ON THE GLOBAL IDENTIFIABILITY OF CHANNEL IDENTIFICATION PR

OBLEMS

Jonathan H. Mantoh Walter D. Neumart) Paul T. Norbury and Yingbo Hua

! Department of Electrical and Electronic Engineering
2 Department of Mathematics and Statistics
The University of Melbourne, Parkville, Victoria 3052, Australia.
J-manton@ee.unimelb.edu.au

ABSTRACT

This paper studies the fundamental issue of determiningritar
precoder, such as a filter bank, introduces enough redunpdanc
enable the receiver to identify the unknown finite impulsponse
channel. Prior to the work herein, identifiability had onlgem
resolved for specially designed linear precoders for whiiwbar
algebra or z-matrix theory sufficed.

1. INTRODUCTION

An alternative to using a training sequence to identify ancledis
to use a linear precoder to introduce algebraic redundantoythie
transmitted signal. A fundamental issue is determininglifiear
precoder introduces enough redundancy to enable the eedeiv
identify the channel. Mathematically this is equivalentdigter-
mining if a system of polynomial equations is invertible (ob-
servable”) and is known to be a difficult problem [4]. Priortie
work herein, identifiability had only been resolved for spég
designed precoders for which linear algebra smatrix theory”
sufficed [2, 3], or under extra constraints on the input, sash
knowledge of its second order statistics [5].

The main results of this paper are as follows. Section 2 densi
ers the problem of transmittingcomplex valued symbols through
an FIR channel with unknown coefficients. Thg symbols are
linearly mapped ta: + I symbols by a linear precoder prior to
transmission. This results in polynomial equations inp + [
unknowns. Clearly, any precoder for whieh < p + I cannot
identify the channel because there are fewer equationsithan
knowns. Perhaps somewhat surprisingly, almost all presdoe

whichn = p + [ cannot identify the channel either. However, al-

most all precoders can identify the channetif> p + 1. Identical
results hold for zero prefix precoders. Section 3 studiesliile
ity of filter banks to identify unknown channels from a polymial
equation perspective.

The notation and background information required for ttst re
of this paper is described in Sections 1.1 and 1.2.

1.1. Problem Formulation and Definitions

This paper studies the following channel identificationbbean.
Thep complex valued source symbdls, - - - , s,] are to be sent
through an unknown FIR channel of length For convenience,

definel = L — 1. Because a linear precoder can only identify

a channel up to a constant scaling factor, it is assumed ghrou
out that the leading channel coefficient is one. Thus theraklan
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taps are[l, hi,--- , h;] where thel complex valued parameters
h1,--- , h; are to be determined by the receiver. For this to be pos-
sible, algebraic redundancy must be introduced prior tostras-
sion. This is done by the precoder which mapsptsurce sym-
bols ton + I encoded symbolg1_;, o1, -+ ,To, T1, - -, Tn].
The receiver observes thesymbols[y:, - - - ,y.] which are re-
lated to the encoded symbols by the convolution

1

Yi = x; + Zwi—khlm
k=1

i=1,-,n. )

This can be written in matrix form ag = Hx = HPs where
y € C" is the output vectorz € C**! the encoded vectos, €
CP the source vectod € C**("*+) the Toeplitz channel matrix

hi hy - 1 0 0 - 0
0 hy  hy - 1 0 a0
H=|: )
: .. - 0
0 0 - 0 h hii oo 1

andP e C"+D*? the precoder matrix. It is convenient to define
the channel vectak = [hy, -, k]" € C'.

Two subclasses of linear precoders are given particulan-att
tion in this paper. Aero prefix precoderis a precoder whose first
I rows are zero. Such a precoder sets the initial state of #eneh
to zero, thatisg,—; = --- = zo = 0. If a zero prefix precoder
is used, the channel equations can be written more compagtly
y = HPs where nowH € C"*" is the truncated channel matrix

(1 0 -+ i e e 0]
hi 1
H=| h : 3)
0
0
Lo?om o hr 1

andP € C"*? the truncated precoder matrix obtained by omitting
the firstl rows of the originalP.

The other type of linear precoder studied here is fitier
bank precoder[3]. A filter bank precodes the infinite source se-
quence(- - -, s_1, so, s1, - - - } by breaking it up into blocks of size



r and linearly mapping each block to one of sime Thus a filter
bank can be represented by the infinite precoder métrhaving
the block diagonal form

oo
o

0 (4)

o
o oo

0

whereB € C™*" is the precoder matrix which maps each block
of r source symbols to a block af. encoded symbols.

It is convenient to writey = HPs asy = F(s, h) where
F: Pt — C" is the corresponding polynomial map.

Example 1 Let! = 1,n = 6, p = 4 and letP be the zero prefix
precoder mapping to [s1, s2, 0, s3, s4, 0]. ThenF’ consists of the
following equations:

= 81

()
(6)

Y1 Y2 = S2 + h1s1 ys = hi1ss

Ya = 83 Y5 = Sa + h1s3 ye = h18a
Solving (5) forh: givesyihi — yah1 + y3 = 0, which in general

has two solutions, not one. Solving (6) gives the extra éguat
yah? — ysh1 + ys = 0. Although this also has two solutions, in

general there will only be one solution in common.

The above example illustrates a number of important points.

For instance, the number of solutions depends on the aciuates
vectors. In the extreme case = [0, 0, 0, 0] there will be an infi-
nite number of solutions. 1§ = [1, 2, 1, 2], there will be two so-
lutions since (5) and (6) become identical. This is resolveldw
by stating that any system of polynomial equations has argene
number of solutions. Another important point is that theighh
be a finite number of solutions rather than a unique solution.

The following theorem is of paramount importance to this pa-
per. Not only does it show that any system of polynomial eiquat
has a generic number of solutions, it shows that the exaegtiet
for which there are a non-generic number of solutions isyver
small”. Note that for clarity, the variable € CP*' is introduced
to represent botk andh, thatis,z = (s, h).

Theorem 2 Let F : CP*! — C" be a polynomial map and define
N(z) to be the cardinality of the stz : F(z) = F(z)}. There
exists a cardinalV and a non-zero polynomia) : C*?*! — C
such that for any: satisfyingg(z) # 0 the equalityN = N(z)
holds.

The N in Theorem 2 is thgeneric number of solutionsof
F; the generic number of solutions 8 z) = 2% is two.

Definition 3 (Generic) A property is said to hold for generice
C" if there exists a non-zero polynomigisuch that the property
holds for all¢ satisfyingg(t) # 0.

The conditiong(t) # 0 is very strong. For instance, the set
{t € C* : g(t) # 0} is dense inC" (under the usual topology).
Moreover, ift is chosen at random therit) # 0 with probability
one. Hereat random is taken to mean that the random variable
is absolutely continuous with respect to Lebesgue measure.

Definition 4 (Invertible) A polynomial mapF is (rationally) in-
vertible if for genericz the equationF’'(z) = F(z) has only one
solution, namely = z.

A precoder which is capable of identifying an unknown chan-
nel is thus a precoder for which the corresponding systermud-e
tions F is invertible. Analogously to the traditional training se-
guence based channel identification which requires a “gtergiy
exciting” sequence, the term “exciting” is used here to dbsc
precoders which enable the identification of unknown chesnne

Definition 5 (Strongly Exciting) A precoderP is strongly excit-

ing of order! if the polynomial mag#' (s, h) = H Ps s invertible,
where H, defined in (2), represents an unknown FIR channel of
lengthl + 1.

A precoder which can identify a channel up to a finite number
of possibilities is said to be weakly exciting.

Definition 6 (Weakly Exciting) A precoderP is weakly exciting
of order! if the polynomial mag#'(s, h) = H Ps generically has
a finite number of solutions, whefé, defined in (2), represents an
unknown FIR channel of lengtht 1.

Prop. 7 below provides a convenient test for determining if a
precoder is weakly exciting. It is based on tleeobian matrix .J
of y = F(s,h) = HPs which is defined to be the x (p + 1)
matrix

dy1 9y1  du1 dy1
Ahy dhy dsq dsp
J = . : @
Oyn Oyn 9yn Ayn
Ohy Bh; Bs1 Bsp

The following proposition is a restatement of the fact that a
system of polynomial equations has a finite number of satstio
generically if and only if its Jacobian matrix has full colamank.

Proposition 7 The precoderP is weakly exciting if and only if
there exists a points, h) at which the corresponding Jacobian
matrix J, defined in (7), has full column rank.

Unfortunately no straightforward test exists for deterimgif
a general system of polynomial equations is invertible. Tedwe
mainder of this paper essentially studies the invertibiit poly-
nomial maps of the forn¥'(s, h) = HPs. First though the be-
haviour of solutions of polynomial equations is described.

1.2. Behaviour of Solutions of Polynomial Equations

This section describes the solution §ét: F(z) = F(z)} of a
polynomial mapF : C’P*! — C™ asz is varied. Throughout,
|| -|| denotes the Euclidean norm aBRdz; r) denotes the open ball
centred at with radiusr.

AssumeF generically has a finite numbé¥ of solutions (see
Theorem 2). Then aon-generic points distinguished by the oc-
currence of any of the following behaviour.

A branch point is a pointz at which two or more solutions
become one. The maf(z) = 2* has a branch point at = 0
since the two solutions = +z of F(z) = F(z) become one as
z — 0. At a branch point, the Jacobian matrix is singular. (The
converse need not be true.) In the above example, the Jacobia
matrix is[2z] which is singular at = 0.



A strongly degenerate pointis a pointz at which there are an
infinite number of solutions. The poiat= (1, 0) of the invertible
map F'(z) = (z122, 22) is strongly degenerate because there are
an infinite number of solutions ta z2 = 0, z2 = 0.

A weakly degenerate pointis a pointz at which there are
more thanN, but still a finite number of, solutions. Weakly de-
generate points only exist is over-determined, that is, there are
more equations than unknowns. The invertible n#&p,, z2) =
((21 + 22)%, (21 — 22)°, 22) has two solutions at the point =
(1,0), namelyz; = £1, z» = 0.

A solution at infinity of the equationF'(z) = F(z) is a se-
quence{z, } -, which diverges to infinity (that is]zx|| — o0)
yet F(zr) — F(z). TakeF(z1,22) = (2122, 22(22 — 1)) which
generically has two solutions. The equations, = 1, z2(z2 —

1) = 0 appear to only have one solutien= 1, z, = 1. The other
solution is hiding at infinity: F ((k, 1)) = (1,1 (3 —1)) —
(1,0).

A point which does not exhibit any of the above behaviour is

called a generic point.

Definition 8 (Generic Point) A point z of a polynomial mapF
which generically has a finite number of solutions is a generi
point if there does not exist a solutiérof F(2) = F(z) whichisa
branch point or a weakly or strongly degenerate point, arttiéfe
does not exist a solution at infinity of the equatiBfz) = F'(z).

The following theorem connects the two concepts of generic
point and generic number of solutions.

Theorem 9 Let F : CP*! — C" be a polynomial map which
generically has a finite numbe¥ of solutions. Then the s& C
CP* of all generic points of" has the following properties. It is
open inC?*'. There exists a non-zero polynomiat C** — C
such thatg(z) # 0 impliesz € Q. Moreover, for any: € Q there
are preciselyN distinct solutions: of F'(z2) = F(z).

Remark: A point at which F has N solutions need not be a
generic point due to the possible occurrence of both a wedddy
generate solution (which adds an extra solution) and aisalat
infinity (which removes a solution).

Corollary 10 A polynomial mapF : C**! — C" is invertible
if and only if there exists a point such that the following three
criteria are satisfied. There is a unique solutidof F'(2) = F(z).
The Jacobian matrix of’, defined in (7), has full column rank at
There does not exist a sequer{ca, € C°*' }~ | for which both
||Zk|] = oo and F(z) — F(z) hold. -

The following is an alternative to Corollary 10.

Corollary 11 A polynomial mag : CP* — C" generically has
N solutions if and only if there exists an open Sett C**! such
that for everyz € Q there are preciselyV solutions ofF'(z) =

F(z).

The following lemma states that the set of solutions is well
behaved at generic points.

Lemma 12 Let F' be a polynomial map which generically has
solutions. Letz; be a generic point of” and letzs, -+, 2y be
the otherN — 1 solutions, thatisF'(z1) = --- = F(zn). Then
for anye > 0 there exists @ > 0 such that for any: € B(z1;46)

the setX = {Z: F(Z) = F(z)} has preciselyV distinct points,
and moreover, the intersectioki N B(z;; €) is non-empty for each
i=1,---,N.

The following lemma can be used to prove that a system of
polynomial equations is not invertible. It is only applitabvhen
the number of equations is equal to the number of unknowns for
otherwise the poingy might be weakly degenerate.

Lemma 13 Let F : C**' — C* denote a system of polynomial
equations withn = p + 1. If there exists g for which F(s, h) =

y has preciselyN distinct solutions then the generic number of
solutions is both finite and greater than or equalXo

2. LINEAR PRECODERS

This section elucidates the generic behaviour of linearqaers as
well as that of the subclass of zero prefix precoders. Theviell
ing example illustrates the importance of distinguishimgween
arbitrary precoders and zero prefix precoders.

Example 14 Let P be the precoder which magsto [0, s1, s1].
Then the output equations aje = s; andys = s1 + h1s1 which,

for y1 # 0, have a unique solution. ThuB is strongly exciting

of order 1. However, removing the zero prefix can destroy this
property; letP now maps to [s1, s1, s1]. The output equations
arey: = s1 + his1 andys = s1 + his1 which have an infinite
number of solutions. This new is not even weakly exciting.

Prop. 16 below shows that whether or not a precoder is weakly
or strongly exciting is a generic property. This means tHattiver
or not a randomly generated matifike C"*9*? is strongly ex-
citing of orderl with probability one depends only an p and!.
More intriguing is the fact that a table can theoreticallydos-
structed which maps the triplen, p,1) to the numberN, ,
which specifies in advance how many solutions there will be to
the equationF' (3, h) = F(s, h) if the precoderP € C"+hx»,
sources € CP and channeh € C' are chosen at random.

The key step in the proof is to define the polynomial ndap
cpritinthr _y crtn+lp g pe

(8)

G(s,h,p) = [ HPs }

p

where P € C"*D*? denotes the matrix whose elements corre-
spond to the elements pf(that is,p = vec P). As in Section 1.1,
define F'(s,h) = HPs. Therefore the equatio&'(s, h, p)
G(s, h, p) is equivalent to the equatiord&(3, h) = F(s, h) and
P = P. The interpretation is that the receiver knows bgth=
HPs as well as the precoder matriX. Prop. 16 is then a conse-

guence of the following lemma.

Lemma 15 DefineG as in (8). If for generiq s, h, p) the equa-
tion G(8,h,p) = G(s,h,p) has N solutions then for generic
P the equationF'(3, h) = F(s,h) has N solutions for generic
(s, h).

Proposition 16 For fixed dimensions andp and channel order
I, let G be the polynomial map defined in (8) and I§tbe the
generic number of solutions @¢f. If N = 1 then a genericP is
strongly exciting. IfN < oo then a generid® is weakly exciting.
If N = oo then a generidP is not exciting.



Remark: It is clear that Prop. 16 is true for both arbitrary pre-
codersP € C"*Y*P and zero prefix precodefd € C**?.,

Unfortunately Prop. 16 does not imply that if there exists a
single precodeP which is strongly exciting then the same is true
for genericP. The reason is given in Corollary 10; there may be
extra solutions hiding at infinity. This is now demonstrabsgtthe
following example and lemma.

Example 17 Choosep and! arbitrarily but setn = p + 1. The
zero prefix precodeP which mapss to [s1,0,---,0,s2,-- - , sp]
where there arézeros after; is strongly exciting of ordet.

Lemma 18 For any channel ordei > 1 and number of source
symbolsp > 1 there exists a zero prefix precoder € C"*? of
sizen = p + [ which is weakly but not strongly exciting of order

It follows from Lemma 13, Prop. 16 and Lemma 18 that a
randomly chosen precoder is not strongly excitinguif= p +
1. This result is somewhat surprising because it shows tteat ev
though there are the same number of equations as unknowens, th
is still not enough information to identify the channel.

Theorem 19 For any channel ordet > 1 and number of source
symbolg > 1, ageneric precodeP € C"+tD*? of sizen = p+1
is weakly but not strongly exciting. Moreover, the samets for
a generic zero prefix precoddt € C**”,

Remark 1: No precoder witlh < p+1 is weakly exciting because
n < p + L implies there are fewer equations than unknowns.
Remark 2: If n > p-+1then a generic precoder is weakly exciting
because adding extra equations never increases the geneter
of solutions.

It might be expected that increasimgor decreasing will
turn a weakly exciting precoder into a strongly exciting ofi@e
following example shows that this is not always true.

Example 20 Setl = 1, n» = 4 andp = 3. Then the zero pre-
fix precoder which maps to [ss, s1, s2, s3] can be shown to be
weakly exciting; it generically has three solutions. It htighen
be expected that the zero prefix precoder of aize 5 which maps
s t0 [s2, 83, 81, 82, s3] IS strongly exciting since now > p + I.
However, it is still not strongly exciting; generically @a has three
solutions. Note that this is an example afyalic prefixcommonly
used in OFDM systems [1].

Theorem 22 below restores intuition by proving that the abov

behaviour is non-generic; a randomly chosen precoder wvith

p + [ is strongly exciting. The proof exploits the fact that thstla
elementz,, of the encoded vectar = Ps affects only the last
elementy,, of the output vectoy = H=z. Partition the matrices
H and P as follows (it doesn’t matter if the full form (2) or the
truncated form (3) is used).

|

[H o0][ A
HPS—[uT 1:||:’UT

whereu” = [0---0 h; --- h1] andv T is the last row ofP. Parti-
tion the polynomial ma defined in (8) accordingly.

H1P18
uTPls +ovTs

] ©)

_ Gi(s,h,p,) _ | Hip;s
G(S,h,p) - G2(8,h,’U) ’ Gl - p1 3
T T
Gy = { u P1sv+v s ] (10)

Here, as in (8),P and P are such thap = vec P andp,
vec P; respectively. Notice that?, is identical toG in (8) if the
precoderP; were used instead d? in (8). ThereforelG; gener-
ically has a finite number of solutions since Theorem 19 and Re
mark 2 following it ensure that a generf® is weakly exciting.
The following lemma is required; its proof is based on Corol-
lary 11 and Lemma 12.

Lemma 21 DefineG, Gi and G- as in (10) and assume théf;
generically has a finite numbe¥ of solutions. Le{s, h,p,) be
a generic point of74, that is, the set

{(Svh’) : G(Sah’ai)1) = Gl(ga Bai)1)}
{(Slahl)a"' 7(3N7hN)}

hasN distinct points. If there exists@asuch thatG»(s;, h;, v) #
G2 (s;, hj, ) fori # j thend is invertible.

X (11)

As in Lemma 21, le(s, h, p,) be a generic point of:; and
define(s;, h;) as in (11). It is important to note that # s; for
i # j because the channel equations are invertible i§ known
(thatis,F'(s1,h) = F(s2, h)impliess; = s»). Foreach(s;, h;)
the first element of7» takes the value,] Py s; + v” s; (Whereu;
depends only oh;). These can clearly be made distinct by judi-
cious choice ob. Applying Lemma 21 shows th&t is invertible,
that is, a generic precodét is strongly exciting.

Theorem 22 For any channel ordet > 1 and number of source
symbolg > 1,ifn > p+Ithen ageneric precoddp e C"+tH*?
is strongly exciting. Moreover, the same is true for a gemesdro
prefix precodet” € C**?.,

3. FILTER BANKS

A filter bank is an infinitely long precoder with the diagon&ddk
structure in (4). Les = {s;};= __ be the source sequenag=
{yi};c __ the output sequence ahd= [h1, - - , h;] the channel
vector. ThenF : C*° x C' — C* is defined to be the polynomial
map such thayy = F'(s, h). Asin Section 1.1F (s, h) = HPs,
except here now the channel matfik precoderP, and sources
are infinite dimensional.

The definitions of weakly and strongly exciting precodens ca
be modified to cope with an infinite number of polynomial equa-
tions F' in an infinite number of unknowns. It is easier though to
side-step the issue by taking the following as definitiotisaathan
as theorems: For any filter badk let ¢ denote a finite (and non-
empty) subsequence gfand letF’ be the finite subset of equations
such thaty = F (s, h) for some finite subsequengef s. A filter
bankF is strongly exciting if there exists af which is invertible.
Similarly, F' is weakly exciting if there exists af’ which has a
finite number of solutions for gener{@, h).

The results in Section 2 do not automatically hold for filter
banks. The reason is because a randomly chosen precodéet matr
has zero probability of having a diagonal block structurath@r
than attempt to rederive corresponding results for filtekbathis
section studies what are believed to be more pertinentissue

The following decomposition of” into an infinite sequence
of alternating maps plays a key role in this section. Partithe
source sequenceinto blocks of length; and denote théth block
by s;. Similarly, writey = {--- ,y_,, yg,¥;. -} Where theith
block y, has lengthy — [ if 7 is odd and lengtfi if i is even. Due



to the block structure (4) of filter banks, it is always poksitp
chooseg > I such thaty = F(s, h) can be decomposed as

s Yy :F1(817h)5 (12)

Ys = F1(827h)a

Y, = Fa(s1,82,h),
Y, = Fa(s2,83,h),

If Fis weakly exciting then it is possible to choagkarge enough
so thatF, is weakly exciting, that is, the equatidn (s1,h) =
Fi(s1, h) has a finite number of solutions for genefig, h).

Definition 23 (Separating Partition) The pair(F, F») is a sep-
arating partition of the weakly exciting filter bank if F' can be
decomposed as in (12) arfd is weakly exciting.

Although F'i (s1, h) = H Ps; for suitableH andP, this extra
structure is not exploited below except for the implicitasption
thaty, = Fi(s1, h) has a unique solutiosy if both ¢y, andh are
known. This assumption is true i is weakly exciting since this
implies P has full rank, hencé P is invertible.

Of interest are the two polynomial maps ; and Fi 1 de-
fined by

F1 (S],h)

Y | = =

B RICRO R A B
v, F](Shh)

[ Yy } = Fi2,1(81,82,h) = [ Aoy }
v F1(327h)

The two maps inF,; are coupled byh. It will be shown below
that this introduces a special structure into its solutioMore-
over, this structure occurs ifl; 2,1 despite the extra coupling in-
troduced byF,. The following definitions are required to describe
this structure.

Definition 24 (Indistinguishable) With respect to a filter bank,
two channelsh andh are indistinguishable if for alk there exists
a s forwhichF(s,h) = F(8, h).

A dyslexic filter bank is one which cannot distinguish most
channels. Itis posed as an open problem at the end of thisisect
whether or not weakly exciting yet dyslexic filter banks &xis

Definition 25 (Dyslexic) A filter bankF is dyslexic if there exists
a non-zero polynomiagj such that for any channel vectér satis-
fying g(h) # 0 there exists a channel vectbrnot equal toh yet
indistinguishable fromnk.

Lemmas 26 and 27 describe the structures of the solutions of[2]

Fi11 and F1 2,1. For convenience the following sets are first de-
fined.

Xuoi(s1,80,h) = {h s Fioi (51,82, h) = Fioa(s1,8,h) }

(14)
X]](S],SQ,h) = {il : F1,1(§1,§2,’~L) = F1,1(81,82,h)}

Lemma 26 If F} is weakly exciting then for generi@:, s2, h)
the setX:(s1, 82, h) depends only ok. Moreover, for generic
h, h € X11(s1, 82, h) for generic(s1, s») if and only ifh andh
are indistinguishable with respect 6 .

Lemma 27 If F; is weakly exciting then for generia:, s2, h)
the setX121(s1, 82, h) depends only oh. Moreover, for generic
h, h € X121(s1, 82, h) for generic(s1, s2) if and only ifh and
h are indistinguishable with respect 16 2 1 .

Remark: Although Lemmas 26 and 27 appear to be virtually
identical, their validity is founded on two quite differerasons.
Moreover, it is possible foF; to be dyslexic but noF: 2,1 .

The following two corollaries of Lemmas 26 and 27 establish
the relationship between invertibility and dyslexia.

Corollary 28 Let (F}, F») be a separating partition. Thef: ;
is invertible if and only ifF; is not dyslexic.

Corollary 29 Let(Fi, F») be a separating partition. Theh| » 1
is invertible if and only ifF 2,1 is not dyslexic.

The following theorem provides an upper bound on the num-
ber of elements ofy that must be observed before an unknown
channel can be identified by the receiver. Its proof is based o
Lemma 27.

Theorem 30 Let (F', F») be a separating partition for a weakly
exciting filter bankF'. DefineF, »,; as in (13). TherF is strongly
exciting if and only ifF » 1 is strongly exciting (invertible).

The following is an immediate consequence of Corollary 29.

Corollary 31 Let(F, F») be a separating partition for a weakly
exciting filter bankF'. DefineF: > as in (13). Ther¥ is strongly
exciting if and only iff; 2.1 is not dyslexic.

Remark: A sufficient condition forF} »; not to be dyslexic is
for F not to be dyslexic.

As already mentioned, the above analysis did not fully eéxplo
the structurey = H Ps. This motivates the following question.
Open Problem 1: Does there exist a weakly exciting yet dyslexic
filter bank?

A negative answer means every weakly exciting filter bank is
also strongly exciting.

4. REFERENCES

[1] B. Le Floch, M. Alard, and C. Berrou. Coded orthogo-
nal frequency division multiplex.Proceedings of the IEEE
83(6):982-996, 1995.

H. Liu and X.-G. Xia. Precoding for undersampled antenna
array receiver systems. Proc. of the 28th Annual Asilomar
Conf. on Signals, Systems, and Compuyteagies 10431047,
November 1997.

[3] A. Scaglione, G. B. Giannakis, and S. Barbarossa. Redun-
dant filterbank precoders and equalizers: Parts | andEEE
Transactions on Signal Processinluly 1999. To appear.

[4] E. D. Sontag. On the observability of polynomial systems
I: Finite-time problems.SIAM J. Control and Optimizatign

17(1):139-151, 1979.

M. K. Tsatsanis and G. B. Giannakis. Transmitter induced
cyclostationarity for blind channel equalizatiolEEE Trans-
actions on Signal Processing5(7):1785-1794, July 1997.

(5]



