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1. Introduction.

The existence of closed geodesics on a Riemannian surface often de-
pends only on the topology of the surface. Having proven existence,
such a result usually falls short of giving basic properties like whether
the geodesics are embedded, or where the geodesics are located on the
surface. A simple case of the latter is whether a geodesic contains or
avoids a given point on the surface.

The general problem addressed in this paper is the existence of em-
bedded closed geodesics on incomplete Riemannian surfaces. We require
such a geodesic to avoid the incomplete points. Any incomplete point
is required to be contained in neighbourhoods with arbitrarily small
radius and area. We loosely say the metric is defined outside a finite
set of points.

We will consider the situation when a surface (in fact a two-sphere)
contains exactly one incomplete point. Topologically, one can think of
those embedded closed geodesics that miss the incomplete point as the
complement of the space of based loops. That is

{based loops} ⊂ {all loops}

and we wish to ask if all of the critical points of the energy functional
are contained inside the smaller space. In finite dimensions one can have
S2 ⊂ S3 with all critical points of a Morse function on S3 contained
inside S2, whereas for IRIP 2 ⊂ IRIP 3 any Morse function on IRIP 3

must have a critical point outside of IRIP 2 by a parity argument. On
the space of loops, one cannot use a similar argument to show that
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the set of critical points of the energy functional cannot be contained
inside a space of based loops, since there is an example of a two-sphere
that does not possess an embedded closed geodesic avoiding a given
point. We give this example in Section 6. It consists of a two-sphere
with an incomplete metric so it would be interesting to know if there
is a complete example.

There are two main approaches to proving the existence of closed
geodesics on Riemannian surfaces. The first uses an infinite dimensional
version of Morse theory. In finite dimensions, Morse theory enables one
to use the topology of a manifold to deduce information about critical
points of a smooth function on the manifold. By applying Morse theory
to the length or energy functional on the loop space of a Riemannian
manifold, one aims to use the topology of the loop space to deduce
information about the existence of closed geodesics. The gradient flow,
or path of steepest descent, of the length function is not well-defined so
one usually looks to other curve-shortening methods to get existence
and properties of closed geodesics. This is the main approach we take
in this paper.

The study of periodic orbits of a Hamiltonian system on the tan-
gent bundle associated to the geodesic equation is the second main
approach for finding closed geodesics. Various tools are used to study
Hamiltonian systems, such as methods of ordinary differential equa-
tions (ODEs), Poincare sections and Floer homology. Although we will
not use Floer homology here, it is worth pointing out that it involves the
study of an action functional on the loop space of the tangent bundle
using another infinite dimensional version of Morse theory, where one
replaces the gradient flow equation with a natural holomorphic-like
partial differential equation. In Section 2 we use ODE methods to study
the Hamiltonian system.

A model example of an incomplete two-sphere is an ellipsoid with
exactly three embedded closed geodesics, each given by the intersection
of the ellipsoid with a coordinate plane, with a point of intersection of
two of the geodesics removed. Then there is precisely one embedded
closed geodesic on the incomplete surface. More generally, the three
geodesics theorem gives the existence of three embedded closed geod-
esics on a smooth Riemannian two-sphere. It uses the fact that the
space of unparametrised loops on the two-sphere, modulo identifica-
tion of all constant loops, is homotopy equivalent to IRIP 3. Essentially,
an embedded closed geodesic is associated to each primitive homology
class of IRIP 3, with the index of the geodesic given by the dimension
of the homology class, assuming a bumpy metric. Inside the space of
unparametrised loops is the set of loops containing a given point on
the two-sphere. This set is homotopy equivalent to IRIP 2 so one might
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expect to get only two embedded closed geodesics containing the point,
of index one and two. (The index of a closed geodesic might decrease
when we hold fixed a point on the surface.) If one removes a point from
a Riemannian two-sphere, leaving an incomplete Riemannian metric on
a surface, then one would expect at least one geodesic to survive—avoid
the incomplete point. Again, the counterexample of Section 6 means
that one needs to be careful with such an argument.

The Gauss-Bonnet theorem—that the integral of the Gaussian cur-
vature over a smooth closed Riemannian surface is 2π times the Euler
characteristic—does not apply to incomplete metrics. One can use a
local version of the Gauss-Bonnet theorem applied to a neighbourhood
of a point, that includes the geodesic curvature of the boundary of the
neighbourhood, to measure the incompleteness at a point. See (3) in
Section 2.1.

The counterexample of Section 6 shows that it is difficult in general
to prove the existence of an embedded closed geodesic on an incomplete
surface. However there is a circumstance that arises naturally where
existence can be proven. Consider an incomplete metric on a surface
minus some points, that satisfies the two extra conditions:

(i) it has positive Gaussian curvature; and
(ii) the Gauss-Bonnet theorem fails in a strong way—the integral of

the Gaussian curvature over the surface is infinite.
An example of a metric satisfying such conditions, defined in a

neighbourhood of an incomplete point, is

ds2 = dr2 + rdθ2 (1)

where r is the distance from the point. The curvature of this metric is
1/4r2 which blows up at the incomplete point.

THEOREM 1. There exists an embedded closed geodesic on any two-
sphere minus a point equipped with an incomplete positive curvature
metric asymptotic to (1) and satisfying either of:

(i) it admits a finite cyclic symmetry of order greater than 2;
(ii) its shortest geodesic is long.

The technical assumptions (i) or (ii) are necessary since the counterex-
ample in Section 6 consists of an incomplete positive curvature metric
asymptotic to (1). Condition (ii) is a condition on the “length” of a ho-
mology class of loops on the two-sphere stated precisely in Definition 2.
It can be estimated in some cases.

One would expect Theorem 1 to remain true with the explicit asymp-
totic condition (1) replaced with the weaker, more natural condition
previously mentioned, that the Gaussian curvature is positive and its
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integral is infinite, and furthermore that this holds only in a neigh-
bourhood of the incomplete point. Nevertheless, as stated, Theorem 1
is quite useful since metrics satisfying (1) arise naturally from higher-
dimensional problems.

Two applications of Theorem 1 are given in the next two theorems.
In Section 2 we use ODE methods to prove the existence of embedded
closed geodesics in very particular circumstances. This allows us to
show that condition (ii) of Theorem 1 holds on the incomplete two-
spheres corresponding to the round three-sphere and the Fubini-Study
metric on C| IP 2. Thus, a sufficiently close metric still satisfies condition
(ii) of Theorem 1 and has positive Gaussian curvature. One could pose
the theorems in another way if discrete symmetries are present.

THEOREM 2. A three-sphere equipped with a circle invariant metric
sufficiently close to the round metric possesses an embedded minimal
torus invariant under the circle action.

Theorem 2 should be compared with the result of White [14] who proves
the existence of a minimal torus for any metric on the three-sphere
sufficiently close to the round metric. Unlike Theorem 2, the result of
White does not specify whether or not the torus is invariant under
a circle action. Furthermore, we have chosen the round three-sphere
rather arbitrarily as an application of Theorem 1. The existence of
embedded minimal tori for circle invariant metrics on the three-sphere
with Ricci curvature not everywhere positive (so White’s result does
not apply) can be proven in particular cases by showing that they
give rise to incomplete metrics on the disk satisfying the conditions of
Theorem 1.

The following theorem can be proven for toric varieties other than
C| IP 2, for example S2×S2 and C| IP 2 blown up twice. We cannot prove,
although we believe, that any toric surface contains an embedded min-
imal 3-torus. (In particular, one expects it to be true for any toric
Kahler metric on C| IP 2.) It seems that the counterexample in Section 6
cannot be adjusted to apply to toric surfaces.

THEOREM 3. A toric Kahler metric on C| IP 2 sufficiently close to the
Fubini-Study metric possesses an embedded minimal 3-torus invariant
under the torus action.

Previously, closed geodesics on surfaces with incomplete metrics
have been studied using methods from ODEs [8, 9]. They arose in the
context of minimal surfaces in higher dimensions, as in the applications
above. The methods require the surfaces to be highly symmetric. In
Section 2 we give such an argument for highly symmetric Riemannian
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manifolds as a first step to proving a more general existence result when
the metric is slightly perturbed so that it loses it symmetries. Section 3
contains the proof of Theorem 1. The applications are described in
detail in the final few sections.

As mentioned previously, we expect the existence of an embedded
closed geodesic to be true in greater generality. In Section 4 we describe
the minimax technique and the intuition it brings to the problem. A
sweepout of a manifold is a foliation (with singularities) of the manifold
by a path of codimension 1 submanifolds that degenerate to lower di-
mensional submanifolds at both ends of the path. Well-known examples
are sweepouts of a surface by circles, and sweepouts of the three-sphere
by tori that degenerate to the two core circles at each end. Another
example is a sweepout of C| IP 2 by T 3s that degenerate to a two-torus
at one end and the union of three lines at the other, i.e. take three lines
Li ⊂ C| IP 2, i = 1, 2, 3 that do not intersect at a common point. The
boundary of a disk neighbourhood of the three lines is homeomorphic
to T 3, and the complement of the disk neighbourhood is homeomorphic
to a neighbourhood of a homologically trivial T 2 ⊂ C| IP 2.

A sweepout has a maximal volume leaf. The minimax of a family of
sweepouts is the infimum of the volumes of the maximal volume leaves.
If the family is large enough the minimax is minimal, and very often
the minimax (or perhaps a piece of it) is a minimal submanifold.

On a two-sphere minus a point with an incomplete Riemannian met-
ric there is a natural family of sweepouts by loops. The loops degenerate
to the incomplete point at one end of the sweepout and to an interior
point at the other end. Although the maximum length loop in each
sweepout lies inside the two-sphere minus a point, unfortunately the
minimax of a family of such sweepouts may not avoid the incomplete
point. The maximum length loops may gradually move towards the
incomplete point. In Section 4.1 we give two examples of sequences of
sweepouts over a two-sphere minus a point with minimax not contained
in the two-sphere minus a point. They correspond to a sequence of
sweepouts of the round three-sphere by tori and C| IP 2 by three-tori,
with a change of topology in the minimax—rather than obtaining the
Clifford torus or the minimal T 3 ⊂ C| IP 2 the minimax is a minimal
two-sphere, respectively minimal three-sphere.

Although we insist that geodesics on an incomplete surface avoid
incomplete points, one can drop this condition since shortest paths
still exist on the compact manifold with a singular metric. In [7] it is
proven that when the incomplete surface is an orbifold there exists a
closed geodesic. In the case of a two-sphere with one orbifold point, the
closed geodesic contains the orbifold point.
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In the following sections we prove the existence of embedded closed
geodesics on the two-sphere minus a point equipped with an incomplete
metric in increasingly more general circumstances. We begin with the
circle symmetric case where the corresponding Hamiltonian system is
integrable and closed geodesics are essentially understood. We move
on to a class of metrics with discrete symmetries. Next we add the
assumption of positive Gaussian curvature with infinite integral, and
consider this case with and without finite symmetries. Finally we study
minimax of sweepouts and higher dimensional families of loops.

2. ODE methods

It is often convenient and natural to represent an incomplete point on a
surface as a circle boundary along which the metric is degenerate. Polar
coordinates (r, θ) give such a representation around an incomplete point
as in (1) or around a complete point. We shall take this viewpoint to
represent the two-sphere as a disk with incomplete point given by its
boundary.

2.1. Circle symmetric metrics

The simplest family of incomplete metrics on the two-sphere is

ds2 = dr2 + f(r)2dθ2 (2)

where r ∈ [0, 1] and θ ∈ [0, 2π], and f vanishes at r = 0 and r = 1. The
case f(r) = r

√
1− r2 was studied in [9] (using different coordinates)

giving rise to minimal tori in the round three-sphere.
We choose f to behave like r near 0, precisely f ′(0) = 1, so that the

metric is complete there. This condition is a consequence of the local
Gauss-Bonnet formula ∫

Ω
Kda+

∫
∂Ω
kds = 2π (3)

applied to the disk r ≤ ε, where K = −f ′′/f is the Gaussian curvature,
k = f ′/f is the geodesic curvature of the curve r ≡ ε, da = fdrdθ and
ds = fdθ. After integrating out the θ terms (3) becomes

−
∫ ε

0
f ′′dr + f ′(ε) = 1

and the left hand side is f ′(0). We allow f to vanish in any way at
r = 1, although we say the metric is incomplete at the ‘point’ r = 1
whether or not it can be completed. For example if it behaves like 1−r,
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respectively
√

1− r, then in the former case it can be completed, and
in the latter it cannot.

Geodesics for (2) parametrised by arc-length satisfy

f(r)2θ̇ = c, ṙ2 + f(r)2θ̇2 = 1 (4)

for some constant c. It immediately follows that f(r) ≥ c so geodesics
either meet the incomplete point when c = 0, or they are confined to
remain a bounded distance from the incomplete point if c 6= 0. In the
latter case, by the symmetry of the metric each geodesic is periodic in
θ, measured between two closest points to r = 0 or r = 1, and when
the period is a rational multiple of 2π, the geodesic is closed.

Each critical point of f in the interior of (0, 1) corresponds to an
embedded closed geodesic, so fr(r0) = 0 implies r ≡ r0 is a geodesic.
This occurs at least once, at the maximum of f(r), and precisely once
when the Gaussian curvature is positive, since then f(r) is convex and
its maximum is the unique stationary point in (0, 1).

In the example f(r) = r
√

1− r2 where embedded closed geodesics
correspond to embedded minimal tori in the three-sphere, the incom-
plete metric has positive Gaussian curvature with

∫
Kda = ∞. The

only embedded closed geodesic comes from the maximum of f(r), it
has index 3, and it corresponds to the Clifford torus. Nevertheless, in
general when a metric can not be completed—we say a metric can be
completed if

∫
Kda = 4π—there may an embedded closed geodesic

other than that coming from the maximum of f(r). We state this
precisely in the following proposition.

PROPOSITION 2.1. Let γ be the embedded closed geodesic correspond-
ing to the maximum of f(r). The metric (2) has at least two embedded
closed geodesics if ∫

Kda < 4π and index γ > 2

or
∫
Kda > 4π , index γ < 2 and γ non− degenerate.

Proof. Specify each geodesic by the minimum value c that f takes
on the geodesic. As described above, each geodesic is periodic in θ, and
the period Ωc, defined for c > 0, is a rational multiple of 2π for closed
geodesics. It is important to note that although the period of γ is 2π
it is likely that limc→fmax Ωc 6= 2π. If

lim
c→0

Ωc > 2π > lim
c→fmax

Ωc (5)

then by continuity of the period and the intermediate value theorem
there must be a geodesic with r non-constant and period 2π. This gives
an embedded closed geodesic other than γ.
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For the moment assume the following two limits which may be
infinite and are proven below:

lim
c→0

Ωc = π − π/f ′(1), lim
c→ccrit

Ωc = 2π/
√
−f ′′(rcrit)fmax (6)

where f ′(1) ∈ [−∞, 0] and f(rcrit) = fmax is the maximum of f . The
length of γ is L = 2πfmax, and the Gaussian curvature, which is given
by −f ′′/f , is −f ′′(rcrit)/fmax on γ. Thus∫

Kda =
∫ 2π

0

∫ 1

0

−f ′′(r)
f

fdrdθ = −2πf ′(r)|10 = 2π − 2πf ′(1)

so
lim
c→0

Ωc ≥ 2π ⇔
∫
Kda ≤ 4π

and the inequalities can be replaced by strict inequalities.
The Gaussian curvature is constant along γ so the Rauch comparison

theorem tells us the exact distance between conjugate points along
γ—it is π/

√
K|γ . Then

L
√
K|γ = 2πfmax ×

√
−f ′′(rcrit)/fmax = 2π

√
−f ′′(rcrit)fmax.

From (6)
lim

c→ccrit
Ωc ≤ 2π ⇔ L

√
K| ≥ 2π

and the inequalities can be replaced by strict inequalities. Finally

index γ > 2 ⇒ L
√
K|

γ
> 2π

index γ < 2 ⇒ L
√
K|

γ
≤ 2π

since if index γ > 2 then the index with respect to variations that
fix a point on the geodesic, call this indexΩγ, is at least two so γ
must contain at least two disjoint arcs of length greater than π/

√
K.

Similarly, if index γ < 2 then indexΩγ ≤ 1 so the length of γ cannot
exceed 2π/

√
K. Here we have used the fact that on a surface

index γ ≤ indexΩ γ ≤ index γ + 1.

In the second inequality, we can guarantee that the length of γ is strictly
less than 2π/

√
K if γ is non-degenerate (it has no Jacobi fields.)

It remains to prove (6). From (4),

dθ

dr
=
θ̇

ṙ
=

c

f(r)
√
f(r)2 − c2
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so the period of the geodesic is

Ωc = 2
∫ r2

r1

c

f(r)
√
f(r)2 − c2

dr

where f(r1) = c and f(r2) = c is the next time along the geodesic f is
c.

The limit limc→0 Ωc depends only on the local behaviour of f near
0 and 1 since for any ε > 0

lim
c→0

∫ 1−ε

ε

1
f(r)

√
f(r)2 − c2

dr =
∫ 1−ε

ε

dr

f(r)2
=<∞

and hence it is annihilated by multiplication by c when c→ 0. Thus

lim
c→0

Ωc = 2 lim
c→0

(∫ ε

r1

c

f(r)
√
f(r)2 − c2

dr +
∫ r2

1−ε

c

f(r)
√
f(r)2 − c2

dr

)
.

Choose α > f ′(0) and ε small enough so that for each r1 ∈ (0, ε],
f(r) lies below the line y = c + α(r − r1) for r ∈ [r1, ε]. This gives a
lower bound for the limit

2 lim
c→0

∫ ε

r1

c

f(r)
√
f(r)2 − c2

dr ≥ 2 lim
c→0

∫ c1

c

c

αy
√
y2 − c2

dy

= 2 lim
c→0

1
α

arctan
√

(c1/c)2 − 1

= π/α

where c1 = c + α(ε − r1). Similarly, we can choose α < f ′(0) so that
f(r) lies above a family of lines with slope α to get an upper bound
for the limit. The same argument works near r = 1, using f ′(1). If
f ′(1) = −∞ then we simply get an upper bound, with the lower bound
of 0 automatic. Thus

lim
c→0

Ωc = π/f ′(0) + π/|f ′(1)| = π − π/f ′(1).

The limit near the critical point, which we may translate to r = 0,
is a local quantity. It can be simplified as follows.

lim
c→ccrit

Ωc = lim
c→ccrit

2
∫ r2

r1

c

f(r)
√
f(r)2 − c2

dr

= lim
c→ccrit

2√
2ccrit

∫ r2

r1

dr√
f − c

.

If we change the parametrisation to r = r(t) then the limit transforms
as

lim
c→ccrit

∫ r2

r1

dr√
f − c

= lim
c→ccrit

∫ t2

t1

r′(t)dt√
f − c

= lim
c→ccrit

∫ t2

t1

r′(0)dt√
f − c
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and
df2

dt2
(0) =

d2f

dr2
(0)r′(0)2 +

df

dr
(0)r′′(0) =

df2

dr2
(0)r′(0)2.

Thus if we choose r′(0) = 1 then in the limit f(r) is simply replaced
by f(r(t)) and f ′′(0) is well-defined. In the generic case, when the
maximum is non-degenerate, by the Morse lemma we can choose r(t)
so that f = ccrit − λ2t2 for λ2 = −f ′′(0)/2. The limit becomes

lim
c→ccrit

∫ t2

t1

dt√
ccrit − c− λ2t2

= π/λ.

so
lim

c→ccrit
Ωc = 2π/

√
−f ′′(rcrit)ccrit.

When the maximum is a degenerate critical point an approximation
argument gives

lim
c→ccrit

Ωc = +∞

as expected, say when f is constant in a neighbourhood of its maximum
value.

2.2. Metrics on polygons

A more complicated class of incomplete metrics on the two-sphere arise
from toric geometry. See Section 5.2. Using ODE methods, we will
analyse a specific example which possesses discrete symmetries.

On the square |x| < 1, |y| < 1 define the metric

ds2 = (1− y2)dx2 + (1− x2)dy2. (7)

This is an incomplete metric on the two-sphere, with the boundary the
incomplete point.

The equations for the geodesic flow are

ẍ =
2y

1− y2
ẋẏ − x

1− y2
ẏ2

ÿ =
−y

1− x2
ẋ2 +

2x
1− x2

ẋẏ

or implicitly

d2y

dx2
=

x

1− y2

(
dy

dx

)3

− 2y
1− y2

(
dy

dx

)2

+
2x

1− x2

dy

dx
− y

1− x2
. (8)
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A compact way to represent the geodesic equations is through the
equivalent Hamiltonian system

H =
1
2

(
p2
1

1− q22
+

p2
2

1− q21

)
. (9)

We will not use the Hamiltonian formulation, except to point out that
it appears to be non-integrable so we expect the geodesic flow to be
complicated.

The remainder of this section is devoted to the proof that there is
an embedded closed geodesic on the two-sphere with incomplete metric
given by (7).

DEFINITION 1. Define the family of geodesics H to be those geodesics
that meet the y-axis horizontally, or equivalently ẏ = 0 at x = 0.

The next few lemmas prove that each geodesic inHmeets the line x = y
and at least one of these meets x = y orthogonally. By symmetry, this
geodesic extends to a geodesic that is an embedded loop. Furthermore,
we get estimates on the length and the index of the closed geodesic.

LEMMA 2.2. A geodesic that meets the y-axis twice while remaining
inside the region |y| ≥ |x| must be the y-axis.

Proof. A geodesic that meets the y-axis twice while |y| ≥ |x| must be
tangent somewhere to a line y = cx, and it must lie to the y-axis side
of the line (unless the geodesic is the y-axis.) From (8), when y = cx
and dy/dx = c we have

d2y

dx2
=

x

1− c2x2
c3 − 2cx

1− c2x2
c2 +

2x
1− x2

c− cx

1− x2

=
cx

(1− x2)(1− c2x2)

(
−(1− x2)c2 + (1− c2x2)

)
=

y

(1− x2)(1− y2)
(1− c2)

Since |y| > |x|, |c| > 1 so 1− c2 < 0 and d2y/dx2 has the opposite sign
of y. But this means the geodesic and the y-axis are on opposite sides
of the tangent line, which is a contradiction.

LEMMA 2.3. Each geodesic in H moves from the y-axis to the lines
x = ±y with y monotone in t.

Proof. By symmetry, without loss of generality we may assume that
y > x > 0. A geodesic that satisfies ẏ ≤ 0 and y > 0 somewhere,
must continue to have ẏ < 0 until y < 0—if ẏ gets too close to zero
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while y > 0 then ÿ < 0 so ẏ is sent back away from zero. This is
an easy consequence of one of the equations for the geodesic, ÿ =
(−yẋ2 + 2xẋẏ)/(1− x2). If y > ε > 0 and ẏ is small enough then ÿ < 0
since ẋ is bounded.

Thus, a geodesic in H must travel down and pass through y = 0
while ẏ < 0. From the previous lemma, it cannot pass through the
y-axis while y > 0 so it must meet the line y = x.

LEMMA 2.4. Any geodesic in H that meets the line x = y at a slope
greater than −1 is convex.

Proof. Without loss of generality assume y ≥ x ≥ 0. Suppose a
geodesic in H meets the line x = y at a slope greater than −1. In the
first quadrant dy/dx ≤ 0 implies that d2y/dx2 < 0 since each term
of (8) is negative. In particular a geodesic that meets the positive y-
axis horizontally has dy/dx negative and decreasing for small positive
x. Either this behaviour continues until y < x, proving the lemma,
or dy/dx → −∞ and the geodesic becomes vertical. The latter case
does not occur, because after it is vertical ẋ < 0 since d2x/dy2 < 0 by
exchanging x and y in the argument earlier in this paragraph. Further-
more, it cannot become vertical again while x > 0 since d2x/dy2 < 0.
In particular, it could not have met the line x = y at a slope greater
than −1.

PROPOSITION 2.5. The square contains an embedded closed geodesic.
Proof. We will prove that there is a geodesic that meets the lines

x = 0 and y = x orthogonally and thus by repeated reflections prove
the existence of an embedded closed geodesic that meets the lines x = 0,
y = 0 and y = ±x orthogonally .

Any geodesic in H close enough to the x-axis is almost horizontal so
it meets the line y = x at a slope approximately equal to 0. In the next
paragraph we will show that any geodesic in H that meets x = 0 close
enough to the boundary meets the line y = x at a steep slope, meaning
the slope is less than −1 there, or the geodesic has become vertical at
some point and hence meets y = x with a positive slope. By continuity
of the angle and the intermediate value theorem, there is a geodesic in
between that meets the line y = x at an angle of π/2. The extension
of this geodesic past the line y = x is obtained by reflecting it through
y = x. Reflect twice more to obtain an embedded closed geodesic.

Geodesics close to the boundary curve sharply away from the bound-
ary. This is because the metric near the boundary (away from the
vertices of the square) behaves like the model metric (1) where the
geodesics are explicit. Now assume y > x > 0. By the proof of the
previous lemma, once the slope of the geodesic is steeper than −1, it

geodincgd.tex; 21/01/2005; 14:36; p.12



13

must meet the line y = x at a steep slope, i.e. slope less than −1 or
positive, since it is either convex all the way to the line y = x, and
hence steeper than −1 there, or it becomes vertical somewhere and
hence must meet y = x with positive slope.
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1

-1 -0.5 0.5 1

Figure 1. Embedded closed geodesic.

The same argument applies to other regular polygons to give em-
bedded closed geodesics. For example, the triangle and hexagon defined
by abc = 0 for (a, b, c) = (1+x, 1+ y, 1−x− y), respectively (a, b, c) =
(1 − x2, 1 − y2, 1 − (x + y)2 equipped with the metric ds2 = (bcdx2 +
acdy2 + abd(x + y)2)/(a + b + c) are regular since their affine symme-
tries, which preserve the metric, make up the whole polygon symmetry
group. In Section 5.2 we will see that the square, triangle and hexagon
correspond to S2 × S2, C| IP 2 and C| IP 2 blown up at three points, and
the embedded closed geodesic in each corresponds to an embedded
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minimal T 3. Figure 1 shows the closed geodesics obtained numerically
using MAPLE. The geodesics lift to a minimal hypertorus in S2 × S2,
respectively C| IP 2 blown up at three points.

3. Geodesic curvature flow.

Gage [5] considered the flow of a loop γ on a surface of curvature K > 0

∂γ

∂t
=

k

K
ν (10)

in its normal direction ν, where k is the geodesic curvature of γ. The
flow preserves embeddedness and the integral of K over the area en-
closed by the loop behaves well under the flow. If the integral is 2π
then it is preserved by the flow. Chou and Zhu [3] completed the proof
of long time existence to prove that there exists an embedded closed
geodesic on a 2-sphere with positive Gaussian curvature.

3.1. Solutions in the neighbourhood of a point

Around a complete point of the metric, any small loop flows to a point
in finite time whereas around an incomplete point of the metric, it can
take infinite time. This can be seen explicitly for ds2 = dr2 + f(r)2dθ2

when f is convex. The curve r =constant has

k = −f
′

f
, K = −f

′′

f
, ν = (1, 0)

so the flow is given by dr/dt = f ′/f ′′ with solution

f ′(r) = f ′(r0)et.

In a neighbourhood of r = 0, 0 < f ′(r0) < f ′(r) since f is convex so
when f ′(0) is finite, for example f ′(0) = 1 in the complete case, the
loop converges to a point in finite time.

For the remainder of this section we will assume that f ′(0) is infinite.
In this case the curve r =constant takes infinite time to converge to
a point. For example, when the metric is the model metric (1), so
ds2 = dr2 + rdθ2 the flow is given by

dr/dt = −2r ⇒ r = r0e
−2t

which shrinks exponentially.
Consider the metric defined on the positive quadrant with singular

point given by the union of the axes

ds2 = ydx2 + xdy2. (11)
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For this metric we do not find an exact solution of the flow however
the levels sets of xy behave well under the flow. The curve xy = ε has

k =
x2 + y2

2xy(x+ y)3/2
, K =

x+ y

4x2y2
, ν =

−1√
x+ y

(1, 1)

so the infinitesimal change in ε = xy during the flow is

dε

dt
= ∇ε · (ẋ, ẏ) = −2xy

x2 + y2

(x+ y)2
.

Denote the geodesic flow of xy = ε0 by (x(t), y(t)). We can use the
fact that

1 ≥ (x2 + y2)/(x+ y)2 ≥ 1/2 (12)

to prove that
ε0e

−2t ≤ x(t)y(t) ≤ ε0e
−t.

The flow γ(t) = {xy = ε0e
−2t} coincides with the curve xy = ε0 at

t = 0 and by the first inequality in (12), γ(t) initially moves off more
rapidly than the geodesic flow (x(t), y(t)). If (x(t), y(t)) was ever to
catch γ(t), then it would have to meet it at a tangent such that its
geodesic curvature is bounded below by the geodesic curvature of γ(t).
But then γ(t) is moving faster which contradicts the fact that it was
ever caught by (x(t), y(t)). The same argument shows that the curve
{xy = ε0e

−t} never catches (x(t), y(t)) when t > 0. Thus the curve
takes infinite time to reach the boundary and it moves exponentially
slowly there.

Any loop in a neighbourhood of the incomplete point (that does or
does not surround the incomplete point) flows toward the incomplete
point in infinite time. This is because the level sets r =constant (or
xy =constant in the second example) form barriers for the loop, forcing
it to remain between two level sets that move exponentially slowly
toward the incomplete point.

A loop with
∫
Kda < 2π does not actually reach the incomplete

point, instead it shrinks to a point (away from the incomplete point) in
finite time. This is because we must have

∫
γ kds > 0. The flow satisfies

d
∫
γ kds

dt
=
∫

γ
kds

so
∫
γ kds increases to 2π in finite time. At that time the flow stops since∫

Kda = 0 inside the loop. This occurs away from the incomplete point
due to an exponentially shrinking barrier so we can apply the results
of [3] that if the flow exists only for finite time then the loop flows to
a point.
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Before we can understand the behaviour of loops with
∫
Kda = 2π

we must first consider scale invariant solutions. Consider solutions to
(10) for the metric (1) that are scale invariant under the map

(r, θ) 7→ (λ(t)2r, λ(t)θ) (13)

where λ(t) = ect determines the speed of a solution. Also rescale arc
length s 7→ s/λ2 in order to preserve the third equation below. One
consequence of this is that kds is preserved along a curve after rescal-
ing. Lift to the cover with θ ∈ IR. Scale invariant solutions are static
solutions of the equation

dr

dt
= 4r2r̈ − crθṙθ̇ + 2(c− 1)r2θ̇2,

dθ

dt
= 4r2θ̈ + 2(2− c)rṙθ̇ + cθṙ2,

ṙ2 + rθ̇2 = 1.

The variable t is the flow parameter and the dotted derivatives are
taken with respect to the arc length s. If we choose c = 0 then this
produces a geodesic. In fact, we choose c = 1, in order to scale at the
same rate as the flow of the curves r =constant, or in other words, so
that r =constant is a scale invariant solution. The ODE

0 = 4r2r̈ − rθṙθ̇, 0 = 4r2θ̈ + 2rṙθ̇ + θṙ2, ṙ2 + rθ̇2 = 1 (14)

has a unique solution for each set of initial data. We call such solutions
scale invariant solutions (with scaling parameter c = 1.)

Figure 2. Scale invariant solution ξa,b acts as a barrier.
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Associate to any pair (a, b) ∈ IR+ × IR the unique solution ξa,b of
the ODE (14) with initial conditions at s = 0

r = a, θ = b, ṙ = 1, θ̇ = 0. (15)

Figure 2 shows the solution around the vertical axis θ = 0. The position
s = 0 occurs at, say the uppermost vertical in the picture to the right
of the axis. The solution curve and the line θ = 0 bound closed regions
to either side of θ = 0 as shown in the following proposition.

PROPOSITION 3.1. The scale invariant solution ξa,b reaches θ = 0
for s > 0 and s < 0 at interior angles α and β, and over the interior of
the region bounded by the solution curve and the line θ = 0,

∫
Kda =

α+ β.
Proof. The Gauss-Bonnet formula over R, the interior of the region

bounded by the solution curve and the line θ = 0, is∫
R
Kda+

∫
∂R
kds+ π − α+ π − β = 2π

so the second claim
∫
RKda = α+β is equivalent to the statement that∫

∂R kds = 0. We begin with a lemma stronger than the second claim.

LEMMA 3.2. Let R be a region bounded by arcs consisting of solutions
of (14) together with an arc along θ(0) = 0. Then kds is exact along
∂R so ∫

∂R
kds = 0.

Proof. The unit normal to γ(s) = (r(s), θ(s)) is ν = r−1/2(rθ̇,−ṙ)
so for solutions of (14)

kds = ∇d/ds(ṙ, θ̇) · νds

= r−1/2(rr̈θ̇ − rθ̇3/2− rθ̈ṙ − ṙ2θ̇)ds
use (14) to substitute for r̈ and θ̈

= r−1/2(θṙθ̇2/4− rθ̇3/2− ṙ2θ̇/2 + θṙ3/(4r))ds

= r−1/2(ṙθ/(4r)− θ̇/2)(ṙ2 + rθ̇2)ds

= r−1/2(ṙθ/(4r)− θ̇/2)ds again by (14)

= −1
2
d(r−1/2θ)

The same conclusion holds along the line θ = 0, since k = 0 =
−1

2d(r
−1/2θ) when θ ≡ 0, and the lemma is proven.

The proof of the proposition breaks into the two cases s < 0 and s > 0
for the solution ξa,b satisfying the initial conditions (15).
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LEMMA 3.3. The solution ξa,b meets θ = 0 for s < 0.
Proof. First note that for s < 0, ṙ(s) > 0 and while θ(s) > 0,

θ̇(s) > 0, since the lines r = constant are solutions of (14), respectively
the lines θ = constant > 0 give θ̈ < 0. Thus, while θ > 0, θ̈ < 0 since
θ̈ = −ṙθ̇/(2r) − θṙ2/(4r2). It follows that for s < 0, θ̇(s) is decreasing
so the solution meets θ = 0 (possibly at r = 0) if we can show it stays
away from r = 0.

The solution ξa,b does not meet r = 0 while θ > 0 since suppose the
solution ξa,b meets the line r = ε at θ1 > 0. Then the region R bounded
by the arcs θ = 0, r = r(0), r = ε and the solution curve satisfies the
conditions of Lemma 3.2 (since r = constant is a solution of (14).) Thus
if α is the interior angle between the solution curve and the line r = ε
then

∫
RKda = α−π/2 < π/2. But since Kda = drdθ/4r3/2,

∫
RKda is

arbitrarily large for small enough ε if θ1 stays away from 0. This gives
the desired contradiction.

For the case s > 0 we we turn the problem around and prove that
any scale invariant solution with θ(0) = 0, θ̇(0) > 0 and ṙ(0) < 0
eventually becomes vertical (θ̇ = 0), and that a vertical at any point
(a, b) is reached above by a solution beginning at θ = 0.

LEMMA 3.4. A solution of (14) with θ(0) = 0, θ̇(0) > 0 and ṙ(0) < 0
eventually becomes vertical, i.e. θ̇ = 0.

Proof. As in the proof of the previous lemma note that for s > 0,
ṙ(s) < 0 and if the solution does not become vertical then θ̇(s) > 0.

If the solution does not become vertical then it must either meet
r = 0 or become asymptotic to r = r1. In both cases the solution meets
the line θ = 0 at an angle α, say, and a line r = ε at an angle β where ε
is arbitrarily small in the first case and β < π/2, and in the second case
ε is arbitrarily close to r1 and β is arbitrarily close to 0. The region R
bounded by the arcs θ = 0, r = ε and the solution curve satisfies the
conditions of Lemma 3.2 so∫

R
Kda = α+ β − π/2.

In the first case, as in the previous lemma,
∫
RKda is arbitrarily large

for small enough ε which contradicts
∫
RKda = α+β−π/2 < α. In the

second case, since α < π/2, when β is small enough α + β − π/2 < 0
contradicting

∫
RKda > 0.

LEMMA 3.5. Lemma 3.4 gives a well-defined map

F : IR+ × (0, π/2) → {(a, b)|a > 0, b > 0}
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where the domain gives the intial conditions and the range the point at
which the solution becomes vertical. The image of F is both open and
closed and hence F is surjective.

Proof. By continuity of initial conditons of ODEs, in a small enough
neighbourhood of a point (a, b) reached vertically above by a solution
beginning at θ = 0, any vertical solution remains close to the solution
through (a, b) and in particular meets θ = 0 transversally and at an
angle not equal to π/2. Thus the image of F is open.

The map F is continuous by continuity of initial conditons of ODEs.
Thus the image of any compact set in IR+ × (0, π/2) is compact and
hence closed. In order to prove that the image of F is closed we must
understand the behaviour of F as the initial angle tends to 0 or to
π/2. As the initial angle tends to 0, the solution tends to the solution
θ = 0 and the vertical tends to the line θ = 0 which lies outside the
set {(a, b)|a > 0, b > 0}. As the inital angle, α say, tends to π/2, take
the region R bounded by the arcs θ = 0, the solution curve, and r = a,
the value of r when the solution becomes vertical. By Lemma 3.2,∫
RKda = α ≈ π/2. But the solution tends towards a horizontal line
r = constant, and in order for the integral of K to remain large (≈ π/2)
we must have a→∞, which lies outside the set {(a, b)|a > 0, b > 0} so
we have proven that the image of F is closed in {(a, b)|a > 0, b > 0}.

Proposition 3.1 follows from combining the previous four lemmas.

The shape of a solution is given in Figure 2. If b >> a, then the
solution becomes almost horizontal as θ approaches 0, i.e. the two angles
α and β of the solution curve with θ = 0 are approximately π/2. This
is because ṙ must remain positive, α and β are both less than π/2 but
then

∫
Kda < π over the region bounded by the solution curve and

θ = 0. In order to maintain such a small integral when b >> a, the
solution curve may only span a small range along the r direction. Note
also that for such a solution

∫
Kda ≈ π.

PROPOSITION 3.6. (i) A loop with
∫
Kda = 2π reaches the incom-

plete point from a well-defined direction.
(ii) A loop with

∫
Kda > 2π may smear out at the incomplete point

meeting it at an interval of angles.
Proof. Any loop γt with γ0 bounding a disk over which

∫
Kda ≥

2π reaches the incomplete point (in infinite time) since it maintains∫
Kda ≥ 2π throughout the flow so cannot disappear. It is easy to see

that (i) implies (ii) if we take a loop with
∫
Kda > 2π symmetric around

a vertical axis θ = θ0. Inside such a loop is a loop with
∫
Kda = 2π

symmetric around θ = θ1 for an interval of θ1 values, and each such
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loop forms a barrier for the outer loop, forcing it to meet the incomplete
point at θ = θ1.

To prove (i), suppose the converse. If
∫
Kda = 2π and γt smears

out at the incomplete point, take the maximum angle θ = θmax in the
limit of γt. (Recall that all of this takes place in the universal cover, so
θ ∈ IR.) This exists, since during the flow, γt cannot cross a line θ ≡ θ1
so take the minimum of the (closed) set of lines θ1 that lie to the right
of γt at some finite time T . Similarly, take the minimum angle θmin.

Since
∫
Kda = 2π as t→∞, γt must become long and thin in order

to reach θmin and θmax and to maintain its small integral. Another way
to state this is to rescale the flow by (13) to get a solution γ̃t of (14).
The static solutions r =constant serve as barriers above and below the
rescaled solution. The lines θ = θmin and θ = θmax now move outwards
exponentially. The curve γ̃t becomes very flat along some r =constant
in order to maintain

∫
Kda = 2π. It moves outwards exponentially fast.

Now, place a static solution as in Figure 2 with one of its verticals at
(a, b) just to the right of γ̃t. The height of γ̃t is much less than that
of a static solution since by translating the θ coordinate we can make
the integral

∫
Kda of γ̃t to the right of the line θ = 0 arbitrarily small.

The static solution always maintains
∫
Kda ≈ π to the right of the line

θ = 0 so it is much thicker (spans a greater range along the r direction)
than γ̃t. Since it is static it will serve as a barrier to γ̃t, preventing it
from moving outwards exponentially as assumed.

3.2. Global flow

For the remainder of this section we will consider the two-sphere minus
a point equipped with an incomplete metric with the properties:

• it has positive Gaussian curvature
• it is asymptotic to (1) or (11) near the incomplete point. (16)

Over a smooth Riemannian 2-sphere, an embedded closed geodesic
separates it into two pieces with integral of K over each equal to 2π. In
the incomplete case, we begin with an embedded loop with integral of
K over its interior 2π and infinite on its exterior and expect it to flow
to an embedded closed geodesic.

PROPOSITION 3.7. On S2−{point} equipped with a metric satisfying
(16), a smooth loop bounding a region with

∫
Kda = 2π converges under

the flow (10) to one of the following:
(i) an embedded closed geodesic;
(ii) the incomplete point, approaching from a well-defined direction;
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(iii) the double of a geodesic arc beginning and ending at the incom-
plete point.

Proof. If the curve remains a bounded distance from the incomplete
point then one can apply the results of [3], that the geodesic flow
produces an embedded closed geodesic, since the proof uses only upper
and lower bounds for K. Hence (i) results.

Suppose a loop does not converge to an embedded closed geod-
esic. Then at least part of the loop must flow arbitrarily close to the
incomplete point. If there are disconnected intervals of directions at
the incomplete point such that the loop moves arbitrarily close to
the incomplete point from these directions, but misses an interval of
directions in between, then the number of such intervals of directions
must be exactly two, the intervals must be points, and the loop must
be converging to (the double of) a geodesic beginning and ending at
the incomplete point along the two directions. This is because outside a
neighbourhood of the incomplete point, arcs of the loop must converge
to geodesics. If the limit direction set consists of more than two points,
then it must contain intervals in order to accommodate different geod-
esics leaving the set. In that case, the integral

∫
Kda over the interior

of the loop would be infinite. Alternatively, studying scale invariant
solutions locally, one can show that the integral of the Gaussian cur-
vature on the interior of a solution to the flow concentrates near the
incomplete point along a well-defined direction with

∫
Kda ≈ π. Thus,

a loop with
∫
Kda = 2π can afford only two such directions. Hence (iii)

results.
If neither (i) nor (iii) results then the loop must be eventually

contained entirely in an arbitarily small disk neighbourhood of the
incomplete point. The neighbourhood of the incomplete point is asymp-
totically given by (1), (or (11) near vertices of polygons arising from
toric surfaces.) Since the loop moves inside arbitrarily small neigh-
bourhoods of the incomplete point, the model metric approximates the
given metric arbitrarily closely. By continuity of solutions of the flow,
we can conclude from the local study that the loop takes infinite time
to reach the incomplete point, that it remains for all time inside any
small neighbourhood of the incomplete point, and that it approaches
it from a well-defined direction.

To complete the proof of Theorem 1 we use the topology of the disk
and its boundary. First we need the following result about small disks.

LEMMA 3.8. Over S2−{point} equipped with a metric satisfying (16)
one can continuously assign a family of expanding disks around any
given point x ∈ S2 − {point} so that the integral of K over the disk is
arbitrarily large. The assignment is continuous in x and

∫
Kda.
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Proof. Any well-defined family of disks is suitable for our purposes.
We can arbitrarily choose a background metric and take fixed radius
disks. In terms of the local picture ds2 = dr2 + rdθ2 we choose a
background metric ds2 = dr2+dθ2. We may assume the point x = (c, 0)
by translating θ. Consider the disk (r − c)2 + θ2 = c2. Then∫

D
Kda =

∫ 2c

0

∫ √r(2c−r)

−
√

r(2c−r)

r1/2dθdr

4r2
=
∫ 2c

0

√
2c− r

2r
dr = ∞.

When the metric is only asymptotically like (1), then almost any contin-
uous assignment will do, as long as it locally looks like the construction
above in a neighbourhood of the incomplete point. In the case of poly-
gons arising from toric geometry, it is convenient to choose the disks
to be (smoothed) polygons centred at each interior point similar to the
given polygon.

COROLLARY 3.9. One can continuously assign to each point on a
two-sphere minus a point equipped with a metric satisfying (16) a disk
over which

∫
Kda = 2π.

Proof. This is immediate from Lemma 3.8 since the integral of K
over a very small disk will be small and a large enough disk will give
large integral of K.

Before stating the next result, we explain what is meant when “the
shortest geodesic is long” which appears in the statement of Theorem 1.

The length of a homology class of loops in S2 is defined as follows.
Let η be a k-dimensional family of loops in S2 representing a homology
class [η] ∈ Hk(loops ⊂ S2) and take l(η) =length of the longest loop
in η. Define l([η]) to be the infimum of l(η) over all representatives
η. If there is an index two (possibly index three when the condition∫
Kda = 2π is dropped) embedded closed geodesic on the incomplete

two-sphere, then its length is expected to be the length of the second
homology class of loops. Note that the assignment of a family of disks
with

∫
Kda = 2π given by Corollary 3.9 gives an upper bound for

the length of the second homology class of unparametrised embedded
loops in S2. Simply take the maximum length in the family. This can be
calculated in many cases, in particular for the metrics arising from the
round three-sphere, C| IP 2 and S2×S2. In these cases, one uses a family
of Euclidean circles, respectively (smoothed) triangles and squares. The
maximum length loop in the family comes from simple calculus.

The length of the shortest geodesic arc running from the incomplete
point back to itself can also often be calculated, in particular for the
same three examples as in the previous paragraph. In these three cases,
the geodesic arc can be explicitly calculated.
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When twice the length of the shortest geodesic arc running from
the incomplete point back to itself is greater than the length of the
second homology class of embedded loops in the two-sphere we expect
the geodesic curvature flow to produce an embedded closed geodesic.
In fact, we need something a little stronger to hold:

DEFINITION 2. The shortest geodesic arc running from the incom-
plete point back to itself is long if twice its length is greater than the
maximum length loop in the family constructed in Corollary 3.9.

THEOREM 4. Suppose a metric on a two-sphere minus a point sat-
isfies (16) and the shortest geodesic arc running from the incomplete
point back to itself is long. Then there exists a loop that converges to
an embedded closed geodesic under the geodesic curvature flow.

Proof. For each point on the two sphere minus the incomplete point,
continuously choose the disk centred at the point over which

∫
Kda =

2π given by Corollary 3.9. The boundary of the disk is the initial loop
in the geodesic flow.

We will argue by contradiction that one of the loops must flow to an
embedded closed geodesic. First, replace the incomplete point with its
circle of directions, so the two-sphere with an incomplete point becomes
a disk with circle boundary. Each loop must converge to (i), (ii) or (iii)
of Proposition 3.7. No loop can converge to (iii), double a geodesic arc,
since the length of each initial loop is less than twice the length of the
shortest geodesic arc, and the flow is length decreasing. Now suppose
that no loop flows to (i), an embedded closed geodesic. Thus each loop
flows to (ii), the incomplete point along a well-defined direction, or
equivalently to a boundary point on the circle. This gives a map from
the disk to its boundary, defined by sending the centre point of an
initial disk to the destination of its loop on the boundary.

The map is continuous by continuity of the partial differential equa-
tion governing the flow. Of course, continuity only applies to finite
time intervals, but by the proof of Proposition 3.6, a loop evolves quite
predictably from a very large time until infinity, confined to a cone
containing the well-defined limit direction. The continuous map can be
extended to the boundary of the disk by setting it to be the identity
there. This is because an initial disk centred close to a boundary point
evolves close to the boundary point by the proof of Proposition 3.6.

A continuous map from the closed disk to its boundary that is
the identity on the boundary cannot exist by algebraic topology con-
siderations (S1 ↪→ D2 → S1 induces the identity on the fundamen-
tal group that factors through the zero map) thus giving the desired
contradiction.
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The flow simplifies considerably if there is a cyclic symmetry of order
at least three. In that case, if one begins with a loop that possesses the
symmetry neither (ii) nor (iii) of Proposition 3.7 can occur since if a
point of a loop approaches the incomplete point from some direction
then it must approach from at least three directions, contradicting (ii)
and (iii). Thus, (i) remains, so the loop must converge to an embedded
closed geodesic.

4. Minimax and sweepouts.

A sweepout of a manifold is a foliation of the manifold by a path of
codimension 1 submanifolds that degenerate to lower dimensional sub-
manifolds at each end. An example of a sweepout is the constant radius
loops on the the two-sphere with a circle invariant metric described
in Section 2.1. The loops degenerate to a point at each end of the
sweepout. We showed that the maximum length loop is a geodesic.
For more general sweepouts of a two-sphere by loops degenerating
to points at each end, it is no longer true that the maximal length
loop is a geodesic, however the minimax in the family of sweepouts
is minimal. The minimax is obtained from a family of sweepouts by
taking a sequence of sweepouts in the family with maximal length loop
decreasing and converging to the infimum of all maximal lengths in the
family. A priori the minimax may not be a smooth loop, and hence a
geodesic, however in [12] it is shown that over a complete Riemannian
surface the minimax is a geodesic.

4.1. Change of topology in a minimax sequence.

Here we give two explicit minimax sequences to show how one can
fail to detect an embedded closed geodesic on an incomplete surface
using sweepouts. This corresponds in higher dimensions to a change of
topology of the limit from the topology of the leaves of each sweepout.
The two examples are based on the same idea.

Consider the two-sphere with incomplete metric ds2 = dr2 + r2(1−
r2)dθ2. Any point (r, θ) with 0 < θ < π determines a loop in the disk
given by joining (r, θ) to (r,−θ) by a vertical line and by a constant
radius circle to the right of the line as in Figure 3. The length of the
loop is

L(r, θ) = 2r sin θ
√

1− r2 cos2 θ + 2rθ
√

1− r2.

(This is clear for L(r, π) = 2πr
√

1− r2, L(r, π/2) = 2r + πr
√

1− r2,
and when θ ≈ 0, the two summands of L are approximately equal.) A
sweepout by loops that degenerate to the boundary at one end and to
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(r, θ)

Figure 3. The loop is determined by its left upper corner.

an interior point at the other end is simply given by a path r(θ) such
that r(π) = 1—the boundary is an end point; r′(θ) > 0—the leaves are
disjoint; and r(0) ≥ 0—the endpoint is an interior point.

We will now construct a sweepout with maximum length loop rep-
resented by (c, π/2) for c close enough to 1. As c → 1 the maximum
length loop decreases in length and converges to the minimax which is
simply the line θ = ±π/2.

Along θ = π/2, L(r, π/2) is a maximum at r ≈ .83 and decreases for
r > .83. Along r = 1, L(1, θ) is increasing as θ travels from 0 to π/2 and
decreasing from π/2 to π. From this it is easy to see that for c > .83 one
can take a path from the point (c, π/2) to (1, π) such that L decreases
along the path and similarly a path from (c, π/2) to (r0, 0) along which
L decreases. In other words there is a sweepout with maximum length
loop represented by (c, π/2) and as c → 1 the maximum length loop
decreases.

The above example corresponds to minimal tori in the three-sphere.
We know that there is an embedded closed geodesic, corresponding
to the Clifford torus, and this is missed by taking the minimax of
sweepouts. The sweepouts by loops correspond to sweepouts by tori on
the three-sphere. The maximal volume tori converge to a two-sphere
union a one-dimensional arc meeting the two-sphere at two points. We
remove the arc, leaving a minimal two-sphere.

The next example uses the metric over the triangle

ds2 = y(1− x− y)dx2 + x(1− x− y)dy2 + xyd(1− x− y)2 (17)

defined in Section 2.2 where we proved the existence of an embedded
closed geodesic. In the following proposition we show that this geod-
esic is missed by taking the minimax of sweepouts. This corresponds
to sweepouts of tori in C| IP 2 with minimax an embedded minimal
three-sphere. Inside the maximal volume T 3 of each sweepout, there
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is a [0, 1] × T 2 ⊂ T 3 that collapses to a pair of disks [0, 1/2] × S1 ∪
[1/2, 1] × S1/{1/2} × S1. So the minimax is a three-sphere union two
two-dimensional disks that intersect each other at a point and the
three-sphere at a circle. We remove the lower-dimensional part of the
limit.

PROPOSITION 4.1. There exists a sequence of sweepouts of loops of
the triangle with metric (17) with minimax an arc that starts and ends
at the incomplete point.

Proof. Consider sweepouts of the triangle x ≥ 0, y ≥ 0, x + y ≤ 1
by similar triangles symmetric under x ↔ y. (There are many such
sweepouts, each given by a continuous monotone function encoded by
the top left vertex of each triangle.)

Given any a > 0 small enough, we will construct a sweepout of the
triangle by a family of similar triangles such that the maximum length
triangle is close to the triangle Ta with edges x = a, y = a, x+y = 3/4.
Furthermore, there is a sequence ai → 0, such that the maximum length
triangles in the associated sweepouts decrease in length. The minimax
of such a sequence is the triangle x = 0, y = 0, x+ y = 3/4. We throw
away x = 0 and y = 0 to be left with the geodesic x + y = 3/4 that
meets the boundary.

The length of the path x + y = c running from x = 0 to y = 0 is
l(c) = c

√
2c(1− c). By considering l2 it is easy to see that the maximum

occurs at c = 3/4 and the function is monotone outside the maximum.
The length of the triangle Ta, with edges x = a, y = a, x+ y = 3/4, is
L(a) = (3/4− 2a)(2

√
2a(1− a) +

√
3/8). Since L′(a) → +∞ as a→ 0,

for small enough a, L(a) > L(0) = l(3/4) > l(c) for c 6= 3/4.
Given ε > 0, there is a δ > 0 such that l(c) < l(3/4) − δ for c >

3/4 + ε. Choose a small enough so that the path x = a has length less
than δ/2. Foliate the outside of the triangle Ta with similar triangles
(invariant under x ↔ y.) Then, any triangle with side x + y = c and
c > 3/4 + ε has length bounded above by l(c) + 2δ/2 < l(3/4) < L(a).

Inside Ta we can foliate by triangles each of length less than L(a)
as follows. The paths x + y = c for c < 3/4 running from x = a to
y = a have lengths less than the path x+ y = 3/4 running from x = a
to y = a since they are the same proportion of the full paths from
x = 0 to y = 0. In the extreme, if we were to take the triangles with
edges x + y = c, x = a and y = a, for c running between 3/4 and a,
they would all have length strictly less than the triangle Ta. This set
of triangles doesn’t foliate the interior of Ta, but we can adjust them
slightly to foliate, as follows. Choose the vertical x = x(c) so that the
increase in the lengths of the path x = x(c) and the path x = a from
y = a to y = 3/4 − x(c) (respectively y = 3/4 − a) is exactly equal to
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the decrease in the lengths of x + y = c and x + y = 3/4 from x = a
to y = a. (If x(c) gets big enough so that the latter lengths do not
decrease, then choose any foliation of verticals.) The lengths of all of
these triangles are less than the length of Ta since we have measured a
bit more than necessary.

Thus, the maximum length triangle in the sweepout contains the
side x+ y = c for c < 3/4 + ε. The maximum length is bounded above
by L(a) + δ where δ → 0 as ε → 0. Thus, we can choose a sequence
ai → 0 so that the maximum length decreases. Moreover, it converges
to L(0) and the maximum length triangle converges to T0, the triangle
with edges x = 0, y = 0, x+ y = 3/4.

4.2. Minimax in finite dimensions.

Consider the problem of locating the critical points of a smooth function
f : M → IR defined on a compact manifold M . The local minima
of f can be found by flowing from a generic point along the path of
steepest descent—the gradient flow, or simply any path of descent. A
more sophisticated method is needed to locate critical points of higher
index.

In place of a generic point in M , take a submanifold Σ ⊂ M , that
represents a non-trivial homology class. If [Σ] ∈ Hk(M) is non-trivial,
then there is a point of Σ that flows to an index k critical point of M ,
under the gradient flow. This follows from Morse theory ideas, where
the critical points of f represent cohomology classes on M (or more
precisely, cochains), and the non-trivial evaluation of a cohomology
class on [Σ] detects the intersection of Σ with the stable manifold of a
critical point.

From Σ ⊂ M , one might use the gradient flow to locate the index
k critical point, although this method is limited when we adapt it to
infinite-dimensional analogues where the gradient flow is not so well-
behaved.

Alternatively, a minimax argument can be used. Take the point in
the image of Σ that is a maximum under f . Now vary Σ in its homology
class in such a way that its maximum decreases. The minimax of Σ is
the minimum such maximum value over all homologous maps Σ →M .
One can prove that it is the index k critical point. This is because the
maximum point on Σ becomes arbitarily close to the intersection of Σ
with the stable manifold of the critical point, and this intersection can
be brought arbitrarily close to the critical point.

An example is given in Figure 4 for the height function on a torus.
Consider maps γ : [0, 1] → M that satisfy γ(0) = q = γ(1) where
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Figure 4. The index 1 critical point is a minimax.

q ∈ M is the minimum, and the image of γ represents a non-trivial
class in H1(M). The example shows that the image of γ contains a
point that flows to the index 1 critical point under the gradient flow.
The maximum point on γ is forced to lie above the index 1 critical
point, and a minimax sequence of such maximum points will converge
to the index 1 critical point.

This shows that sweepouts can give index one closed geodesics at
best and that we need to take the minimax of higher dimensional
families of loops to get some closed geodesics. Lusternik-Schnirelmann
theory successfully does this on the infinite-dimenional manifold of
loops on a manifold equipped with the length functional. More gen-
erally, Almgren [2] used geometric measure theory techniques to prove
the existence of minimax limits and Pitts [12] proved regularity results
for the varifolds produced from Almgren’s work.

One way of producing the minimax of a family of paths on manifold
is to apply a curve shortening flow to the entire family. As long as such
a process is continuous, the topology of the underlying manifold can be
used to deduce the existence of closed geodesics. Hass and Scott [10]
constructed a curve shortening flow by covering a surface with small
disks and then straightening a given path in each disk, in turn. They
proved that this process produces a sequence of paths that converge
to a geodesic. Furthermore, any given continuous family of paths can
be shortened continuously—this requires some fixing of discontinuities.
When the surface has incomplete points, this process can still be used
to shorten a given curve. However, the curve shortening may not be
unique and this produces discontinuities in the curve shortening of a
family that cannot be fixed. Figure 5 shows two shortest paths of the
same length joining a pair of points on the boundary of a small disk
around the incomplete point with metric ds2 = dr2 + rdθ2. Arbitrarily
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Figure 5. Equal length shortest paths joining boundary points.

small disks possess such pairs since in a disk of radius ε, geodesics
(with θ non-constant) from the boundary that come close enough to the
incomplete point have length greater than 2ε so the intermediate value
theorem produces a geodesic from the boundary with length exactly 2ε
and it can be shown it is minimal. This results in a choice for the curve
shortening flow, which produces a discontinuity in the flow of a family.
A similar type of discontinuity occurs in [10], and there they fill in the
“gap” between the two shortest paths with a family of paths. In our
case, the family of paths joining the two boundary points consists of
paths longer than the two bounding shortest paths, and this destroys
the shortening of a family. The key difference with [10] is that their
discontinuity arises between a shortest path and a (local) longest path.

5. Minimal submanifolds.

A natural source of incomplete metrics over a surface comes from the
study of minimal submanifolds in higher dimensions. If Y → M is a
codimension one minimal immersion invariant under a subgroup G of
isometries of M such that dimM/G = 2, then it is the pull-back of a
geodesic on the quotient with an adjusted metric. If g is the quotient
metric on M/G, and V (x) is the volume of the orbit of x ∈M under G
(defined with multiplicity), then the adjusted metric is V 2g [9]. Since
the volume of each orbit is taken into account, the length of a geodesic
in the quotient is equal to the volume of its pull-back upstairs.
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5.1. Three-spheres

Consider S3 with the circle action that fixes a circle. It is convenient to
respresent this with respect to a cylindrical coordinate system (r, θ, φ)
where (θ, φ) parametrise tori which degenerate to circles at r = 0 amd
r = π/2. The circle action is given by rotation by φ and the fixed circle
is r = π/2. The quotient space of the action is a disk with boundary
corresponding to the fixed point set upstairs. The lengths of the orbits
go to zero as the fixed point set is approached so this produces a metric
on the disk which is degenerate on the boundary, or equivalently an
incomplete metric on the two-sphere minus a point. For concreteness,
we will consider the special case of circle invariant metrics on S3 of the
form

ds2 = dr2 + u′(r)2dφ2 +
f(u(r), θ)2

u′(r)2
dθ2

where f(u)2 ∼ u2(1 − u2) near u = 0 and u = 1 and u(r) ∼ sin(r)
near r = 0 and r = π/2 (strictly we mean u′(0) = 1, etc.) This means
the metric is asymptotically the same as the round metric at the two
invariant circles r = 0 and r = π/2. The more general metric would
still behave like this asymptotically, although it would not be diagonal,
and the coefficient of dφ2 would depend on θ too. The quotient metric
is

ds̄2 = dr2 +
f(u(r), θ)2

u′(r)2
dθ2

and the adjusted metric is

dŝ2 = u′(r)2dr2 + f(u(r), θ)2dθ2 = du2 + f(u, θ)2dθ2.

This is complete at u = 0 and incomplete at u = 1 with
∫
Kda = ∞ in

a neighbourhood.
More generally, the SO(n−1) action on the first factor of IRn−1×IR

induces an action on Sn. The quotient is a disk with boundary corre-
sponding to the fixed point set upstairs, so again we get an incomplete
metric on the two-sphere minus a point. Near the incomplete point, the
metric looks like

ds2 = dr2 + rpdθ2, p = 2− 2/n.

When
ds2 = du2 + u2(1− u2)dθ2 (18)

corresponding to the round three-sphere, the length of the second ho-
mology class of loops with

∫
Kda = 2π over the disks they bound, is

the same as the length of the embedded closed geodesic which is π.
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The length of the shortest geodesic arc is 2. Since π < 4, the length
of the second homology class of loops is less than twice the length of
the shortest geodesic arc. The same is true for a metric sufficiently
close to (18), and furthermore a sufficiently close metric has positive
Gaussian curvature. Thus we have proven Theorem 2 in the case that
the circle action has a fixed point set. When the circle action is free,
then the existence of an embedded minimal torus is equivalent to the
existence of an embedded closed geodesic on the quotient two-sphere
where the quotient metric is adjusted by the lengths of the orbits. In
this case, there are at least three embedded closed geodesics, see for
example [10], and hence three embedded minimal tori. Thus Theorem 2
is proven. Note that, as mentioned in the introduction, a three-sphere
that gives rise to a positive Gaussian curvature incomplete two-sphere
that satisfies the conditions of Theorem 1 does not have to be close to
the round three-sphere.

5.2. Toric varieties

A Kahler four-manifold is toric if it admits an action of the torus T 2

that preserves the Kahler structure. We will denote it by its underly-
ing symplectic manifold (M4, ω) and prove results for a large class of
compatible toric Kahler metrics. It is fibred by Lagrangian tori over a
convex polygon base P ⊂ IR2 with some degenerate fibres.

T 2 ↪→ (M4, ω)
↓
P ⊂ IR2

.

The quotient equipped with the adjusted metric of Hsiang and Lawson
is an incomplete metric on the two-sphere minus a point. Before we
study this specific case of four-dimensional toric manifolds we will
describe some background in any dimension.

Let (M2n, ω) be a closed symplectic manifold equipped with an
effective action of a torus Tn that preserves ω. A basic example of
this is complex projective space, C| IPn, with its natural symplectic
form ∂∂̄ ln |z|2 where z = (z0, .., zn) is a projective coordinate. The
symplectic form is invariant under the action of U(n+ 1), and in par-
ticular under Tn+1 ⊂ U(n+ 1) which acts as Tn (since one circle acts
trivially.) Another basic example is the subset of all Hermitian matrices
with a given set of eigenvalues. The torus acts by conjugation and the
symplectic form uses the trace and commutator of matrices. (The first
example is a case of the latter: the space of (n+1)× (n+1) Hermitian
matrices with one eigenvalue 1 and n eigenvalues 0, is isomorphic, as a
symplectic manifold with torus action, to C| IPn.)
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Such an action is said to be Hamiltonian, and every ξ ∈ t = IRn

gives rise to the function Hξ : M → IR that satisfies dHξ = ω(ξ̃, ·) for ξ̃
the vector field generated by ξ and the torus action. Define the moment
map to be φ : M → t∗ = IRn that satisfies

(φ(p), ξ) = Hξ(p).

In the case of C| IPn,

φ(z0, .., zn) =

(
|z1|2

|z|2
, ..,

|zn|2

|z|2

)

which has image {(x1, .., xn)|xi ≥ 0,
∑
xi ≤ 1}. In general, the image

of φ is a convex polytope P in IRn. This generalises the theorem of
Schur that the diagonal elements of an n × n Hermitian matrix lie in
the convex hull of the points in IRn obtained from the eigenvalues of
the matrix, listed in every possible order.

Those polytopes that arise as the image of a moment map of a torus
action are characterised in the following definition.

DEFINITION 3. A convex polytope P ⊂ IRn is Delzant if:
(1) there are n edges meeting at each vertex v;
(2) the edges meeting at the vertex v are rational, i.e. v + tvi, 0 ≤

t ≤ ∞, vi ∈ ZZn;
(3) the v1, . . . , vn can be chosen to be a generating set of ZZn.

The Delzant polytope P can be defined by inequalities

lr(x) = 〈x, µr〉 − λr ≥ 0 (19)

where µr is a primitive element of ZZn giving the inward pointing
normal of the rth face of P . For each Delzant polytope P , Guillemin
constructed a symplectic manifold MP using the beautiful idea of vary-
ing the numbers λr. The variations generate a torus action, and one
obtains MP as a symplectic quotient of this action. See [6] for details.
There is a bijective correspondence between Delzant polytopes and
toric manifolds P 7→MP .

THEOREM 5.1 ([4]). Let (M2n, ω) be a closed symplectic manifold
equipped with an effective action of a torus Tn that preserves ω and
moment map φ : M → t∗ = IRn. Then the image of φ is a Delzant
polytope, and M and the Tn action are isomorphic to MP .

Toric manifolds are Kahler manifolds and so far we have only de-
scribed a symplectic structure. When we also specify a (compatible)
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complex structure, this together with the symplectic structure gives
rise to the Kahler metric.

The metric is usually expressed with respect to one of two canonical
coordinate systems. Denote byM◦ ⊂M those points on which the torus
action is free. The torus action complexifies and allows us to describe
M◦ in complex coordinates by

M◦ ∼= C| n/2πiZZn = IRn × iTn = {u+ iv : u ∈ IRn, v ∈ IRn/ZZn}.

Alternatively, one can use action-angle coordinates:

M◦ ∼= P ◦ × Tn = {(x, y) : x ∈ P ◦ ⊂ IRn, y ∈ IRn/ZZn} (20)

where P ◦ is the interior of the Delzant polytope.
The quotient manifold can be identified with either IRn or the in-

terior of the Delzant polytope P ◦, equipped with the quotient metric.
The metric on the toric manifold is expressed in terms of functions over
the quotient explicitly using the quotient metric. For our purposes, the
action-angle coordinate system is more suitable, since one can extend
to the compact quotient. When we adjust the quotient metric by the
volumes of the fibres, the new metric is degenerate at the faces of the
Delzant polytope.

We will follow Abreu’s treatment [1] of Guillemin’s construction [6]
of metrics over toric manifolds. With respect to the coordinates (20),
the symplectic form is the standard ω =

∑
j dxj ∧ dyj , given in matrix

form by  0
... I

. . . . . . . . .

−I
... 0

 .
The complex Kahler structure J is given by 0

... −G−1

. . . . . . . . .

G
... 0


where G = Hess(h) is the Hessian of a potential h(x),

G =

[
∂2h

∂xj∂xk

]
, 1 ≤ j, k ≤ n.

We can now describe the potential h(x) defined over the polytope
P , using the defining expressions for P (19). Define

hP (x) =
1
2

d∑
r=1

lr(x) log lr(x).
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This is well-defined on the interior of P since lr(x) > 0 there. More
generally, choose any function f smooth on the whole of P , and set
h = hP + f . It follows that

det(G) =

(
δ(x)

d∏
r=1

lr(x)

)−1

(21)

for δ(x) a strictly positive smooth function on P .
The quotient metric on P is given by the n × n matrix G. It is a

well-defined finite metric at the boundary of P although it looks like
it might blow up there. For example, on C| IP 2 the Fubini-Study metric
is described by the canonical potential on the Delzant polygon x1 ≥ 0,
x2 ≥ 0 and x1 + x2 ≤ 1,

hP = x1 lnx1 + x2 lnx2 + (1− x1 − x2) ln(1− x1 − x2).

The quotient metric is the round metric on an octant of the two-sphere
(identified with a triangle) which is certainly finite at the boundary of
the octant.

We can associate minimal surfaces in the quotient to minimal sur-
faces in the toric manifold upstairs once we adjust the quotient metric
by the volumes of the torus fibres. From (21), the volume V (x) of the
torus fibre over x ∈ P is given by V (x)2 = detG−1(x).

Replace the quotient metric G by

g(x) = V (x)2/(n−1)G(x) = detG1/(1−n)(x)G(x).

By (21), this satisfies det g(x) =
(
δ(x)

∏d
r=1 lr(x)

)1/(n−1)
which van-

ishes on the boundary of P . When n = 2, it vanishes linearly and
explicitly when lr = arx+ bry + cr we get:

g(x) =
∑ 1

2lr

(
a2

r arbr
arbr b2r

)
which has determinant δ(x)/(

∏
lr) where δ(x) 6= 0 on the closed poly-

gon. Equivalently, the quotient metric is

ds̄2 =
1
2

∑ dl2r
lr

so the adjusted metric is

ds2 =
1
2δ

∑∏
j 6=r

ljdl
2
r .

At each edge lr = 0 the metric is asymptotic to (1).
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Large families of metrics can be obtained for a given polygon this
way. Simply add “edges” to the polygon that lie outside the polygon.
For example, over C| IP 2 with polygon defined by x ≥ 0, y ≥ 0 and
1− x− y ≥ 0 we can include the inequality l(x, y) = 2− x− y ≥ 0 and
still get a positive definite metric on the interior of the triangle. We
may also take multiples εl(x, y) for an extra edge, which is desirable
when we choose ε small so that the new metric is close to the original
metric. (In fact one can take hP (x)+f(x) for any smooth function f(x)
defined on a neighbourhood of P , and when f(x) is small enough the
new metric remains positive definite.)

For the Fubini-Study metric on C| IP 2 we proved the existence of an
embedded closed geodesic. An easier calculation shows that the shortest
arc is given by the line x = 1/4 which has length 3

√
3/8

√
2 ≈ .46. The

maximum length triangle with
∫
Kda = 2π on its interior is less than

.9 which is less than 2× 3
√

3/8
√

2. Thus, the shortest geodesic is long
and we can apply Theorem 4 to get Theorem 3. The same reasoning
applies to S2×S2 with the product of round metrics of the same area.

The Fubini-Study metric on C| IP 2 is invariant under a ZZ3 action.
We can drop the condition that a metric on C| IP 2 be sufficiently close to
the Fubini-Study metric and instead require that it is invariant under
the ZZ3 action and that the adjusted metric on the triangle has posi-
tive Gaussian curvature to again deduce the existence of an embedded
closed geodesic.

The geodesic curvature flow proof corresponds to mean curvature
flow in C| IP 2. The mean curvature of a hypersurface Y 3 ⊂ M4 is a
function on Y 3 given by the trace of the second fundamental form of
Y 3. As a (symmetric) bilinear form, the second fundamental form is
defined by l(X,Y ) = 〈∇Xν, Y 〉 for X,Y ∈ TpY

3, ν the unit normal
vector field to Y 3 and ∇ the Levi-Civita connection on M4.

The mean curvature flow of a surface Y is an evolution of Y in its
normal direction with magnitude given by the mean curvature:

dYt

dt
= mean curvature · ν.

In actual fact, we need to adjust the flow further, by multiplying the
right-hand side by a function defined on M4 (and hence independent
of the way in which Y embeds.) For a hypersurface invariant under the
torus action we have

mean curvature =
1

area of torus
k

where k is the geodesic curvature of the corresponding curve on the
polygon. The reciprocal of the Gaussian curvature of the polygon is an
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invariant function ψ on the polygon that seems not to have a natural
interpretation. Thus the flow in the toric surface is given by

dYt

dt
= ψ · (area of torus)2 ·mean curvature · ν

where an extra factor of the area of the torus arises from comparing
the normal vectors in two-dimensions and four-dimensions. The factor
ψ · (area of torus)2 is a function on the toric surface that vanishes on
the divisor of C| IP 2 on which T 2 does not act freely.

6. Counterexample

It is not always true that there exists an embedded closed geodesic on
an incomplete two-sphere. A counterexample uses the metric:

ds2 = sin2(y)(dx2 + dy2), (x, y) ∈ [−R,R]× (0, π). (22)

Choose R very large and cap off the metric at the two ends in such a
way that any geodesic in the cap must leave the cap. (It can be chosen
to have positive Gaussian curvature.) For example, choose

ds2 = cos2(|x| −R) sin2 y(dx2 + cos2(|x| −R)dy2), |x| ∈ [R,R+ π/2).
(23)

Alternatively, the metric can be capped off smoothly.

THEOREM 5. There is no embedded closed geodesic for the metric
(22), (23).

Proof. We call a geodesic vertical if it is given by x =constant for
x ∈ [−R,R]. The theorem follows from the following facts:

(i) any non-vertical geodesic cannot be vertical anywhere in x ∈
[−R,R];

(ii) any two non-vertical geodesics must intersect;
(iii) a closed geodesic must enter x ∈ [−R,R] twice and hence it

must be self-intersecting.

Uniqueness of geodesics gives (i) immediately. For (ii) we use the
fact that the geodesic flow is integrable and translation invariant in
x ∈ [−R,R], as dealt with in Section 2.1, to deduce that inside x ∈
[−R,R] each geodesic oscillates around y = π/2 with period

Ωc = 4
∫ π/2

sin x=c

c√
sin2 x− c2

dx

= 4c
∫ 1

c

du√
(u2 − c2)(1− u2)
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< 4
√

c

2(1 + c)

∫ 1

c

du√
(u− c)(1− u)

= 4π
√

c

2(1 + c)
.

where c denotes the geodesic that reaches a maximum value of y = c2

in x ∈ [−R,R]. The period is bounded and we choose R to be greater
than (half) this period so that each non-vertical geodesic must meet
the line y = π/2. Since any geodesic meets y = π/2 with a given period,
any two non-vertical geodesics meet in x ∈ [−R,R].

Now a geodesic in the cap (that does not meet the boundary) must
leave the cap since the equation for geodesics in the cap is

ẍ = ẋ2 tan(x−R)− 2ẋẏ cot y − ẏ2 sin 2(x−R)
ÿ = ẋ2 sec2(x−R) cot y + 4ẋẏ tan(x−R)− ẏ2 cot y

Thus ẋ = 0 ⇒ ẍ < 0 so no loops can occur inside the cap. By (ii), the
two arcs of any closed geodesic must intersect in x ∈ [−R,R] so (iii)
follows and the theorem is proven.

Remark. The proof of Theorem 5 uses the explicit knowledge of geodes-
ics given by the integrability of the geodesic flow. There is an alternative
proof that uses less structure which we only sketch. Suppose R is very
large and there are two geodesics travelling from x = −R to x = R
without intersecting. If we choose a point strictly between the geodesics
at x = R and a point strictly between the geodesics at x = −R then
there is a shortest path joining them which must have index 0. The
two geodesics form barriers so the shortest path lies between them.
We can assume the two geodesics do not come close to the boundary
y = 0 or π since then they would be quite steep and intersect, so in
particular the shortest path stays away from the boundary. Thus its
length is comparable to the length along y = π/2, so for large enough
R the length of the shortest path is large. The Gaussian curvature on
the disk is bounded below so the Rauch comparison theorem forces the
shortest path to have index at least one which is a contradiction. We
conclude that the two geodesics intersect.

Geodesics on the disk with metric (22), (23) arise from minimal
surfaces on S3 equipped with the circle invariant metric obtained by
stretching the round metric in a neighbourhood of a minimal two-
sphere, or more precisely S2 × IR with the round metric times the flat
metric capped off with round three balls. The counterexample shows
that there is no minimally embedded T 2 ⊂ S3 invariant under the
circle action. It would be interesting to know if there is any minimally
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embedded T 2 in this three-sphere. White [14] proves that for any C4

metric on S3 with positive Ricci curvature there exists at least one em-
bedded minimal torus. Our counterexample (which can be smoothed)
has non-negative Ricci curvature.

The following corollary shows that condition (ii) in Theorem 1 does
not hold for the metric in the counterexample.

COROLLARY 6.1. There is a length decreasing sequence of loops that
converges to a double geodesic arc for the metric (22), (23).

Proof. Take a loop that bounds a region with
∫
Kda = 2π (where

K =Gaussian curvature) that is contained inside x ∈ [−R,R] and that
is symmetric under reflection in y = π/2. Under the flow (10) the loop
cannot move past vertical geodesics and

∫
Kda = 2π is preserved. It

cannot converge to a closed geodesic since no vertical tangencies are
allowed so it travels to both boundaries symmetrically, converging to a
double vertical geodesic. The flow is length decreasing so the corollary
follows.
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