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Abstract. The moduli spaces of hyperbolic surfaces of genus g with n geo-

desic boundary components are naturally symplectic manifolds. Mirzakhani

proved that their volumes are polynomials in the lengths of the boundaries
by computing the volumes recursively. In this paper we give new recursion

relations between the volume polynomials.

1. Introduction

For L = (L1, L2, ..., Ln), a sequence of non-negative numbers, let Mg,n(L) be
the moduli space of connected oriented genus g hyperbolic surfaces with n labeled
boundary components of lengths L1, ..., Ln. A cusp at a point naturally corresponds
to a zero length boundary component. When L = 0, that is there are n cusps, the
moduli space Mg,n(0) is naturally identified with the moduli space of conformal
structures on a genus g oriented surface with n labeled points, also known as the
moduli space of curves with n labeled points. The identification uses the fact that
in any conformal class of metrics there is a unique complete hyperbolic metric, and
for every conformal automorphism there is a corresponding isometry.

On the moduli spaceMg,n(L) lives a natural symplectic form ω, defined precisely
in Section 2. The volume of the moduli space is

Vg,n(L) =
∫
Mg,n(L)

ω3g−3+n

(3g − 3 + n)!
, (g, n) 6= (1, 1).

When (g, n) = (1, 1) we instead take half of the integral of ω, an orbifold volume,

V1,1(L1) =
1
2
·
∫
M1,1(L1)

ω =
1
48

(L2
1 + 4π2),

which fits well with recursion relations between volumes, and relations with inter-
section numbers on the moduli space. Mirzakhani uses the true volume ofM1,1(L1)
in [7, 8] and includes an extra factor of a half in her formulae.

Theorem 1 (Mirzakhani [7]). Vg,n(L) is a polynomial in L = (L1, ..., Ln). The
coefficient of Lα = Lα1 ..Lαn lies in π6g−6+2n−|α|Q, |α| = α1 + ...+ αn.

Mirzakhani proved this using a recursion relation between volumes of moduli
spaces:

(1)
∂

∂L1
(L1Vg,n(L)) = Ag,n(L) + Bg,n(L)
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where Ag,n(L) consists of integral transforms of Vg−1,n+1 and Vg1,n1 × Vg2,n2 for
g1 + g2 = g and n1 + n2 = n + 1, and Bg,n(L) consists of integral transforms of
Vg,n−1. We have omitted the L dependence in Vg−1,n+1, Vg1,n1 ×Vg2,n2 and Vg,n−1

because it requires further explanation. See Section 2.2 for precise definitions of
Ag,n(L) and Bg,n(L).

The main idea of this paper is to use intermediary moduli spaces to give new
recursion relations between volumes of moduli spaces. The intermediary moduli
spaces consist of hyperbolic surfaces with a cone point of a specified angle. Hyper-
bolic geometry is an ideal setting for studying cone points, although a cone point
does make sense more generally in terms of a conformal structure on a Riemann
surface. A cone angle of 0 corresponds to a cusp marked point and as the cone
angle goes from 0 to 2π this corresponds, in a sense, to removing the marked point.
This leads to interesting relations between the moduli spaces. These intermediary
moduli spaces are reminiscent of the moduli spaces of anti self dual connections
with cone singularities around an embedded surface in a four-manifold, used by
Kronheimer and Mrowka [5] to get relationships between intersection numbers on
instanton moduli spaces.

In [12] it is shown that one can interpret a point with cone angle in terms of
an imaginary length boundary component. Explicitly, a cone angle φ appears by
substituting the length iφ in the volume polynomial. Mirzakhani’s results, Theo-
rem 1 and (1) use a generalised McShane formula [6] on hyperbolic surfaces, which
was adapted in [12] to allow a cone angle φ that ends up appearing as a length
iφ in such a formula, and hence in the volume polynomial. We do not describe
the generalised McShane formula in this paper, although in Section 2.2 we give the
underlying idea in terms of coordinates on the hyperbolic surface.

Theorem 2. For L = (L1, ..., Ln)

(2) Vg,n+1(L, 2πi) =
n∑
k=1

∫ Lk

0

LkVg,n(L)dLk

and

(3)
∂Vg,n+1

∂Ln+1
(L, 2πi) = 2πi(2g − 2 + n)Vg,n(L).

We think of the theorem as describing the limit of the volume and its derivative
when a cone angle tends to 2π, and hence is removable, although the statement of
the theorem is independent of this interpretation. One can make sense of n = 0 in
the proof of Theorem 2 yielding the following results.

Theorem 3. When there is exactly one marked point the volume factorises

(4) Vg,1(L) = (L2 + 4π2)Pg(L).

The classical volumes of moduli spaces are encoded in Mirzakhani’s volume polyno-
mials

(5) Vg,0 =
V ′g,1(2πi)

2πi(2g − 2)
=
Pg(2πi)
g − 1

where the polynomial Pg(L) is defined by (4).

The recursion relations (2) and (3) give information about the volume of the
moduli spaceMg,n+1(L1, ..., Ln+1) from the volume of the single lower dimensional
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moduli spaceMg,n(L1, ..., Ln). This contrasts with Mirzakhani’s relation (1) which
uses many lower dimensional moduli spaces as described above. In particular, when
g = 0 or g = 1 this give a simpler algorithm to determine Vg,n(L).

Theorem 4. The relation (2) uniquely determines V0,n+1(L1, ..., Ln+1) from the
single volume V0,n(L1, ..., Ln). Similarly, relations (2) and (3) uniquely determine
V1,n+1(L1, ..., Ln+1) from V1,n(L1, ..., Ln).

There are three approaches to the proof of Theorem 2. Firstly, the theorem neces-
sarily follows from Mirzakhani’s recursion relation (1) since that relation uniquely
determines the polynomials. This approach, which is nontrivial and not so trans-
parent, is treated in [2]. Secondly, the statement of the theorem is equivalent to
relations between the coefficients of the volume polynomials which are intersec-
tion numbers of ψ classes and κ classes (see Section 3 for definitions), so relations
between the latter can be used to deduce the theorem. The recursion relations
generalise the string and dilaton equations proven by Witten in [13]. It is this ap-
proach that we present in this paper which also allows us to prove Theorem 3. The
third approach is the most interesting. The theorem should follow from an analysis
of the intermediary cone angle moduli spaces, and although we can only do this in
simple cases, it is still a useful approach because it sheds light on the recursion re-
lations between intersection numbers. Furthermore it predicts that there are other
recursion relations between intersection numbers on the moduli space.

2. Volume of the moduli space

2.1. Teichmüller space and Fenchel-Nielsen coordinates. Fix a smooth ori-
ented surface Sg,n of genus g and n boundary components labeled from 1 to n.
Define a marked hyperbolic surface of type (g, n) and lengths (L1, ..., Ln) to be a
pair (Σ, f) where Σ is an oriented hyperbolic surface with n geodesic boundaries of
lengths L1, L2, ..., Ln and f : Sg,n → Σ is an orientation preserving diffeomorphism.
We call f the marking of the hyperbolic surface and define the Teichmüller space

Tg,n(L) = {(Σ, f)}/ ∼
where (Σ1, f1) ∼ (Σ2, f2) if there exists an isometry φ : Σ1 → Σ2 such that φ ◦ f1
is isotopic to f2.

Fenchel-Nielsen coordinates are global coordinates for Teichmüller space defined
as follows. Choose a maximal set of disjoint embedded simple closed curves on the
topological surface Sg,n. Their complement is a collection of genus zero surfaces
each with 3 boundary components, i.e. pairs of pants. We call such a decomposition
a pants decomposition of the surface Sg,n. Each pair of pants contributes Euler
characteristic -1, so there are 2g−2+n = −χ(Σ) pairs of pants in the decomposition,
and hence 3g − 3 + n closed geodesics (not counting the boundary curves.) Also
on Sg,n choose a further disjoint collection of g embedded closed curves and n
embedded arcs between boundary components equal to the union of 6g − 6 + 3n
arcs which give the seams of each pair of pants, i.e. each pair of pants contains 3
embedded arcs joining its boundary components pairwise.

A marking f : Sg,n → Σ of a hyperbolic surface with n geodesic boundary
components Σ induces a pants decomposition on Σ from Sg,n. The isotopy class of
embedded closed curves contains a collection {γ1, ..., γ3g−3+n} of disjoint embedded
simple closed geodesics which cuts Σ into hyperbolic pairs of pants with geodesic
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boundary components. Their lengths l1, ..., l3g−3+n give half the Fenchel-Nielsen
coordinates, and the other half are the twist coordinates θ1, ..., θ3g−3+n which we
now define. Any hyperbolic pair of pants contains three geodesic arcs giving the
shortest paths between boundary components. An arc of a seam passing through
γj is isotopic to the non-embedded piecewise geodesic arc given by the union of
two shortest path geodesic arcs between boundary components of the two pairs of
pants meeting along γj together with a (generally non-integral) multiple of γj . The
length of this multiple of γj is denoted by θj ∈ R. (If θj ∈ [0, lj) then the piecewise
geodesic arc is embedded.)

The coordinates (lj , θj) for j = 1, 2, ..., 3g − 3 + n give rise to an isomorphism

Tg,n(L) ∼= (R+ × R)3g−3+n

and are canonical coordinates for a symplectic form

(6) ω =
∑
i

dli ∧ dθi.

It is a quite deep fact that the symplectic form is invariant under the action of
the mapping class group Modg,n, of isotopy classes of orientation preserving dif-
feomorphisms of the surface that preserve boundary components. The action of
Modg,n on Tg,n(L) is induced by its action on markings. There is a finite number
of pants decomposition up to the action of the mapping class group, each class
consisting of infinitely many geometrically different types. Thus once a topological
pants decomposition of the surface is chosen a given hyperbolic surface has infinitely
many geometrically different pants decompositions equivalent under Modg,n. Each
different decomposition gives different lengths and twist coordinates to the same
hyperbolic surface, and hence different coordinates, whereas the symplectic form
(6) depends only on the hyperbolic surface. Hence the symplectic form descends to
the moduli space which is a quotient of Teichmüller space

Mg,n(L) ∼= Tg,n(L)/Modg,n.

The volume of the moduli space Vg,n(L) is defined to be the integral of the top-
dimensional form ω3g−3+n/(3g − 3 + n)! over Mg,n(L), or equivalently over a fun-
damental domain for Modg,n in Tg,n(L).

When the moduli space describes hyperbolic surfaces with a specified cone angle
and geodesic boundary components then the above description of Teichmüller space
via pants decompositions goes through if the cone angle is less than π. Mirzakhani’s
proof [7] that the volume is a polynomial generalises using the results of [12] to show
that the volume of the moduli space with cone angle φ is also a polynomial with iφ
in place of length. If the cone angle is greater than π—and we are interested in the
cone angle tending to 2π—then the pants decomposition does not always exist. The
failure of this coordinate system suggests that one might instead use something like
Penner coordinates [11] to define the volume and recapture the volume polynomial.
We explicitly calculated the volume of M0,4 with three cusp points and one cone
angle tending to 2π which indeed resulted in the volume polynomial obtained by
analytically continuing the case of cone angle less than π.

2.2. Coordinates on a hyperbolic surface. It is useful to view a hyperbolic
surface from one geodesic boundary component, say ∂1, chosen from the n bound-
ary components. The boundary component ∂1 gives a coordinate system on the
surface—to any point on the surface assign its distance from ∂1 and the point on
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∂1 where the shortest geodesic meets. More generally, take any geodesic beginning
at a given point on the surface and meeting ∂1 perpendicularly, and assign to the
point its length and the point it meets ∂1 . This makes the coordinate system
locally smooth, at the cost of losing uniqueness for the coordinates of a point.

Mirzakhani uses this coordinate system in the following way. Project points
onto the second coordinate, which takes its values in ∂1. Now suppose that there is
another boundary component, ∂i say. The projection of ∂i is an interval I0

i ⊂ ∂1.
More precisely, the projection is a collection of infinitely many disjoint intervals
{Iji | j = 0, ...,∞} since we take any perpendicular geodesic, not just the shortest
one, resulting in non-unique coordinates.

The sum of the lengths fi =
∑
j l(I

j
i ) is a well-defined function on the moduli

space Mg,n(L). The length of a single interval l(Iji ) is well-defined on Teichmüller
space Tg,n(L), and although it does not descend to the moduli space, l(Iji ) descends
to an intermediate moduli space:

Tg,n(L)
↓

M̂g,n(L)
↓

Mg,n(L)

and Mirzakhani shows that this enables one to integrate the function fi =
∑
j l(I

i
j)

overMg,n(L) yielding a polynomial, calculable from Vg,n−1. The n−1 collections of
intervals {Iji | j = 0, ...,∞}, i = 2, ..., n are disjoint from each other and Mirzakhani
similarly shows that the complementary region (up to a measure zero set) gives a
well-defined function f c on the moduli space which can be integrated in terms of
lower volumes. Since f c +

∑
fi = L1, the sum of all of the integrals gives∫
Mg,n(L)

L1dvol = L1Vg,n(L)

the derivative of which can be calculated and leads to Mirzakhani’s recursion rela-
tion:

∂

∂L1
(L1Vg,n(L)) = Ag,n(L) + Bg,n(L).

For completeness we will define the right hand side although this will not be used
further in the paper. Put L̂ = (L2, ..., Ln) and let (L2, ..., L̂j , ..., Ln) mean we
remove Lj . Then

Ag,n(L) =
∫
KL1(x, y)V ′g−1,n+1(x, y, L̂)dxdy

where

V ′g−1,n+1(x, y, L̂) = Vg−1,n+1(x, y, L̂) +
∑

gi,ni,Li

Vg1,n1(x,L1)× Vg2,n2(y,L2)

and the sum is over all g1 + g2 = g, n1 + n2 = n+ 1 and L1 t L2 = L̂. And

Bg,n(L) =
n∑
j=2

∫
KL1,Lj (x)Vg,n−1(x, L2, ..., L̂j , ..., Ln)dx.

The kernels are defined by

KL1(x, y) = H(x+ y, L1), KL1,Lj
(x) = H(x, L1 + Lj) +H(x, L1 − Lj)
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for

H(x, y) =
1
2

(
1

1 + e
x+y

2

+
1

1 + e
x−y

2

)
.

The derivation of these kernels comes from a detailed study of a hyperbolic pair of
pants—the simplest hyperbolic surface. We refer the reader to [7, 8] for full details.

3. Characteristic classes of surface bundles

3.1. Surface bundles. To any oriented topological surface bundle

Σg ↪→ X
π ↓ ↑ si
B

i = 1, ..., n

with n sections having disjoint images we can associate characteristic classes in
H∗(B), [9]. On X there is a complex line bundle γ → X with fibre at b ∈ B the
vertical cotangent bundle T ∗π−1(b). A local trivialisation is obtained from a local
trivialisation of the fibre bundle X. For each i = 1, ..., n pull back the line bundle
γ to s∗i γ = γi → B. Define

ψi = c1(γi) ∈ H2(B).

Let e = c1(γ) ∈ H2(X). (We use the terminology e because it is naturally the
Euler class of γ. We have put a complex structure on γ for convenience.) Define
the Mumford-Morita-Miller classes

κ̃m = π!e
m+1 ∈ H2m(B)

where π! : Hk(X) → Hk−2(B) is the umkehr map, or Gysin homomorphism,
obtained by integrating along the (oriented) fibres. Alternatively, the umkehr map
is obtained from the composition

π! : Hk(X) PD→ Hd−k(X) π∗→ Hd−k(B) PD→ Hk−2(B)

where d = dimX and PD denotes Poincare duality. The Mumford-Morita-Miller
classes ignore the n sections si. Use instead the sequence

π! : Hk
c (X − ∪si(B)) PD→ Hd−k(X − ∪si(B)) π∗→ Hd−k(B) PD→ Hk−2(B)

where Hk
c (X − ∪si(B)) denotes cohomology with compact supports. Define the

kappa classes
κm = π!e

m+1
c ∈ H2m(B)

where ec = e(γ) ∈ H2
c (X − ∪isi(B)) is the Euler class with compact support. It

has the property that on any fibre Σ

〈ec,Σ− ∪isi(B)〉 = −χ(Σ− ∪isi(B))

which generalises 〈e,Σ〉 = −χ(Σ). It is convenient to work with the compact
manifold X and in place of ec use its image in H2(X)

H2
c (X − ∪isi(B)) → H2(X)

ec 7→ en = e+
n∑
i=1

PD[si(B)].

The expression for en is deduced from its two properties

(7) 〈en,Σ〉 = −χ(Σ− ∪isi(B)), en · PD[sj(B)] = 0 j = 1...n
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the first because it is defined by restriction, and the second because it lies in the
kernel of the map H2(X)→ H2(∪isi(B)).

We will need relations between classes obtained by simply forgetting a section.
Now

en+1 = en + PD[sn+1(B)]

so from en+1 · PD[sn+1(B)] = 0 and c = a+ b⇒ cm+1 = am+1 + b
∑m
j=0 c

jam−j

em+1
n+1 = em+1

n + PD[sn+1(B)] · emn
thus the forgetful map πn+1 induces π∗n+1 : H∗(B)→ H∗(B) satisfying

(8) κm = π∗n+1κm + ψmn+1

and the straightforward relation

(9) ψj = π∗n+1ψj , j = 1, ..., n.

To any Σ bundle π : X → B with n sections si corresponds the pull-back Σ
bundle π∗X → X with n sections π∗si and a further tautological section sn+1. In
some sense the section sn+1 gives all possible ways to add an (n+1)st section to the
bundle over B. In this context the forgetful map has two interpretations. As the
map π∗n+1 : H∗(B) → H∗(B) discussed above, and also as π∗ : H∗(B) → H∗(X).
The two are related by

s∗n+1 ◦ π∗ = π∗n+1.

The pull-back relation (8) looks the same for π∗

(8a) κm = π∗κm + ψmn+1

whereas the relation (9) needs to be adjusted to

(9a) ψj = π∗ψj + PD[sj(B)], j = 1, ..., n.

We have yet to mention that the tautological section sn+1 : X → π∗X does
not have disjoint image from the other sections π∗si. After blowing up to separate
the images of the sections, we are naturally led to consider surface bundles π :
X → B that allow fibres with mild singularities. More precisely, the singular fibres
may be stable curves—they consist of a collection of smooth components meeting
at nodal singularities with the property that each component has multiplicity 1,
and negative Euler characteristic after we subtract all labeled points and common
points with other components. We call X a bundle of stable curves or simply a
bundle with singular fibres, although strictly it is no longer a fibre bundle. The
cohomology classes ψi and κm extend to this situation. Their definitions are best
understood when we put a continuous family of conformal structures on the fibres,
or we assume the stronger property that X and B are complex analytic varieties.
Define γ = KX⊗π∗K−1

B , essentially the vertical canonical bundle (relative dualising
sheaf.) This coincides with the definition above on smooth fibres and generalises
the definition to singular fibres. One can make sense of sections of this bundle along
singular fibres in terms of meromorphic 1-forms with simple poles and conditions
on residues [3] but we will not explain this here. The definitions of ψi and κm are
as above. Relations (8a) and (9a) generalise to bundles of stable curves. Proofs can
be found in [1] and [13].
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A simple example will demonstrate the definitions and relations. Let X be the
blow-up of P1 × P1 at the three points (0, 0), (1, 1) and (∞,∞). The map from X
to the first P1 factor realises X as a surface bundle

P1 ↪→ X
π ↓ ↑ si

P1
i = 1, ..., 4

which we equip with four sections s1(z) = (z, 0), s2(z) = (z, 1), s3(z) = (z,∞) and
s4(z) = (z, z). The general fibre is genus 0 with 4 labeled points, and the singular
fibres, at 0, 1 and ∞, are stable curves with two irreducible components each with
two labeled points (and a common intersection point.) We can generate H2(X) by
H, F , E1, E2 and E3 where Ei are the exceptional divisors of the blow-up and
H = P1 × {w} and F = {z} × P1 for any w and z different from 0, 1 and ∞. We
use these curves to represent their divisor class, homology class and their Poincare
dual cohomology class. Then

c1(γ) = −2H + E1 + E2 + E3 ⇒ κ̃1 = c1(γ)2 = −3,

c1

(
γ
[∑

si(B)
])

= 2H + F − E1 − E2 − E3 ⇒ κ1 = c1

(
γ
[∑

si(B)
])2

= 1,

ψ1 = c1(γ) · s1(B) = c1(γ) · (H − E1) = 1 = ψi, i = 2, 3, 4.

Since X is the blow-up of the pull-back of the P1 bundle over a point with three
sections, (8a) and (9a) are also evident.

3.2. Intersection numbers. Let us useMg,n to notate the moduli space of genus
g curves with n labeled points, which is isomorphic to the moduli space of genus
g hyperbolic surfaces with n labeled cusps, Mg,n(L) with L = 0, and Mg,n the
Deligne-Mumford compactification which adds stable curves toMg,n. Wolpert [15]
showed that the symplectic structure ω on Mg,n extends to Mg,n. The ψi and
κm classes naturally live in H∗(Mg,n). They are associated to a universal surface
bundle overMg,n, essentially given byMg,n+1 with map forgetting the last labeled
point, and any bundle X equipped with conformal structures on fibres is the pull-
back of the universal bundle under a map B →Mg,n.

Theorem 5 (Mirzakhani). The coefficient Cα of L2α1
1 ...L2αn

n in Vg,n(L) is

(10) Cα =
1

2|α|α!(3g − 3 + n− |α|)!

∫
Mg,n

ψα1
1 ...ψαn

n ω3g−3+n−|α|

This is proven in [8] by showing that Mg,n(L) is the symplectic quotient of a
larger symplectic manifold by a Hamiltonian Tn action, where a fixed value of the
moment map corresponds to fixing the lengths L1, ..., Ln of the geodesic boundary
components. Any such quotient is equipped with n line bundles coming from the
Tn action, and their Chern classes are related to the coefficients of the volume
polynomial. In [8] Mirzakhani used this together with her recursion relation for
the volume polynomials to give a new proof of Witten’s conjecture [13] regarding
intersections of ψ classes on Mg,n. In the original proof of Witten’s conjecture,
Kontsevich [4] calculated the Laplace transform of the top degree terms of Vg,n(L).
It would be interesting to understand the Laplace transform of the whole polynomial
Vg,n(L).
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In the following, write ψα for ψα1
1 ...ψαn

n and ignore the term if there is an αj < 0.
For ease of reading, note that in all formulae the variable j sums from 0 to m while
the variable k sums from 1 to n.

Lemma 1. The equation

Vg,n+1(L, 2πi) =
n∑
k=1

∫ Lk

0

LkVg,n(L)dLk

is equivalent to

(11)
m∑
j=0

(−1)j
(
m

j

)∫
Mg,n+1

ψαψjn+1κ
m−j
1 =

n∑
k=1

∫
Mg,n

ψα1
1 ..ψαk−1

k ..ψαn
n κm1

for all α and m.

Proof. Assume that |α| + m = 3g − 2 + n since otherwise (11) is zero on both
sides. By (10) and substitution of L2j

n+1 with (2πi)2j , the coefficient of L2α1
1 ...L2αn

n

in Vg,n+1(L, 2πi) is
m∑
j=0

(2πi)2j

2|α|+jα!j!(m− j)!

∫
Mg,n+1

ψαψjn+1ω
m−j

=
m∑
j=0

(2πi)2j

2|α|+jα!j!(m− j)!

∫
Mg,n+1

ψαψjn+1(2π2κ1)m−j

=
2m−|α|π2m

α! m!

m∑
j=0

(−1)j
(
m

j

)∫
Mg,n+1

ψαψjn+1κ
m−j
1

where we have used the identity ω = 2π2κ1 proven in [14].
The coefficient of L2α1

1 ...L2αn
n in

∫ Lk

0
LkVg,n(L)dLk is

αk
2|α|−1(2αk)α!m!

∫
Mg,n

ψα1
1 ..ψαk−1

k ..ψαn
n ωm

=
2m−|α|π2m

α! m!

∫
Mg,n

ψα1
1 ..ψαk−1

k ..ψαn
n κm1 .

Add this expression over k = 1, ..., n and divide both sides by the factor
2m−|α|π2m/α!m! to prove the lemma. �

Lemma 2. The equation
∂Vg,n+1

∂Ln+1
(L, 2πi) = 2πi(2g − 2 + n)Vg,n(L)

is equivalent to

(12)
m∑
j=0

(−1)j
(
m

j

)∫
Mg,n+1

ψαψj+1
n+1κ

m−j
1 = (2g − 2 + n)

∫
Mg,n

ψακm1

Proof. The proof is much like the proof of the previous lemma. The coefficient of
L2α1

1 ...L2αn
n in ∂Vg,n+1/∂Ln+1(L, 2πi) is
m∑
j=0

(2j + 2)(2πi)2j+1

2|α|+j+1α!(j + 1)!(m− j)!

∫
Mg,n+1

ψαψj+1
n+1ω

m−j
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= 2πi
2m−|α|π2m

α! m!

m∑
j=0

(−1)j
(
m

j

)∫
Mg,n+1

ψαψj+1
n+1κ

m−j
1

and the coefficient of L2α1
1 ...L2αn

n in Vg,n(L) is

2m−|α|π2m

α! m!

∫
Mg,n

ψακm1

so the equivalence follows.
�

Completion of the proof of Theorem 2. It suffices to prove the relations (11) and
(12). Notice that when m = 0, (11) and (12) are respectively the string and dilaton
equations which were proven by Witten in [13]. The method of proof for the more
general identities is similar.

Let π : X → B be a bundle of stable curves with n disjoint sections and π∗X
the pull-back bundle with n + 1 sections. Blow up π∗X along the intersections
of images of sections to get a bundle of stable curves over X with n + 1 disjoint
sections s1, ..., sn+1. Our aim is to compare ψ and κ classes in H∗(X) and H∗(B).

Take the integrand of the left hand side of (11) and consider its image under the
umkehr map.

π!


m∑
j=0

(−1)j
(
m

j

)
ψjn+1κ

m−j
1

n∏
k=1

ψαk

k

 = π!

{
(κ1 − ψn+1)m

n∏
k=1

ψαk

k

}

= π!

{
(π∗κm1 )

n∏
k=1

(
π∗ψαk

k + PD[sk(B)] · π∗ψαk−1
k

)}

= κm1

n∑
k=1

ψα1
1 ..ψαk−1

k ..ψαn
n .

To get from the first line to the second line we have used the pull-back formulae (8a)
and (9a) and the fact that π∗ is a ring homomorphism, so in particular (π∗η)m =
π∗(ηm). To get from the second line to the third line we have used the fact that
π! : H∗(X)→ H∗(B) is an H∗(B) module homomorphism, i.e. π!(ξπ∗η) = π!(ξ)η,
together with the explicit evaluations

π!(1) = 0, π!(si(B)) = 1

most easily calculated from the Poincare duality description of π!. Thus, in the
product the image under π! of the highest degree term π∗(κm1 ψ

α) is zero, the image
of the second highest degree term constitutes the expression in the third line, and
the lower order terms vanish since they contain products PD[sj(B)]·PD[sk(B)] = 0
because the images of sj and sk are disjoint.

Since ∫
X

η =
∫
B

π!η

choose X =Mg,n+1 and B =Mg,n, so (11) follows.
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The proof of (12) is similar. Again apply the umkehr map to the integrand of
the left hand side of (12).

π!


m∑
j=0

(−1)j
(
m

j

)
ψj+1
n+1κ

m−j
1

n∏
k=1

ψαk

k

 = π!

{
ψn+1 · (κ1 − ψn+1)m

n∏
k=1

ψαk

k

}

= π!

{
ψn+1 · (π∗κm1 )

n∏
k=1

(
π∗ψαk

k + PD[sk(B)] · π∗ψαk−1
k

)}

= (2g − 2 + n)κm1
n∏
k=1

ψαk

k .

To go from the second line to the third line note that ψn+1 coincides with the
twisted Euler class en+1 that satisfies (7) and hence π!ψn+1 = 2g − 2 + n and
ψn+1 · PD[sk(B)] = 0. Thus the top degree term constitutes the expression in the
third line, and all lower degree terms vanish. �

Equations (2) and (3) suggest that a direct analysis of the moduli space of cone
surfaces with cone angle θ ≈ 2π, or more accurately an infinitesimal analysis near
2π, gives rise to intriguing phenomena. Equation (3) seems plausible since the
removed cone point is free to wander around each hyperbolic surface with area
2π(2g − 2 + n), so the change in volume is related to integrating over the smaller
moduli space and along each fibre. Intuition for equation (2) seems less obvious.

Proof of Theorem 3. The first intersection number identity in the proof of Theo-
rem 2 applies to n = 0 yielding

(13)
3g−2∑
j=0

(−1)j
(

3g − 2
j

)∫
Mg,1

ψj1κ
3g−2−j
1 = 0.

Following the proof of Lemma 1, (13) is equivalent to the equation Vg,1(2πi) = 0 and
hence the polynomial factorises into Vg,1(L) = (L2+4π2)Pg(L) for some polynomial
Pg(L), proving (4).

The second intersection number identity in the proof of Theorem 2 applies to
n = 0 to prove

(14)
3g−3∑
j=0

(−1)j
(

3g − 3
j

)∫
Mg,1

ψj+1
1 κ3g−3−j

1 = (2g − 2)
∫
Mg,0

κ3g−3
1

and again as in Lemma 2 (14) is equivalent to the equation

V ′g,1(2πi) = 2πi(2g − 2)Vg,0

thus expressing Vg,0 in terms of Mirzakhani’s volumes. Since Vg,1(L) vanishes at
L = 2πi we can also write the derivative as follows:

2πi(2g − 2)Vg,0 =
dVg,1
dL

∣∣∣∣
L=2πi

= lim
L→2πi

Vg,1(L)
L− 2πi

= lim
L→2πi

4πiVg,1(L)
L2 + 4π2

= 4πiPg(2πi)

completing the proof of Theorem 3. �
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4. Use of recursion relations

4.1. Low genus calculations.

Proof of Theorem 4. The volume V0,n+1(L1, ..., Ln+1) is a degree n− 2 symmetric
polynomial in L2

1, ..., L
2
n+1 and we need to show it is uniquely determined by eval-

uation at Ln+1 = 2πi, since this is determined by V0,n(L1, ..., Ln) via (2). This
follows from the elementary fact that a symmetric polynomial f(x1, ..., xn) of de-
gree less than n is uniquely determined by evaluation of one variable at any a ∈ C,
f(x1, ..., xn−1, a). To see this, suppose otherwise. Any symmetric g(x1, ..., xn) of
degree less than n that evaluates at a as f does, satisfies

f(x1, ..., xn−1, a)− g(x1, ..., xn−1, a) = (xn − a)P (x1, ..., xn)

= Q(x1, ..., xn)
n∏
j=1

(xj − a)

but the degree is less than n so the difference is identically 0.
The proof for genus 1 is similar. The degree of V1,n+1 as a polynomial in

L2
1, ..., L

2
n+1 is equal to n + 1 so the proof of the genus 0 case shows that (2)

determines V1,n+1 from V1,n up to the constant c in V1,n+1 + c
∏n
j=1(L2

j + 4π2).
Now use (3) to determine c, and hence V1,n+1. �

Theorem 4 can be converted to an algorithm for calculating V0,n(L). The algo-
rithm using (2) turns out to be much more efficient than the algorithm coming from
Mirzakhani’s relation (1) in genus 0, which needs V0,n−1 and pairs V0,n1 , V0,n2 for
all n1 + n2 = n + 1, to produce V0,n. We have included a simple MAPLE routine
in the appendix for calculating V0,n using (2). (The notion of a “more efficient”
algorithm is not so precise here. We have merely compared the speeds of different
calculations on MAPLE.)

In genus 0, the string equation—(11) with m = 0—leads to an explicit formula
for the top coefficients, or equivalently the following formula for genus 0 intersection
numbers without kappa classes:∫

Mg,n

ψα1
1 ...ψαn

n =
(

n− 3
α1, ..., αn

)
.

It seems reasonable to guess that when g = 0 (11) might be used to get an explicit
combinatorial description of all genus 0 intersection numbers with powers of κ1, or
equivalently all coefficients of V0,n(L). Zograf [16] has recursion relations between
the constant coefficients V0,n(0).

4.2. Higher derivatives. We expect to have expressions for higher derivatives
∂kVg,n+1/∂L

k
n+1 evaluated at Ln+1 = 2πi. Evidence comes from the fact that (2)

and (3) use generalised versions of the string and dilaton equations. The Virasoro
relations are a sequence of relations for the top degree terms of Vg,n(L), with
first two relations in the sequence the string and dilaton equations, so may also
have versions in terms of evaluations of derivatives of the volume polynomial at
Ln+1 = 2πi. The Virasoro relations recursively determine the top degree coefficients
of the volume polynomials by using the relations in a clever way. In recent work
[10], Mulase and Safnuk showed how to extend the Virasoro relations to the full
volume polynomials. It would be desirable to instead determine the polynomials
recursively by relying on the more straightforward expansion of a function around
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a point. It would be interesting to know if one can express the results [10] in terms
of derivatives of the volume polynomial at Ln+1 = 2πi.

In principle, we can use Mirzakhani’s recursion relation to get expressions for
higher derivatives of the volume evaluated at Ln+1 = 2πi. Differentiate the equation

∂(Ln+1Vg,n+1)
∂Ln+1

= Ag,n+1 + Bg,n+1.

to get
∂2(Ln+1Vg,n+1)

∂L2
n+1

=
∂Ag,n+1

∂Ln+1
+
∂Bg,n+1

∂Ln+1

and evaluate at Ln+1. Substitute the equation for the first derivative, to get the
following equation for the second derivative. Put E =

∑n
j=1 Lj∂/∂Lj , the Euler

vector field:
∂2Vg,n+1

∂L2
n+1

(L, 2πi) = E · Vg,n(L)− (4g − 4 + n)Vg,n(L).

By taking higher derivatives of Mirzakhani’s relation we can recursively get equa-
tions for higher derivatives. The strength of (2) and (3) is the simplification of
Mirzakhani’s relations (1). It is not clear that the higher derivative relations ob-
tained by the method above possess this same strength. This leads to the following
question: when does ∂kVg,n+1/∂L

k
n+1(L, 2πi) depend only on Vg,n(L)?

Appendix

MAPLE routine for calculating V0,n(L).

> # input: symmetric polynomial f in n variables L1,...,Ln
# output: symmetric polynomial S in n+1 variables L1,...,L(n+1)
# satisfying S(L(n+1)=0)=f
sym:=proc(f) local i,j,k,m,S,T,T1,prod,sum,epsilon:
S:=f:
epsilon:=array[1..100]:
for i from 1 to 100 do epsilon[i]:=0: od:
while epsilon[n+1]<1 do
T:=subs(seq(L||j=(1-epsilon[j])*L||j,j=1..n),f):
T1:=0:
for i from 1 to n do
prod:=1:
for j from i+1 to n+1 do
prod:=prod*(1-epsilon[j])
od:
T1:=T1+prod*subs(L||i=L||(n+1),T):
od:
sum:=0: for k from 1 to n do sum:=sum+epsilon[k] od:
S:=S+(-1)^sum*T1:
for k from 1 to 100 do
if epsilon[k]=1 then epsilon[k]:=0
else epsilon[k]:=1: k:=100 end if:
od:
od:
S:=simplify(S):
end:

> # calculate the genus zero volumes recursively from evaluation
# of V_(0,n+1) at L(n+1)=2*Pi*I
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for n from 3 to 12 do
P:=0:
for j from 1 to n do
P:=P+int(L||j*V[n],L||j)
od:
Q0:=P:
C0:=simplify(coeff(Q0,Pi,0)):
sim:=sym(C0):
V[n+1]:=sim:
for k from 1 to n-2 do
P||k:=sim-C||(k-1):
Q||k:=subs(L||(n+1)=2*Pi*I,Q||(k-1)-P||k*Pi^(2*k-2)):
C||k:=simplify(coeff(Q||k,Pi,2*k)):
sim:=sym(C||k):
V[n+1]:=V[n+1]+sim*Pi^(2*k):
od:
od:
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