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ABSTRACT

This paper studies the fundamental issue of determining if alinear
precoder, such as a filter bank, introduces enough redundancy to
enable the receiver to identify the unknown finite impulse response
channel. Prior to the work herein, identifiability had only been
resolved for specially designed linear precoders for whichlinear
algebra or z-matrix theory sufficed.

1. INTRODUCTION

An alternative to using a training sequence to identify a channel is
to use a linear precoder to introduce algebraic redundancy into the
transmitted signal. A fundamental issue is determining if alinear
precoder introduces enough redundancy to enable the receiver to
identify the channel. Mathematically this is equivalent todeter-
mining if a system of polynomial equations is invertible (or“ob-
servable”) and is known to be a difficult problem [4]. Prior tothe
work herein, identifiability had only been resolved for specially
designed precoders for which linear algebra or “z-matrix theory”
sufficed [2, 3], or under extra constraints on the input, suchas
knowledge of its second order statistics [5].

The main results of this paper are as follows. Section 2 consid-
ers the problem of transmittingp complex valued symbols through
an FIR channel withl unknown coefficients. Thep symbols are
linearly mapped ton + l symbols by a linear precoder prior to
transmission. This results inn polynomial equations inp + l
unknowns. Clearly, any precoder for whichn < p + l cannot
identify the channel because there are fewer equations thanun-
knowns. Perhaps somewhat surprisingly, almost all precoders for
whichn = p+ l cannot identify the channel either. However, al-
most all precoders can identify the channel ifn > p+ l. Identical
results hold for zero prefix precoders. Section 3 studies theabil-
ity of filter banks to identify unknown channels from a polynomial
equation perspective.

The notation and background information required for the rest
of this paper is described in Sections 1.1 and 1.2.

1.1. Problem Formulation and Definitions

This paper studies the following channel identification problem.
Thep complex valued source symbols[s1; � � � ; sp] are to be sent
through an unknown FIR channel of lengthL. For convenience,
definel = L � 1. Because a linear precoder can only identify
a channel up to a constant scaling factor, it is assumed through-
out that the leading channel coefficient is one. Thus the channel
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taps are[1; h1; � � � ; hl] where thel complex valued parametersh1; � � � ; hl are to be determined by the receiver. For this to be pos-
sible, algebraic redundancy must be introduced prior to transmis-
sion. This is done by the precoder which maps thep source sym-
bols ton + l encoded symbols[x1�l; x2�l; � � � ; x0; x1; � � � ; xn].
The receiver observes then symbols[y1; � � � ; yn] which are re-
lated to the encoded symbols by the convolutionyi = xi + lXk=1xi�khk; i = 1; � � � ; n: (1)

This can be written in matrix form asy = Hx = HPs wherey 2 C n is the output vector,x 2 C n+l the encoded vector,s 2C p the source vector,H 2 C n�(n+l) the Toeplitz channel matrixH = 26666664 hl hl�1 � � � 1 0 0 � � � 00 hl hl�1 � � � 1 0 � � � 0
...

. ..
. ..

...
.. .

...
...

...
. ..

...
...

... 00 0 � � � 0 hl hl�1 � � � 1
37777775 (2)

andP 2 C (n+l)�p the precoder matrix. It is convenient to define
the channel vectorh = [h1; � � � ; hl]T 2 C l .

Two subclasses of linear precoders are given particular atten-
tion in this paper. Azero prefix precoderis a precoder whose firstl rows are zero. Such a precoder sets the initial state of the channel
to zero, that is,x1�l = � � � = x0 = 0. If a zero prefix precoder
is used, the channel equations can be written more compactlyasy = HPs where nowH 2 C n�n is the truncated channel matrix

H =
266666666666666664
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377777777777777775 (3)

andP 2 C n�p the truncated precoder matrix obtained by omitting
the firstl rows of the originalP .

The other type of linear precoder studied here is thefilter
bank precoder [3]. A filter bank precodes the infinite source se-
quencef� � � ; s�1; s0; s1; � � �g by breaking it up into blocks of size



r and linearly mapping each block to one of sizem. Thus a filter
bank can be represented by the infinite precoder matrixP having
the block diagonal formP = 266664 .. . 0 0 . ..0 B 0 00 0 B 0

.. . 0 0 . ..

377775 (4)

whereB 2 Cm�r is the precoder matrix which maps each block
of r source symbols to a block ofm encoded symbols.

It is convenient to writey = HPs asy = F (s;h) whereF : C p+l ! C n is the corresponding polynomial map.

Example 1 Let l = 1, n = 6, p = 4 and letP be the zero prefix
precoder mappings to [s1; s2; 0; s3; s4; 0]. ThenF consists of the
following equations:y1 = s1 y2 = s2 + h1s1 y3 = h1s2 (5)y4 = s3 y5 = s4 + h1s3 y6 = h1s4 (6)

Solving (5) forh1 givesy1h21 � y2h1 + y3 = 0, which in general
has two solutions, not one. Solving (6) gives the extra equationy4h21 � y5h1 + y6 = 0. Although this also has two solutions, in
general there will only be one solution in common.

The above example illustrates a number of important points.
For instance, the number of solutions depends on the actual source
vectors. In the extreme cases = [0; 0; 0; 0] there will be an infi-
nite number of solutions. Ifs = [1; 2; 1; 2], there will be two so-
lutions since (5) and (6) become identical. This is resolvedbelow
by stating that any system of polynomial equations has a generic
number of solutions. Another important point is that there might
be a finite number of solutions rather than a unique solution.

The following theorem is of paramount importance to this pa-
per. Not only does it show that any system of polynomial equations
has a generic number of solutions, it shows that the exceptional set
for which there are a non-generic number of solutions is “very
small”. Note that for clarity, the variablez 2 C p+l is introduced
to represent boths andh, that is,z = (s;h).
Theorem 2 LetF : C p+l ! C n be a polynomial map and defineN(z) to be the cardinality of the setf~z : F (~z) = F (z)g. There
exists a cardinalN and a non-zero polynomialg : C p+l ! C
such that for anyz satisfyingg(z) 6= 0 the equalityN = N(z)
holds.

TheN in Theorem 2 is thegeneric number of solutionsofF ; the generic number of solutions ofF (z) = z2 is two.

Definition 3 (Generic) A property is said to hold for generict 2C n if there exists a non-zero polynomialg such that the property
holds for allt satisfyingg(t) 6= 0.

The conditiong(t) 6= 0 is very strong. For instance, the setft 2 C n : g(t) 6= 0g is dense inC n (under the usual topology).
Moreover, ift is chosen at random theng(t) 6= 0 with probability
one. Here,at random is taken to mean that the random variablet
is absolutely continuous with respect to Lebesgue measure.

Definition 4 (Invertible) A polynomial mapF is (rationally) in-
vertible if for genericz the equationF (~z) = F (z) has only one
solution, namely~z = z.

A precoder which is capable of identifying an unknown chan-
nel is thus a precoder for which the corresponding system of equa-
tionsF is invertible. Analogously to the traditional training se-
quence based channel identification which requires a “persistently
exciting” sequence, the term “exciting” is used here to describe
precoders which enable the identification of unknown channels.

Definition 5 (Strongly Exciting) A precoderP is strongly excit-
ing of orderl if the polynomial mapF (s;h) = HPs is invertible,
whereH, defined in (2), represents an unknown FIR channel of
lengthl+ 1.

A precoder which can identify a channel up to a finite number
of possibilities is said to be weakly exciting.

Definition 6 (Weakly Exciting) A precoderP is weakly exciting
of order l if the polynomial mapF (s;h) = HPs generically has
a finite number of solutions, whereH, defined in (2), represents an
unknown FIR channel of lengthl+ 1.

Prop. 7 below provides a convenient test for determining if a
precoder is weakly exciting. It is based on theJacobian matrix J
of y = F (s;h) = HPs which is defined to be then � (p + l)
matrix J = 2664 @y1@h1 � � � @y1@hl @y1@s1 � � � @y1@sp

...
...

...
...@yn@h1 � � � @yn@hl @yn@s1 � � � @yn@sp 3775 : (7)

The following proposition is a restatement of the fact that a
system of polynomial equations has a finite number of solutions
generically if and only if its Jacobian matrix has full column rank.

Proposition 7 The precoderP is weakly exciting if and only if
there exists a point(s;h) at which the corresponding Jacobian
matrixJ , defined in (7), has full column rank.

Unfortunately no straightforward test exists for determining if
a general system of polynomial equations is invertible. There-
mainder of this paper essentially studies the invertibility of poly-
nomial maps of the formF (s;h) = HPs. First though the be-
haviour of solutions of polynomial equations is described.

1.2. Behaviour of Solutions of Polynomial Equations

This section describes the solution setf~z : F (~z) = F (z)g of a
polynomial mapF : C p+l ! C n as z is varied. Throughout,k �k denotes the Euclidean norm andB(z; r) denotes the open ball
centred atz with radiusr.

AssumeF generically has a finite numberN of solutions (see
Theorem 2). Then anon-generic pointis distinguished by the oc-
currence of any of the following behaviour.

A branch point is a pointz at which two or more solutions
become one. The mapF (z) = z2 has a branch point atz = 0
since the two solutions~z = �z of F (~z) = F (z) become one asz ! 0. At a branch point, the Jacobian matrix is singular. (The
converse need not be true.) In the above example, the Jacobian
matrix is [2z] which is singular atz = 0.



A strongly degenerate pointis a pointz at which there are an
infinite number of solutions. The pointz = (1; 0) of the invertible
mapF (z) = (z1z2; z2) is strongly degenerate because there are
an infinite number of solutions toz1z2 = 0, z2 = 0.

A weakly degenerate pointis a pointz at which there are
more thanN , but still a finite number of, solutions. Weakly de-
generate points only exist ifF is over-determined, that is, there are
more equations than unknowns. The invertible mapF (z1; z2) =�(z1 + z2)2; (z1 � z2)2; z2� has two solutions at the pointz =(1; 0), namelyz1 = �1, z2 = 0.

A solution at infinity of the equationF (~z) = F (z) is a se-
quencef~zkg1k=1 which diverges to infinity (that is,k~zkk ! 1)
yetF (~zk) ! F (z). TakeF (z1; z2) = (z1z2; z2(z2 � 1)) which
generically has two solutions. The equationsz1z2 = 1, z2(z2 �1) = 0 appear to only have one solutionz1 = 1, z2 = 1. The other
solution is hiding at infinity:F ��k; 1k�� = �1; 1k � 1k � 1�� !(1; 0).

A point which does not exhibit any of the above behaviour is
called a generic point.

Definition 8 (Generic Point) A point z of a polynomial mapF
which generically has a finite number of solutions is a generic
point if there does not exist a solution~z ofF (~z) = F (z) which is a
branch point or a weakly or strongly degenerate point, and ifthere
does not exist a solution at infinity of the equationF (~z) = F (z).

The following theorem connects the two concepts of generic
point and generic number of solutions.

Theorem 9 Let F : C p+l ! C n be a polynomial map which
generically has a finite numberN of solutions. Then the set
 �C p+l of all generic points ofF has the following properties. It is
open inC p+l . There exists a non-zero polynomialg : C p+l ! C
such thatg(z) 6= 0 impliesz 2 
. Moreover, for anyz 2 
 there
are preciselyN distinct solutions~z of F (~z) = F (z).
Remark: A point at whichF hasN solutions need not be a
generic point due to the possible occurrence of both a weaklyde-
generate solution (which adds an extra solution) and a solution at
infinity (which removes a solution).

Corollary 10 A polynomial mapF : C p+l ! C n is invertible
if and only if there exists a pointz such that the following three
criteria are satisfied. There is a unique solution~z ofF (~z) = F (z).
The Jacobian matrix ofF , defined in (7), has full column rank atz.
There does not exist a sequence

�~zk 2 C p+l	1k=1 for which bothk~zkk ! 1 andF (~zk)! F (z) hold.

The following is an alternative to Corollary 10.

Corollary 11 A polynomial mapF : C p+l ! C n generically hasN solutions if and only if there exists an open set
 � C p+l such
that for everyz 2 
 there are preciselyN solutions ofF (~z) =F (z).

The following lemma states that the set of solutions is well
behaved at generic points.

Lemma 12 LetF be a polynomial map which generically hasN
solutions. Letz1 be a generic point ofF and letz2; � � � ; zN be
the otherN � 1 solutions, that is,F (z1) = � � � = F (zN ). Then
for any� > 0 there exists a� > 0 such that for anyz 2 B(z1; �)

the setX = f~z : F (~z) = F (z)g has preciselyN distinct points,
and moreover, the intersectionX \B(zi; �) is non-empty for eachi = 1; � � � ; N .

The following lemma can be used to prove that a system of
polynomial equations is not invertible. It is only applicable when
the number of equations is equal to the number of unknowns for
otherwise the pointy might be weakly degenerate.

Lemma 13 Let F : C p+l ! C n denote a system of polynomial
equations withn = p+ l. If there exists ay for whichF (s;h) =y has preciselyN distinct solutions then the generic number of
solutions is both finite and greater than or equal toN .

2. LINEAR PRECODERS

This section elucidates the generic behaviour of linear precoders as
well as that of the subclass of zero prefix precoders. The follow-
ing example illustrates the importance of distinguishing between
arbitrary precoders and zero prefix precoders.

Example 14 Let P be the precoder which mapss to [0; s1; s1].
Then the output equations arey1 = s1 andy2 = s1+h1s1 which,
for y1 6= 0, have a unique solution. ThusP is strongly exciting
of order 1. However, removing the zero prefix can destroy this
property; letP now maps to [s1; s1; s1]. The output equations
arey1 = s1 + h1s1 andy2 = s1 + h1s1 which have an infinite
number of solutions. This newP is not even weakly exciting.

Prop. 16 below shows that whether or not a precoder is weakly
or strongly exciting is a generic property. This means that whether
or not a randomly generated matrixP 2 C (n+l)�p is strongly ex-
citing of orderl with probability one depends only onn, p andl.
More intriguing is the fact that a table can theoretically becon-
structed which maps the triple(n; p; l) to the numberN(n;p;l)
which specifies in advance how many solutions there will be to
the equationF (~s; ~h) = F (s;h) if the precoderP 2 C (n+l)�p ,
sources 2 C p and channelh 2 C l are chosen at random.

The key step in the proof is to define the polynomial mapG :C p+l+(n+l)p ! C n+(n+l)p to beG(s;h;p) = � HPsp �
(8)

whereP 2 C (n+l)�p denotes the matrix whose elements corre-
spond to the elements ofp (that is,p = vecP ). As in Section 1.1,
defineF (s;h) = HPs. Therefore the equationG(~s; ~h; ~p) =G(s;h;p) is equivalent to the equationsF (~s; ~h) = F (s;h) and~P = P . The interpretation is that the receiver knows bothy =HPs as well as the precoder matrixP . Prop. 16 is then a conse-
quence of the following lemma.

Lemma 15 DefineG as in (8). If for generic(s;h; p) the equa-
tion G(~s; ~h; ~p) = G(s;h;p) hasN solutions then for genericP the equationF (~s; ~h) = F (s;h) hasN solutions for generic(s;h).
Proposition 16 For fixed dimensionsn andp and channel orderl, let G be the polynomial map defined in (8) and letN be the
generic number of solutions ofG. If N = 1 then a genericP is
strongly exciting. IfN < 1 then a genericP is weakly exciting.
If N =1 then a genericP is not exciting.



Remark: It is clear that Prop. 16 is true for both arbitrary pre-
codersP 2 C (n+l)�p and zero prefix precodersP 2 C n�p .

Unfortunately Prop. 16 does not imply that if there exists a
single precoderP which is strongly exciting then the same is true
for genericP . The reason is given in Corollary 10; there may be
extra solutions hiding at infinity. This is now demonstratedby the
following example and lemma.

Example 17 Choosep and l arbitrarily but setn = p + l. The
zero prefix precoderP which mapss to [s1; 0; � � � ; 0; s2; � � � ; sp]
where there arel zeros afters1 is strongly exciting of orderl.
Lemma 18 For any channel orderl � 1 and number of source
symbolsp > 1 there exists a zero prefix precoderP 2 C n�p of
sizen = p+ l which is weakly but not strongly exciting of orderl.

It follows from Lemma 13, Prop. 16 and Lemma 18 that a
randomly chosen precoder is not strongly exciting ifn = p +l. This result is somewhat surprising because it shows that even
though there are the same number of equations as unknowns, there
is still not enough information to identify the channel.

Theorem 19 For any channel orderl � 1 and number of source
symbolsp > 1, a generic precoderP 2 C (n+l)�p of sizen = p+l
is weakly but not strongly exciting. Moreover, the same is true for
a generic zero prefix precoderP 2 C n�p .

Remark 1: No precoder withn < p+l is weakly exciting becausen < p+ l implies there are fewer equations than unknowns.
Remark 2: If n > p+l then a generic precoder is weakly exciting
because adding extra equations never increases the genericnumber
of solutions.

It might be expected that increasingn or decreasingp will
turn a weakly exciting precoder into a strongly exciting one. The
following example shows that this is not always true.

Example 20 Set l = 1, n = 4 andp = 3. Then the zero pre-
fix precoder which mapss to [s3; s1; s2; s3] can be shown to be
weakly exciting; it generically has three solutions. It might then
be expected that the zero prefix precoder of sizen = 5 which mapss to [s2; s3; s1; s2; s3] is strongly exciting since nown > p + l.
However, it is still not strongly exciting; generically it too has three
solutions. Note that this is an example of acyclic prefixcommonly
used in OFDM systems [1].

Theorem 22 below restores intuition by proving that the above
behaviour is non-generic; a randomly chosen precoder withn >p+ l is strongly exciting. The proof exploits the fact that the last
elementxn of the encoded vectorx = Ps affects only the last
elementyn of the output vectory = Hx. Partition the matricesH andP as follows (it doesn’t matter if the full form (2) or the
truncated form (3) is used).HPs = � H1 0uT 1 �� P1vT � s = � H1P1suTP1s+ vT s �

(9)

whereuT = [0 � � � 0 hl � � �h1] andvT is the last row ofP . Parti-
tion the polynomial mapG defined in (8) accordingly.G(s;h;p) = � G1(s;h;p1)G2(s;h; v) � ; G1 = � H1p1sp1 � ;G2 = � uTP1s+ vT sv � : (10)

Here, as in (8),P andP1 are such thatp = vecP andp1 =vecP1 respectively. Notice thatG1 is identical toG in (8) if the
precoderP1 were used instead ofP in (8). ThereforeG1 gener-
ically has a finite number of solutions since Theorem 19 and Re-
mark 2 following it ensure that a genericP1 is weakly exciting.
The following lemma is required; its proof is based on Corol-
lary 11 and Lemma 12.

Lemma 21 DefineG, G1 andG2 as in (10) and assume thatG1
generically has a finite numberN of solutions. Let

��s; �h; �p1� be
a generic point ofG1, that is, the setX = �(s;h) : G(s;h; �p1) = G1(�s; �h; �p1)	 (11)= f(s1;h1); � � � ; (sN ;hN )g
hasN distinct points. If there exists a�v such thatG2(si;hi; �v) 6=G2(sj ;hj ; �v) for i 6= j thenG is invertible.

As in Lemma 21, let
��s; �h; �p1� be a generic point ofG1 and

define(si;hi) as in (11). It is important to note thatsi 6= sj fori 6= j because the channel equations are invertible ifh is known
(that is,F (s1;h) = F (s2;h) impliess1 = s2). For each(si;hi)
the first element ofG2 takes the valueuTi �P1si +vTsi (whereui
depends only onhi). These can clearly be made distinct by judi-
cious choice ofv. Applying Lemma 21 shows thatG is invertible,
that is, a generic precoderP is strongly exciting.

Theorem 22 For any channel orderl � 1 and number of source
symbolsp � 1, if n > p+l then a generic precoderP 2 C (n+l)�p
is strongly exciting. Moreover, the same is true for a generic zero
prefix precoderP 2 C n�p .

3. FILTER BANKS

A filter bank is an infinitely long precoder with the diagonal block
structure in (4). Lets = fsig1i=�1 be the source sequence,y =fyig1i=�1 the output sequence andh = [h1; � � � ; hl] the channel

vector. ThenF : C1 � C l ! C1 is defined to be the polynomial
map such thaty = F (s;h). As in Section 1.1,F (s;h) = HPs,
except here now the channel matrixH, precoderP , and sources
are infinite dimensional.

The definitions of weakly and strongly exciting precoders can
be modified to cope with an infinite number of polynomial equa-
tionsF in an infinite number of unknownss. It is easier though to
side-step the issue by taking the following as definitions rather than
as theorems: For any filter bankF let ~y denote a finite (and non-
empty) subsequence ofy and let~F be the finite subset of equations
such that~y = ~F (~s;h) for some finite subsequence~s of s. A filter
bankF is strongly exciting if there exists an~F which is invertible.
Similarly, F is weakly exciting if there exists an~F which has a
finite number of solutions for generic(~s;h).

The results in Section 2 do not automatically hold for filter
banks. The reason is because a randomly chosen precoder matrix
has zero probability of having a diagonal block structure. Rather
than attempt to rederive corresponding results for filter banks, this
section studies what are believed to be more pertinent issues.

The following decomposition ofF into an infinite sequence
of alternating maps plays a key role in this section. Partition the
source sequences into blocks of lengthq and denote theith block
by si. Similarly, writey = �� � � ;y�1;y0;y1; � � �	 where theith
blockyi has lengthq � l if i is odd and lengthl if i is even. Due



to the block structure (4) of filter banks, it is always possible to
chooseq � l such thaty = F (s;h) can be decomposed as� � � ; y1 = F1(s1;h); y2 = F2(s1; s2;h); (12)y3 = F1(s2;h); y4 = F2(s2; s3;h); � � � :
If F is weakly exciting then it is possible to chooseq large enough
so thatF1 is weakly exciting, that is, the equationF1( ~s1;h) =F1(s1;h) has a finite number of solutions for generic(s1;h).
Definition 23 (Separating Partition) The pair(F1; F2) is a sep-
arating partition of the weakly exciting filter bankF if F can be
decomposed as in (12) andF1 is weakly exciting.

AlthoughF1(s1;h) = HPs1 for suitableH andP , this extra
structure is not exploited below except for the implicit assumption
thaty1 = F1(s1;h) has a unique solutions1 if bothy1 andh are
known. This assumption is true ifF1 is weakly exciting since this
impliesP has full rank, henceHP is invertible.

Of interest are the two polynomial mapsF1;1 andF1;2;1 de-
fined by� y1y3 � = F1;1(s1; s2;h) = � F1(s1;h)F1(s2;h) � ; (13)24 y1y2y3 35 = F1;2;1(s1; s2;h) = 24 F1(s1;h)F2(s1; s2;h)F1(s2;h) 35 :
The two maps inF1;1 are coupled byh. It will be shown below
that this introduces a special structure into its solutions. More-
over, this structure occurs inF1;2;1 despite the extra coupling in-
troduced byF2. The following definitions are required to describe
this structure.

Definition 24 (Indistinguishable) With respect to a filter bankF ,
two channelsh and ~h are indistinguishable if for alls there exists
a ~s for whichF (s;h) = F (~s; ~h).

A dyslexic filter bank is one which cannot distinguish most
channels. It is posed as an open problem at the end of this section
whether or not weakly exciting yet dyslexic filter banks exist.

Definition 25 (Dyslexic) A filter bankF is dyslexic if there exists
a non-zero polynomialg such that for any channel vectorh satis-
fying g(h) 6= 0 there exists a channel vector~h not equal toh yet
indistinguishable fromh.

Lemmas 26 and 27 describe the structures of the solutions ofF1;1 andF1;2;1. For convenience the following sets are first de-
fined.X121(s1; s2;h) = n~h : F1;2;1(~s1; ~s2; ~h) = F1;2;1(s1; s2;h)o

(14)X11(s1; s2;h) = n~h : F1;1(~s1; ~s2; ~h) = F1;1(s1; s2;h)o
Lemma 26 If F1 is weakly exciting then for generic(s1; s2;h)
the setX11(s1; s2;h) depends only onh. Moreover, for generich, ~h 2 X11(s1; s2;h) for generic(s1; s2) if and only ifh and ~h
are indistinguishable with respect toF1.

Lemma 27 If F1 is weakly exciting then for generic(s1; s2;h)
the setX121(s1; s2;h) depends only onh. Moreover, for generich, ~h 2 X121(s1; s2;h) for generic(s1; s2) if and only ifh and~h are indistinguishable with respect toF1;2;1.

Remark: Although Lemmas 26 and 27 appear to be virtually
identical, their validity is founded on two quite differentreasons.
Moreover, it is possible forF1 to be dyslexic but notF1;2;1.

The following two corollaries of Lemmas 26 and 27 establish
the relationship between invertibility and dyslexia.

Corollary 28 Let (F1; F2) be a separating partition. ThenF1;1
is invertible if and only ifF1 is not dyslexic.

Corollary 29 Let (F1; F2) be a separating partition. ThenF1;2;1
is invertible if and only ifF1;2;1 is not dyslexic.

The following theorem provides an upper bound on the num-
ber of elements ofy that must be observed before an unknown
channel can be identified by the receiver. Its proof is based on
Lemma 27.

Theorem 30 Let (F1; F2) be a separating partition for a weakly
exciting filter bankF . DefineF1;2;1 as in (13). ThenF is strongly
exciting if and only ifF1;2;1 is strongly exciting (invertible).

The following is an immediate consequence of Corollary 29.

Corollary 31 Let (F1; F2) be a separating partition for a weakly
exciting filter bankF . DefineF1;2;1 as in (13). ThenF is strongly
exciting if and only ifF1;2;1 is not dyslexic.

Remark: A sufficient condition forF1;2;1 not to be dyslexic is
for F1 not to be dyslexic.

As already mentioned, the above analysis did not fully exploit
the structurey = HPs. This motivates the following question.
Open Problem 1: Does there exist a weakly exciting yet dyslexic
filter bank?

A negative answer means every weakly exciting filter bank is
also strongly exciting.
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