~1, g(t)*¢(t) looks like

A ( e ™A1+ o(1)) o(1) )
o(1) e™ A1+ o(1))

as t — oo.

And so, starting instead with ¢g(0) = I, the term g(¢)*g(¢) looks
like F(w)*AF(w) as t — oc. But this is of course just our H. Thus
the asymptotic behaviour is determined by F, which depends only on
the rational map, and a bounded function A. (A different choice of F
will only change the o(1) terms, or A).

Finally, then, suppose we have two metrics H;, ¢+ = 1,2, coming
from monopoles with the same rational map. Then h = HleQ looks
like FflAf]AgF as t — oo. Here A; are as above, depending on per-
haps different functions \;. An easy check shows that ¢r(h) is indeed
bounded as t — oo (indeed the limit is determined only by A;/\2), as
required. O

4.2 A linearized version of uniqueness

In this section, we shall describe the linearized map from the moduli
space of monopoles to the moduli space of rational maps. That is, we
describe the derivative of our map, as a map on tangent spaces. We
will show that the derivative is an isomorphism at each point. This
will allow us to employ the inverse function theorem and deduce that
the image of F is open.

First of all, we need to describe what the tangent spaces are. Let
R;. denote the space of rational maps from CP! to itself of degree k.
Then clearly

~—

T;(Ry) = H(CP',f*(T(CP")))
= HY(CP', f*(0(2))) = H(CP', O(2k)),
which has dimension 4k + 2.

Linearising the Bogomolny equations, we get the following condi-
tion on a tangent vector (a, ¢) to the space of pairs at (A, ®):

xdaa = dag + [a, D).

Braam [6] described the tangent space of the moduli space of hyper-
bolic monopoles in detail. He represented the pairs (a,¢) as U(1)-
invariant elements of the kernel of a Dirac operator on S*. The di-
mension he gets, from an equivariant index calculation, is 4k—1. Since
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we have an extra factor of su(2) coming from infinitesimal change of

the frame we get a 4k + 2-dimensional tangent space as expected.
Note. One might impose the condition of orthogonality to com-

pactly-supported gauge transformations, to give a second equation:

*da*a+[®,¢] =0.

Over R?, Taubes [21] has shown that the resulting space has di-
mension 4k, and includes the special vector d4®, corresponding to
a non-compactly-supported gauge transformation. David Stuart [20]
has shown that the vectors (a,¢) in this 4k-dimensional space are
fairly well-behaved: they’re all in L? and indeed when split into
the usual ‘longitudinal’ and ‘transverse’ components, the former de-
cay like r=2, and the latter decay exponentially. As pointed out by
Austin and Braam [5], the different values of the curvature of hyper-
bolic monopoles on the sphere at infinity prevent a similar result from
holding over H?3.

Lemma 4.5 For any smooth pair (a, ) satisfying the linearized Bo-
gomolny equations at a monopole (A, ®), one can define n € Q°(sly)
by n(0) =0 and

(Vi —i®)n = —(ar —i¢)

along rays out of the origin. Then

(1 + |w2)20202 (n + n*) + sinh®(£)(0]* — i®) (9] +i®)(n +n*) = 0.

Remark: If (a, ¢) comes from a sequence (A;, ®;) of monopoles, then
we get a sequence g; satisfying (Vft —i®y)g; = 0, and 1 will be
019 - g~ ', evaluated at t = 0. Also, setting H; = g;g1, 9 ' (n +n*)g =
H-'9,H. We don’t need to assume this sequence, though, and this
remark merely serves as motivation.

Proof. We differentiate the defining equation for n with respect to
w, to give:

OO —i®)yy = -0 (ay — i®).
The Bogomolny equations tell us that [0/ —i®, )] = 0, and so the

w
linearized equations (just differentiate this) tell us that

(0 — i) () = D (a; — i),
where here we have written a for the dw component of a. Hence
(0 —i®)(Dym) = — (9] — i®)(an).

But ayp = (§£77 =0at t =0, so we deduce that agz = 5£77 for all (r, w).
We can take the adjoints of these equations to give us:

(a{‘ +1i®)n* = (ag +1i¢), 8£77* = Gy
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We now use the third of the linearized Bogomolny equations, namely

(1 + |w|?)?

(31~ 0) a +i6) = 07 +39) (o0 1) = — o Dl = D).

Putting all this in terms of 7, then, we get:
(1 + |w|?)?
sinh?(t)
_ i+ jwP)?
| 2sinh®(2)

(@A o) + i) + aa) 7+ )

me + 81‘,'1)’ 77] )

and the right hand side is zero since (A, ®) satisfies the Bogomolny
equations. O

Corollary 4.6 With n as in lemma 4.5,
D(|n+nl*) > 0.

Proof. We have |77:l—77*\2 = tr((n—l—nj")Q). Writing (B, C) = tr(BC), it
is easy to see that 0,,0,(B,B) = 2(8{38£B, B) + 2(9.} B, 04 B). With
B = (n+n*), B= B*, and so (92 B,0;iB) > 0. A similar calculation

with (92, 02) replaced by (9; +i®, d; —i®), together with the previous

wrrw
lemma, then proves the claim. O

With this corollary and our previous knowledge of D, we see that
if 1 is bounded, then |n + 1*| must be constant (and so zero). Notice
that if n = —n*, then

a = 7d14773 ¢ = 7[@an]a

that is, n corresponds to an infinitesimal gauge transformation. We
shall show that 1 determines a tangent vector to the space of rational
maps, and that if this tangent vector is zero then 7 is bounded on H3.

Proposition 4.7 If the image of (a, ) in Ty(Ry) is zero, then n), as

defined above, is bounded on H?®, and so by the preceding corollary,
*

n=-n.

Proof. Over each ray w = constant, consider sections s, which satisfy
(07 —i®,)s, = 0, and which decay as t — oo, for a (smooth) path of
pairs (A;, ®;). We proved in Section 3 that s, depends differentiably
on 7. The value of f,(w) € CP!' is then represented by s,(0) € C?.
Suppose that sg(0) = (a,b) and 0:s7(0)|;=0 = (¢, d). The value of
0-(f+)(w) is proportional to ad — be.
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In terms of the tangent vector (a,¢) = (0;(A;), 0-(®;)), then, we
have to consider the differential equation

(Vt - Zq))()' == *((Lt — 7:‘1))8,

where s is a solution to (V; —i®)s = 0 which decays as ¢ — oo along
each line. This will have a one-dimensional space of solutions which
decay as t — oo (we are using some nice decay properties of (a, @)
here), each element differing by a multiple of s, and in fact decaying
at least as fast as e "™ as t — oo. Thus setting s = (a,b) and o = (c, d)
as before, the quantity ad — bc will depend only on s, and whether it
is zero or not will depend only on (a, ¢).

So we have to deal with the situation where o as defined above is
such that o(0) is proportional to s(0). First of all, notice that

(Vi —i®)(ng - s(0)) = —(ar — i®)s.

Here we let V; and ® act on 7.¢g(s(0)) by multiplication on the left
(rather than the adjoint action that we were using for 1 before). This
equation follows by using (V; —i®) =god;og !, and s = ¢ - 5(0).
Since n(0) = 0, ng - s(0) will be o plus a multiple of s in the case
we are considering. Thus we have proved that 1 - s decays like e~
as t — oo. The proof is thus completed by the following lemma. O

m

Lemma 4.8 With s,n as above, if n - s decays like e ™ as t — oo

then 1 is bounded on H?3.

Remark: Since 7 is continuous, it suffices to show that it is bounded
as t — oo along each line.

Proof. Applying Levinson’s theorem to the adjoint representation,
one gets a (complex) basis e; for sly such that g(e;)g ' tends to a
constant, g(ez)g ™! grows, and g(e3)g~ ' decays as t — co. Indeed one
can find A € SLy(C) such that e; = Ad(A)(f;), where f; is the following

basis for sly:
1 0 00 01
0o -1 )’ 1 0/’ 10 )/°

—mt 0
Put another way, we can set §(t) = ( ¢ 0 mi ) , and then we
ot

can find A such that Ad(g\g~')(fi) tends to a (non-zero) constant as
t — oo for each 4. Hence g\g ' itself tends to a constant (in SLy(C))
as t — oo.

Thus we can write n = >, 7;(t)Ad(g\)(fi), and we have s =
gA(1,0), up to a constant which we can ignore. So n-s = gA(n1,m2),
and since gAg~! tends to a constant, we deduce that e~™'5; and e™'1,
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decay as ¢t — oo. We thus deduce that 79 must decay, at least as fast
as e 2m!_ (Notice that Ad(g)(ez) grows like e?™, so this tells us that
the second component of 1 is O(1), as we require).

To get the desired bound on the remaining components of 7 is more
straightforward: We have n;(0) = 0, and (9" — i®)n = —(a; — i®)
becomes

S 0 (m) Ad(gA) (e5) = Ad(gAg~")(O(2),
(2

so we get

t t ¢
m = / ()(’I“*Q)d'r7 Ny = / O(T*Q) _G*erdr’ N3 = / O(TﬁQ) .e2mT g
0 0 0

So we are able to deduce that 7,79 tend to constants as ¢t — oo, and
see that 13 grows no faster than e?”. Hence 1;Ad(g)(e;) is bounded
for + = 1, 3. Together with the previous result for : = 2, we are done.O

4.3 Surjection.

Here we complete the proof of Theorem 2 by showing that the image of
F is closed and combining this with the result of the previous section
that the image of F is open.

Proof of Theorem 2. Since we know something about the com-
pactification of the space of monopoles we can show that the image
of F is closed. Let {f,} C imageF be a sequence that is Cauchy in
the C° topology in Ratj(S?). It converges to f € Raty(S?) and the
question is whether f lies in the image of F. Let {(An, ®,)} be a se-
quence of monopoles mapping under F respectively to f,,. There is a
subsequence of this sequence of monopoles that converges to an ideal
monopole (A, ®). The continuity argument in Corollary 3.2 extended
to the compactification then implies that F(A,®) = f as required
(and in particular that (A, ®) is a true monopole). An essentially
equivalent way of looking at this is to leave the closedness issue un-
til after the compactification result (F extends) so closedness of the
image simply follows from the continuity of F.

Now, the C° norm gives a Banach manifold structure to the space
of holomorphic maps. We have shown that with respect to this norm
the map

F : M" = Raty(5?%)

is differentiable. The linearized uniqueness proof together with the
fact that the dimensions of the respective tangent spaces are 4k + 2
shows us that at each point DF is an isomorphism. Thus we can
invoke the inverse function theorem so F is locally a homeomorphism
and in particular its image is open.

20



Since the space of rational maps of a fixed degree is connected it
remains to show that the image of F is non-empty in each component
so then an open and closed non-empty set must consist of the entire
component and F is onto. Atiyah [1] proved the existence of hyper-
bolic monopoles of integral mass and arbitrary charge. The techniques
used in [13] for Euclidean monopoles adapt to the hyperbolic case to
give another proof of existence for arbitrary mass as well as an alter-
native proof that F is onto. The global uniqueness then completes
the proof of Theorem 2. O

5 Compactification.

In this section we will study the compactification of the space of hy-
perbolic monopoles. As usual we will think of a hyperbolic monopole
as an instanton on S* invariant under the circle action.

Theorem 5.1 (Uhlenbeck) There is a constant € > 0 such that if
A is an anti-self-dual connection over B* with [ F5ll2(p1y < € then

we can put A=d+ain Coulomb gauge with
||a||Wh2(Bf/2) <allFillrzpey -

The following lemma shows that we can apply Uhlenbeck’s theorem
at each point of H? x S'.

Lemma 5.2 Let A be a U(1)-invariant instanton on H® x S' of
charge 8m°mk. Given € as in Theorem 5.1 and x € H? x S' then
the ball B around z of radius esech?(t/2)/16wmk, where t is the hy-
perbolic distance of the component of x in H> from 0 € H? satisfies

||F§||L2(B) <€

Proof. The proof follows from the rather trivial observation that the
radius of the circle through z is sech?(#/2)/2 so there are e/8w%mk
disjoint balls each of which contributes the same to the charge by
U (1)-invariance. Since the total charge is 872mk a ball can contribute
at most €. O

On the fixed §2 C S* we can use Uhlenbeck’s theorem except
at finitely many points. This follows from the usual convergence of
measures argument. Thus, we can put any family of monopoles in
Coulomb gauge and get uniform bounds on the 1-forms and their
derivatives. By the Arzela-Ascoli theorem there is a uniformly (in fact
smoothly) convergent subsequence and the limiting 1-form represents
an anti-self-dual connection. We can see that the limiting instanton is
a monopole, i.e. it is U(1)-invariant, in two ways. Braam [6] showed
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that the sequence of gauges chosen by Uhlenbeck can be chosen to be
U (1)-equivariant so that the limiting connection is U(1)-invariant. He
also showed that the singularity is removed with a U(1)-equivariant
gauge transformation. Alternatively, we can use the estimates ob-
tained in four dimensions on the connection in three dimensions to-
gether with uniform estimates on the Higgs field to get convergence
on H3. The uniform estimates on the Higgs field follow easily from
the fact that it satisfies the maximum principle. Braam also showed
that a sequence of monopoles loses charge in multiples of m.

Thus, the moduli space of hyperbolic monopoles can be compact-
ified by considering ideal connections

M) = UM x SF1(5?)

where S¥=/(S?) is the (k—1)-fold symmetric product of the two-sphere.
Similarly we can define a compactification of Raty(S?) by

Raty,(S?) = UjRaty(S?) x S*1(5?) .

These spaces are topologized using limits of sequences. We have
Rat,(S?) = CP?+1 [g)].

Away from the singular points on S? we have uniform convergence
so the results of Section 3 apply to show that locally the rational maps
converge to the expected rational map. Thus, the limiting monopole
of lower charge corresponds, as expected, to the limiting rational map
of lower charge. It remains to show that the points in S¥~!(S?) corre-
spond.

Lemma 5.3 Given z € S? and a sequence of monopoles {(A,,®,)}
with corresponding rational maps {F(An, ®,)} the monopoles bubble
off at = if and only if the rational maps bubble off at x.

Proof. By the results of Section 3 if {(4,,, ®,)} does not bubble off
at z then there is a uniformly convergent subsequence in a neighbour-
hood of the geodesic y joining = to 0 € H? and thus the solutions
of (V} —i®,)s, = 0 along v converge to a non-trivial solution of
(Vi° —i®y)se = 0. For the rational map to bubble off so,(0) must
vanish. Thus s (%) would vanish identically, contradicting the non-
triviality of the limit.

In the other direction, if the sequence of rational maps does not
bubble off at = then we can define a sequence of good gauges in a
neighbourhood of the geodesic v as in Section 4.1 that converge to a
good gauge. With respect to these good gauges the monopoles are
smooth. O
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Proposition 5.4 Let {(A,,®,)} be a sequence of monopoles that
converges to the ideal monopole (Ax, o, P) where (Ao, Pos) € MJ"
and P € SF=1(S?). Then {F(A,,®,)} converges to the ideal rational
map (F(Aso, Poo), P).

Proof. We will solve the scattering equation (1) for (A, Po) in the
gauge supplied by Uhlenbeck’s compactness theorem before removing
the singularity with a gauge transformation. Suppose the rational
map loses charge [; at z; € S2. For z in a neighbourhood of z; the
solution s,(t) of (1) along the geodesic defined by z looks like

((z — z;)"p(2), (z — z;)"q(2))

when evaluated at ¢ = (0. Choose the unitary gauge transformation
g in this neighbourhood defined by multiplying the one-dimensional
subspace generated by s,(t) by exp (—il;0) and multiplying the orthog-
onal subspace by (expil;#). It is easy to see that this has removed the
singularity of the rational map. By Lemma 5.3 this new gauge is non-
singular. Kronheimer and Mrowka [18] show that the winding number
of g at z; times the mass exactly measures charge of the monopole
that is lost. Thus the result follows. O

We can use the topology on CP?*! and the map F to induce
a good topology on the compactification of the space of monopoles.
What we have shown in this section is that this topology agrees with
the C! topology away from ideal connections. We have proven Theo-
rem 3, i.e.

F : M" = Raty(5?)

extends to a continuous map between their compactifications.

6 The y~-map on geodesics.

In this section we will show how to associate a codimension two sub-
manifold in the moduli space to a geodesic in H?. This is the analogue
of the py-map of Donaldson.

Let v : R — H? be a geodesic. Define

G, : M x PW'3(R) - L*(R)

by G,(A, ®,s) = v*(VA —i®)s. By PW!?(R) we mean the projective
space (WL2(R)\{0})/C*. Put V, = W(QJI(O)) where the map

7w M x PWHE(R) — M

gives projection onto the first factor. So V;, is the space of monopoles
that have ~ as a ‘spectral line’.
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Lemma 6.1 The subspace V., is a submanifold of codimension 2.

Proof. This lemma follows from the fact that along each geodesic the
scattering operator is an index 0 Fredholm operator with kernel at
most 1-dimensional. We omit some details since the lemma will also
follow from the symmetry argument in Lemma 6.3. The map G, is
the section of a bundle over M}* x PW!?(R) with linearisation given
by

D(a.s,5)G(a,¢,0) = (a; —id)s + (V] —i®)o

for (a,$,0) € Ta,e)M}* x TW'?(R). This is a surjective Fredholm
operator so Q7 is transverse to the zero section and its zero set is
a submanifold. The restriction of the projection 7 to this zero set
defines a homeomorphism to V,. The dimension of V,, follows from
the calculation of the index of DG,. Alternatively, one can use DG,
to construct a determinant line bundle to see the (real) codimension
2 property more easily. O

Lemma 6.2 For any two geodesics y and v’ there is an isomorphism

V, 2V,

Proof. First notice that SL(2,C), the isometries of H?, acts transi-
tively on the space of geodesics in H?. Since the submanifold V, does
not depend on the framing of the bundle the induced SL(2, C) action
on M}"/SU(2) gives the result. a

Proposition 6.3 The submanifold V., extends to the compactification

of Mj".

Proof. By Lemma 6.2 we can choose y to contain 0 € H?. Let
(A, ®) € V,,. Then there exists s € W'?(R) with

(Vi —i®)s = 0 (10)

where ¢ parametrizes . For ¢ > 0 this is just the scattering equation
(1) so s(0) gives F(A, ®) evaluated at the point z corresponding to
v. Put 7 = —t for t < 0. Then (10) becomes (V, + i®)s = 0
along the geodesic corresponding to Z, the antipodal point of z. Let
r e WH2(R1) satisfy (V, —i®)r = 0 so 7(0) gives F(A, ®) evaluated
at 2. Then

0 = '/OOO((VT—I-?I(I))S,T)dT
_ / d(s,r)/de/ (s, (V, — i®)r)dr
JO J0
= —(s(0),7(0))
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so (in affine coordinates)
F(A,®)(2)F(A,®)(2)=—-1 (11)

The converse is also true: if (A, ®) satisfies (11) then there exists
s € WH2(R) satisfying (10) along 7.

This is easily seen to be a codimension 2 submanifold of the space
of rational maps and hence of the space of monopoles. Furthermore,
this description makes it clear that V., extends to a closed submanifold
in the compactification since (11) makes sense in CP?¥+1, O

Since SL(2, C) is the group of isometries of H? it acts on the space
of (unframed) monopoles. If we choose a trivialisation of the bundle
over H? then the action lifts to an action on the space of framed
monopoles. This induces an action of SL(2,C) on Rat;(S?) which is
a perturbation of the natural action of SL(2,C) on Raty(S?) com-
ing from acting on the domain S2. The two actions coincide when
restricted to the subgroup SU(2). In order to see V, or the spectral
curve of a monopole more explicitly we would need to better under-
stand the perturbed action of SL(2,C) on Raty(S?) or similarly the
complex structure on the moduli space. The action of SL(2,C) is
intimately related to the issue of choosing a different base point in
H? and understanding the relationship between the different rational
maps obtained each way. A limit case of this issue would bring in
the relationship between the rational map we have obtained and the
based rational map obtained by Atiyah [1].
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