Morse Theory and Cohomology Operations.

Abstract

There is a chain complex generated by the critical points of any
Morse function on a manifold M whose homology is isomorphic to
that of M. When we use more than one Morse function we can obtain

operations which coincide with the natural cohomology operations on
M.

1 Course Outline.

In this course we will study the Morse theory of many functions over
a manifold. By associating a Morse function over a fixed manifold to
each edge of a given graph we can obtain an invariant of the manifold,
defined by Betz [1]. The invariant is obtained by counting solutions to
the graph flow equations. We will consider the moduli space of such
solutions as lying in an appropriate Banach space. We will follow the
treatment Schwarz gave of Morse theory for a single function [7]. His
methods are based on those of Floer [3, 4]. We will study analysis over
a graph, observing when the existent methods over the real line survive
and when changes need to be made to these methods. There will be
two main differences between the approach here and that of Schwarz
(besides his being more thorough). We will consider a generic per-
turbation of the Morse functions rather than the metric. Also, rather
than use a homotopy between Morse functions to obtain a canonical
isomorphism between their homologies and homology invariants, we
will use the graph invariants. In a sense this approach corresponds
to a discontinuous homotopy between functions. Interspersed in the
lectures will be course outlines, or updates. Hopefully these will serve
as motivation, particularly for the earlier material.



2 Morse Functions.
Let M be a compact manifold and consider a smooth function
f:M—->R
with derivative given by
Df:TM - R .

A critical point of f is a point p € M such that (Df), = 0. We can
define a symmetric bilinear form B, the Hessian of f, at the critical
point p by o

B(X,Y) = X,(Y(f))
where X,Y € T, M and X, Y are respective extensions of X and Y to
local vector fields. This is symmetric since

X,(Y ()~ Yp(X(f) = [X,Y]p(f)

and the right hand side vanishes since p is a critical point. Notice
that X,(Y(f)) = X(Y(f)) is independent of the extension X while
Y,(X(f)) = Y(X(f)) is independent of ¥ so B(X,Y) depends only
on the two vectors as notated. A Morse function is a function whose
Hessian, defined at each critical point, is non-degenerate.

Ezxzamples.

(i) The height function on the torus.

(ii) Embed a manifold into a real vector space then project onto a
fixed vector. Generically this will be Morse.

The following fundamental result whose proof can be found in [5]
underlies the good behaviour of Morse functions.

Lemma 1 (Morse) Letp € M be a critical point of the Morse func-
tion f. Then there is a local parametrisation of M around p given by
{(z1,...,q)} where p=1(0,...,0), so that f is of the form

flxy,nmg) =+25+ ... £27 O



3 The Moduli Space of Graph Flows

Let M be a closed, compact, smooth Riemannian manifold of dimen-
sion d, and let [' be an oriented, finite, possibly non-compact, graph
with m edges parametrized by [0,1], (—oc,0], and [0,00). We call
these edges “internal”, incoming”, and “outgoing” respectively. Let
these edges be indexed {Eq, ..., E;, } such that the first n are noncom-
pact, and the rest are internal. Among the n noncompact edges the
first nq are assumed to be incoming, the next no = n —mn, are assumed
to be outgoing. In this section we define the moduli space M(T", M)
of “graph flows”.

We begin by defining the notion of an M -structure for the graph
I'. The space of all such M-structures will play a significant role in
our constructions.

Definition 1 Fiz an oriented, parameterized graph I' and a closed
Riemannian manifold M as above. An M-structure o on I' consists
of the following:

1. A real number £; associated to each internal edge E; of I'. We
think of ¢; as the length of E;, even though we allow £; < 0.

2. A function f; € C°(M) associated to each edge E; of T'. We
assume the f;’s are distinct.

The space of all M-structures will be denoted S(I', M). Notice
that there is a homeomorphism

S(U, M) = R™ ™ x F,,(C*(M))

where F,,(X) C X™ is the configuration space of m distinct points in
X.

For fixed choice of such a structure o, we are now ready to define
the moduli space M, (I", M) of “I’-flows in M”.

Let v : I' =& M be a continuous map, smooth on the edges. For
each internal edge E; let 7; : [0,1] — M be the restriction of 7y to
E; composed with the parameterization of E; by [0, 1] given as part
of the data of I'. For the incoming and outgoing edges we define
vi + (—00,0] = M or v; : [0,00) — M similarly.

Definition 2 The map v lies in My (', M) if and only if for each
edge E; it satisfies the differential equation

dryi/dt + ;Y f; = 0.
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For the noncompact edges (i.e the incoming and outgoing edges) in
this equation set £; = 1. Here Vf; is the gradient vector field. The
space My (', M) is topologized as a subspace of C°(I', M).

We let M(T', M) be the union of the spaces M, (I", M) where the
structures o vary in S(—, M). The space M(T', M) is topologized so
that the natural projection map

T M(IT, M) = S(—, M) (1)

is continuous.

Given P C §(—, M), let Mp(I', M) = 7 '(P). These spaces will
be important in general, but we will restrict ourselves to studying
M, (T, M), the moduli space associated to a single structure. We will
now describe some basic properties of these moduli spaces.

Again, fix a structure 0 € §(—, M). This defines a vector of
labeling functions of the edges. Let f = (f1,..., fn) be the n-tuple
of functions labeling the noncompact edges. Observe that every v €
M, (T, M) has the property that its restriction to each noncompact
edge +; is a gradient flow line, so it therefore converges to a critical
point, say a;, of the function f;. Thus v can be associated to an n-
tuple @ = (a1,---,a,) where a; is a critical point of f;. For a fixed
n-tuple d, let

M (T, M;@) C My(I', M)

be the subspace of those v € M,(I', M) which converge on the ith
edge to the critical point a;.

Theorem 2 For a generic choice of structure o € S(—, M), the
moduli spaces My (T, M;a) are manifolds for every n-tuple of criti-
cal points @. The dimension of M, (T, M;a) is given by the formula

dim(M, (T, M;@)) = Y [index(a;)] — > _[index(an, +i)] — d - ny
=1 i=1

+d - dim(Hy(T,R)) — d - dim(H; (T, R))

where, as above, n1 and no are the number of incoming and outgoing
edges of I respectively. Furthermore an orientation on the manifold
M induces orientations on the moduli spaces M, (L', M;a).



To prove that a point in the solution set is a manifold point we must
show that it possesses a neighbourhood of solutions homeomorphic to
Euclidean space. As a first approximation we can consider only the
first order differences between nearby solutions to a given solution.
This amounts to linearising the non-linear ode given by the gradient
flow equation. In local coordinates around a point in the interior of
an edge of I' the flow equation is given by

di/dt + g(%)V () =0

where f is the Morse function associated to the edge of I' and the
metric is given by

(w,v) =w" ¢g" (&)v, w,v € TpM .

Consider the nearby path given by %(¢) + Av(t) where v(t) is a vector
field along Z(¢). The nearby path satisfies the flow equation when

do(t)/dt + Vg(z)v(t)Vf(Z) + g(2)VVf(Z)v(t) =0

equivalently

du(t)/dt + A(t)u(t) = 0 2)

By Vg(z)v(t) we mean that each entry in the matrix g should be sent
to its gradient vector then via its inner product with v returned to
a scalar. Similarly we differentiate each term in the vector V f this
way. If we choose the trivialisation of the tangent bundle so that at
the critical point g = I then at the critical point A coincides with the
Hessian of the Morse function.

Equation (2) is the linearised flow equation. The dimension of its
space of solutions depends on the limiting values of A(t) along each
edge of I' together with the particular choice of Morse functions. In a
sense that we will describe later for a generic choice of Morse functions
the dimension of the space of solutions of (2) depends only on the
limiting values of A(¢). Once we have found the space of solutions
to (2) we would like to understand if these integrate to solutions of
the flow equation, thus showing that we have a manifold point in the
moduli space of solutions. Both these issues require the appropriate
setup of Banach spaces. The next few sections will be devoted to this
setup.



4 Analysis on a graph.
Given a parametrised graph I, define
C>(T',R") c C°(T',R")

to be the subspace of continuous functions that are smooth on the
edges of I'. At vertices the functions should have one-sided derivatives
to all orders. Define L?(I',R") to be the completion of C°°(I', R")
with respect to the norm defined by integrating the square of the
function along I'. Similarly, define W'2(T', R") using the norm given
by the sum of the L? norm of the function with the L? norm of its
derivative. It does not matter that the derivative is not continuous at
the vertices.

Lemma 3 (Sobolev embedding.) W'?(I',R") c C°(T',R").

Proof. Let {¢;} C C>(T') be a Cauchy sequence in the W'2(T') norm.
We will show that the convergence is uniform. First notice that

i) =40 = | [ dirran

I illa(s — 1) < M(s—t)2

IN

where M is a bound on the W12(T") norm of {¢;}. This gives both
a uniform bound on the constant of continuity and the maximum of
the function on any compact subset of I'. The latter bound follows
from the former together with the uniform L?(T') bound. Thus, the
sequence {¢;} is equicontinuous on compact subsets so converges to a
continuous limit. O

Denote by Fcla compact subset obtained by cutting the external
edges of I' off a finite distance from a vertex.

Lemma 4 (Rellich.) The inclusion map
w'(I,R") — L*(I',R")
18 compact.

Proof. It follows from the proof of the previous lemma that an el-
ement of W12(I") of norm 1 has constant of continuity less than 2,



say, and supremum norm bounded by a constant depending only on
I'. Thus, a sequence of such functions is equicontinuous and so has a
uniformly convergent subsequence. Since

161l 2y < ell¢lloo

where ¢ depends only on T', the uniformly convergent subsequence
converges in the L? norm as well. O

4.1 The trajectory spaces.

Consider R with the differentiable structure obtained by requiring

that L
. R —» [-1,1]
Nt o= VI

be a diffeomorphism. Similarly, we wish to put this differentiable
structure on the external edges of any parametrised graph I' so that
T is compact.

Define

LN

1, 1,2
Pra = Pr,a(rvM)

= {exp(s) € C°(T,R")|s € W"*(T,h*D), h € C*(T, M)} .

2

This is a Banach manifold modeled on W12(I', R™). In [7] it is shown
that this Banach manifold contains all of the solutions to the flow
equation that we require. It involves showing that the solutions decay
rapidly enough along the non-compact edges of T

4.2 Proof of Theorem 2.

Let
X =w"T,R") , Y=L*R"),

S={AeGL(n,R)| A" = A},
A={A:T - End(R") | A€ C°(E;) for E; €T, A(9T') € S} .
Consider F' : A — L(X,)) given by

(Fas)(t) = 5(1) + A(t)s(t) .



It is easy to see that F' is continuous:

I(Fa = Fa))lla = ([ 14 = B)sfan)?
4~ Blollsll < 4 - Bllwllslhz

IN

hence
[Fa = Fpllcxy) < 1A= Blloo -

Before stating the next proposition we need to prove a rather stan-
dard lemma.

Lemma 5 Let X, YV and Z be Banach spaces and F € L(X;)),
K € K(X, Z), the space of compact operators and ¢ > 0 with

lellx < c(IFely + K| z), for all € X (3)

Then F' is a semi-Fredholm operator.

Proof. By semi-Fredholm we mean that F' has finite-dimensional ker-
nel and closed range. Notice that the image under K of any bounded
sequence in the kernel has a convergent subsequence which is neces-
sarily Cauchy. The inequality (3) then implies that the subsequence is
Cauchy in X. Thus the unit ball in the kernel of F' is compact, show-
ing that the kernel is finite-dimensional. Now, consider a bounded
sequence {z;} C X such that {Fz;} is Cauchy in ). Choose a sub-
sequence {z;, } such that {Kz; } is Cauchy in Z. It follows from (3)
that {z;; } is Cauchy thus converging to z, say. Since F' is continuous
we have that {Fz;} converges to Fz. In fact, the sequence {z;} can
be arranged to be bounded as follows. By the Hahn-Banach theorem
there exists a closed subspace Xy C X satisfying

ker Fp Xy =X .

Project {z;} onto {Z;} C Ap. This has to be bounded since otherwise
a subsequence of {Z;/||Z;||} converges to x € Ay with ||z|| = 1 and
Fx = 0 in contradiction to the construction of Xy. Thus F' has closed
range. O

Proposition 6 For each A € A the map Fx is Fredholm.



Proof. First we will use a result whose proof can be found in [7].
Given A € A there are constants T' > 0, ¢(T") > 0 such that

Is|l1,2 < e(T)||Fasl|l2 forall s € X, sp =0

where I' C T is the compact subset obtained by cutting I' off at the
parameter T' on outgoing edges and —7' on incoming edges. Now,
given any A € A, there is a Banach space Z and a K € (X, Z) with
¢ > 0 satisfying

lzllx < c(||Fally + |Kz||z) for all z € X .

Let T(A) be as provided above. Then

1
/|:§+As|2dt > /_(—\5\2 ~|As|?)d .
Jr Jr 2

Thus using |A(t) - s(t)| < [|A(t)|| - |s(t)| and setting ¢ = maxg|[A(t)][,

we have )
/~\é+As\2dt > — / Pk fe/ Is|2dt .
JT 2 JT JT

Hence there is a ¢ > 0 satisfying
/ﬁ(|3|2 +|52)dt < e /ﬁ(\s\Q i+ As)dt
Defining a cut-off function g € C>°(I', [0, 1]) with the properties
B =1, B(t) =0 for |t| >T+1,

and 3(t) # 0 for [t| € (T, T +1)

we achieve

sl = IBs+ (1= B)slliz < IBslliz + (1 — B)sl1.2
c(1Bslla + [[Fa(Bs)ll2 + |1Fa((1 = B)s)ll2)

IN

for a ¢ > 0 large enough. That is

N

c([18sllz + 21|82 + [|BFasll2 + [|(1 — 8)Fasll2)

Ishe <
< erlllsllaqiy + | Faslo) -



By Lemma 4 the operator

rest cpt.

K:WhI) - WhHT) — L*(T) =2

is compact so we are in the situation of Lemma 5 and F4 is semi-
Fredholm.

In order to show that F4 is Fredholm we must study its cokernel.
Since L?(I") is a Hilbert space we can identify the cokernel of F4 with
the orthogonal complement of its image. Thus

coker Fy = {r € L*(D)|(r, ¢ + A¢) = 0 for all ¢ € C(I)} .

We will study the local behaviour of an element of the cokernel. Let
I C T be an open interval in the interior of an edge. Notice that A(t)
is differentiable on I = (g, 1), say. If r lies in the cokernel of F4 then
it satisfies

(r,d+ Ag) = 0 for all ¢ € C°(I) .

Now ¢(t) = [} $(r)dr so

/(r(t),q'ﬁ(t))dt+/(AT(t)r(t), tgﬁ(r)dﬂdt:o
I I to

and by Fubini’s theorem

/I<7“(T),¢>(T)>d7 + /T /T (AT (t)r(t), (7))dtdr = 0
Thus

/I<r(7) _ [T AT (yr()dt, ()T = 0 for all g € C(1) .

t1

Since ¢ has mean zero and the set of such functions is dense in L?(1)
we have

r(t) — [ AT(t)r(t)dt = constant .
t1

This integral equation supplies us with information about the be-
haviour of r in I. For a start it says that r is absolutely continuous
with derivative equal to the integrand almost everywhere. At points
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of continuity of A the derivative of r is equal to the integrand. Fur-
thermore, regularity of A gives regularity of r. This can be seen as
follows. At a point 7y of continuity of A

1 T0+9
—/ AT (W) (8)dt — AT (70)r(70)| < eM
20 T0—0

where € = sup(, 5 1.5 {|A(?)], |7 (t)|} tends to zero as § tends to zero
since A(t) and r(t) are continuous at 79. This shows that the derivative
of r exists there and

7(r0) = A" (10)r(70) (4)
If A is differentiable in a neighbourhood of 7y then by (4)
#(7) = (AT (1) + AT (7)*)r(7)
in that neighbourhood, and so on. Notice that (4) implies
17]l2 < [ AfloclIrfl2 < oo .

Since r need not be continuous at the vertices it doesn’t lie in W2(T).

Rather than defining C°°(T") to be functions smooth on the edges of
I and continuous at the vertices we could have dropped the continuity
condition at the edges. (Except for the Sobolev embedding theorem)
the analysis goes through as before. We showd above that we can
identify the cokernel of F)y with the kernel of F'_ 4» where the domain
consists of W12 functions not necessarily continuous at the vertices.
The same proof now applies to show that the dimension of this kernel
is finite. Hence F'4 is Fredholm. O

4.3 Index calculation.

In order to calculate the index of F4 we will first show that the index
depends only on the asymptotic values of A. This will enable us
to choose a specific A where the kernel and cokernel can be studied
directly.

Following Schwarz [7] define

Y=FA) ={Fye L(X;Y)| Ac A} C F(X,))
and consider the equivalence class of operators

Op, = {Fz e x| B(OT) = A(AT)}, A€ A.

11



Lemma 7 Given any F € %, the class O is contractible within 3
as a subspace of F(X;)).

Proof. [7] O

Proposition 8 For A € A we have

ni n
index Fy = Z index a; — Z index a; + dn;
i=1 1=ni1+1

+od. dim(Hy (T, R)) — d - dim(H, (T, R))

where index a; is the number of negative eigenvalues of A on the end
Of Ei-

Proof. From Lemma 7 the index map is constant on ©x,. Thus
we may assume that A is diagonal, zero on a compact subset T C T
containing all vertices and internal edges, and constant outside of a
compact subset of T' that contains T'. So for A = diag(\; (£), ..., \a(t))
we have

91 = *)\i(t)s(t), 1 = 1, ,(] .

We can explicitly solve this system. Since \;(t) = )\Z is constant near
infinity along E; C T then s(t) ~ e %! near infinity. Thus, s €
WL2(R*,R) only when )\Z is negative (respectively, positive) when
E; is incoming (respectively, outgoing). Thus, if the ith eigenvalue
does not satisfy this condition for a single 7 then the solution must
vanish on E; and hence on all of I'. We see then that the dimension of
the kernel is given by the number of A;(£) with X > 0 for 1 < j < n;
(labels for incoming edges) and )\Z < 0 for n; < 5 < n (labels for
outgoing edges).

In the previous section we saw that an element r of the cokernel
satisfies

i — AT (t)r =0

by considering smooth functions with support away from the vertices.
Now consider ¢ € C§°(I") whose support lies in a neighbourhood of
the vertex v € I'. We have

0 = '/r(r,¢+A¢>dt

12



= Z eiri(v)p(v) */

{i:weE;} -

= Z &1 (v)(v)

{i:weE;}

(7, p)dt + /F (ATr, $)dt

where r;(v) is the limiting value of r along E; and ¢; = 1 when F;
is incoming and —1 for outgoing. Thus at each vertex v we have
> fiwen,) €iTi(v). This means that r is free to be discontinuous up to
a codimension 1 condition at each vertex. '

Along each edge E;, in considering —AT we negate A and r; €
Wh2(R*,R) when )\Z is positive (respectively, negative) when FEj is
incoming (respectively, outgoing). It is no longer true that if r; van-
ishes along one edge then it vanishes on all of I'. For each i we get
a contribution to the cokernel from each edge E; that is compatible
in the sense just described with )\Z The dimension of the cokernel is
given by the number of compatible external edges minus 1 for each 1.

In order to calculate

index F4 = dimker F4 — dim coker F'4

we will change the sign of )\Z and observe the change in the index. On
an incoming edge F; if )\‘17 contributes to the kernel, so it is negative,
then f)\g cannot contribute to the cokernel and we lose 1 from the
index. If )\‘,7 < 0 and does not contribute to the kernel then —)\g
contributes to the cokernel and we again lose 1 from the index. Similar
arguments apply to positive )\‘17 and outgoing edges. Thus

ni n
index Fy = Z index a; — Z index a; + constant (5)
i=1 1=n1+1

Assume there is at least one incoming edge. If )\f > 0 for all 7, 5 then
the kernel is trivial and the cokernel gets a contribution from each
incoming edge minus the codimension one condition from the vertices.
In fact, each component of T imposes a codimension one condition. (If
I" consists of only outgoing edges then all positive eigenvalues will lead
to a contribution of d to the kernel so in a sense contributing —d to
the cokernel. In other words we can proceed as if there is an incoming
edge.) The values that a function in the cokernel takes on the interior
of the graph are completeley determined by the the exterior values
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when there are no cycles. Each cycle contributes one dimension to the
cokernel. This is because the ambiguity in extending a solution from
the exterior to the interior can be seen by subtracting two different
extensions, or equivalently setting the functions to be zero on the
external edges. Then a lone cycle contributes a one-dimensional family
of functions in the cokernel obtained by fixing the (constant) value
on one internal edge and reading off the values on the other edges
by traveling around the cycle. For more than one cycle we set the
function to be zero on all edges except those in a particular cycle.
Thus

dim coker Fy = dny — d - dim(Hy(T',R)) + d - dim(H (T, R))

and this supplies us with the constant in (5) so

ni n
index Fy = Z index a; — Z index a; + dn;
=1 1=n1+1
+ d-dim(Hy(T',R)) —d-dim(H(T',R))

and the proposition follows. O

4.4 Regularity.
Let 8* be the submanifold of the Banach manifold

ST, M) =ZR™ " x F,(C*(M))

obtained by requiring that the functions be Morse. In this section we
will show that 0 is a regular value of F4 for a generic subset of the
Banach manifold §*.

Now consider the map
R AT

given by associating to an M-structure, o its flow equations. The
proof that ®(h)'(0) is generically a manifold consists of four steps.
1. Show that 0 is a regular value of ® so Z = & '(0) is a manifold.

2. The map
w:Z =8

is Fredholm with the same index as ®(o).

14



3. Sard-Smale then gives us a generic set X C §* of regular values
of .

4. Show that for a regular value o € ¥ the map
1,2 2
Do) : Prz = Pra
has zero as a regular value.

Lemma 9 Forall (0,7) € Z, we have D®(, ) is onto. In other words
0 us a regular value of ®.

Proof. Put
D® = Dy + Dy : R™ ™ x C?*(M)™ @ W'?(I',RY) — L*(I,RY) .

We have shown already that the complement of the image of D,
is finite-dimensional and that functions in the complement satisfy a
differential equation. By showing that this finite-dimensional space
cannot be orthogonal to the image of D; we will have shown that
D® is onto. For ¢ € R™™" x C?(M)™ and r € R(F4)" we have
(D1&,1) = dé(r) = 0. We have shown that r must be continuous
along an edge so pick a point where it does not vanish then choose ¢
so that V¢ is a bump function in the neighbourhood where r does not
change sign. This shows that r must vanish there so the complement
is trivial and D® is onto. O.

The other three steps are given by Proposition 2.24 in [7]. This
completes the proof of Theorem 2. O

Remarks.
(i) In the single Morse function case where there is an R-action
obtained by flowing along the solutions of the gradient equation put

M(a,b) = M,(T', M;a,b)/R (6)

We will call this the moduli space of gradient flows of f running from
a to b.

(ii) We are interested only in connected graphs so dim(Hy(I',R)) =
1. The more general formula, which follows by additivity, hides the
fact that often a moduli space is empty.

(iii) Orientation uses the determinant line bundle over the space
of Fredholm operators. This might have to wait.
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5 Compactification.

Fix a structure o satisfying the generic property. We will now con-
struct a natural compactification of the space M, (I', M;@). To do
this we first recall the natural compactification of the space of gra-
dient flow lines of a Morse function converging to two fixed critical
points. We will refer to the space of flow-lines from critical point a;
to critical point b; by M, (a;,b;). The following is a standard result
in classical Morse theory.

Proposition 10 Let M(a,b) denote the space of “piecewise flow lines”
connecting critical points a and b. That is

M(a,b) = U M(a,a]) X ... X M(a]‘,],b) s

a=ap>a1>...>a;=b

where the union is taken over decreasing finite sequences of critical
points. (The partial ordering is defined by o > B iff M(«a,B) is
nonempty.) Then M(a,b) is compact and contains M(a,b) as an
open dense subspace.

Proof. Consider a sequence of unparametrised gradient flows {[y/]}
of f. defined on M, running between the critical points a and b. The
square brackets denote the fact that we are considering equivalences
classes of parametrised gradient flows. Choose a point z; on each flow.
Since M is compact there is a subsequence of {z;} that converges
to x € M, say. Choose parametrisations for each flow by putting
77(0) = x;. We drop the square brackets since we are working with
parametrised flows. Any point on (), the gradient flow of f satisfying
7(0) = z = lim; 5,77 (0) is also a limit point lim;_,o7/(¢). This is
because if we take a path p : [0,1] — M satisfying p(0) = ~;(0)
and p(1) = ~(tp) then the diffeomorphism defined by the flow of f
produces a continuous map F : [0,1] x [0,ty] — M with F(1,t) =~
and F'(x;,t) = v;(t) for some {z;}. Alternatively, the gradient vector
field Vf is bounded and uniformly continuous since M is compact.
Since dy’ /dt = —V f the derivatives {dy’ /dt} are uniformly bounded
so {7/} is an equicontinuous family and thus has a continuous limit
v(t). By differentiating Vf we can get a uniform C? bound on the
{47(t)} and thus show that ~(t) satisfies the gradient equation. It is
not necessarily true that lim;, ~7y(t) = a or limy_,~y(t) = b. Set
¢ = limy_, y(t), a critical point of f.
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Lemma 11 If ¢ # a then there exists a flow [u] that lies in the limit
point set of the sequence {[v7]} satisfying imy_,oopu(t) = a.

We will assume this for the moment to prove the theorem. Apply
the lemma first to y(t) at ¢ then to p(t) at ¢ = limy, _oou(t) and
so on. This forms a strictly increasing sequence of critical points of
f since M(cgq1,ck) = ¢ if index(cx41) < index(cx). As f has only
finitely many critical points we must have ¢, = a for some k. The
same argument works in traveling down towards b. Alternatively, we
can canonically parametrise {[y/]} by s = f(77(t)). In this case they
each satisfy dy’(s)/ds + V f/|Vf| = 0. Using a uniform C' bound we
get a continuous limit. This gets around the use of Lemma 11. We
see that the limit of {[y7]} is an unparametrised piecewise flow. O

Proof of Lemma 11. Since ¢ # a it cannot be a local maximum.
This is because there is a neighbourhood of a local maximum which
lies entirely inside the unstable manifold of that critical point thus
prohibiting y(#) to lie in the limit point set of the {[y/]}. Also, by
construction, ¢ is not a local minimum. Thus when we invoke the
Morse lemma, that expresses f in local coordinates around ¢ we see
that there are both negative and positive coefficients:

f(fE],.’,EQ, ...,.Td) = $% + x% +... - x?i .

Assume that the first [ coefficients are positive and the rest negative.
We will require that the path ~y(¢) corresponds to 1 =0 =29 = ... =
z4-_1. Locally, solutions to the gradient equation are of the form

E(t) = (Cre ™ + Coe™ + ... + Cye™) .

(This assumes that the metric is Euclidean. In general by taking a
small enough neighbourhood we can get close enough to a Euclidean
metric so that the present argument works.) If we fix ¢ and allow the
C; to depend on a sequence {s;} that converges to 0 and satisfying
% (t) = [77] then lim;_,o C; = 0 for i # d and lim;_,», Cy is non-zero.
Now choose t = t(s;) so that lim; ,.#(s;) = —oo and each Cje~
converges, with at least one of these expressions tending to a non-zero
limit. By passing to a subsequence we can be assured of doing this
since (Cre 2" + Cye 2" + ... + Cre ?") lies in the compact manifold
RP'~! and thus this converges projectively. Clearly we can choose
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t = t(s;) to decrease at the right rate to guarantee convergence in R/,
moreover in a small enough disk so that the Morse lemma still applies.

Thus there is a point in the stable manifold of ¢ that lies in the
limit point set of {[y/]}. The gradient flow that passes through this
point we will call . O

There is a similar compactification for the moduli spaces of I'-flows.
Namely, let

M, (D, M; @) = | J M (T, M;b) x My(br,a1) x -+ x Mo (an, by).
p

Whether we use M, (b;, a;) or M, (a;,b;) in the above union depends
on whether the ith edge is incoming or outgoing. The space M, (", M; @)
consists of [-flows that are allowed to be piecewise flows on the non-
compact edges. We refer to these as “piecewise I'-flows”. There is an
obvious way to topologize M, (', M; @).

Theorem 12 The space M, (T, M;@a) is compact and contains the
space My (', M;d) as an open dense subspace.

Proof. As above the non-compact edges converge to piece-wise flows.
The internal edges remain as true flows since by looking at the limit
of a single point on an edge we can reconstruct the limiting edge by
flowing according to the prescribed equation. Since the parameter
runs from 0 to 1 no critical point will be met. (Unless the entire path
is a single critical point.) Again by continuity of the limiting map of
the graph, the limit is a map of the graph. O

We would like to be more precise about this compactification. Fur-
ther than describing the limit point of each sequence we can describe
all sequences that converge to a given limit point. Equivalently we
will describe the subset of the moduli space given by a deleted neigh-
bourhood of the points added, or the “ends” of the moduli space.

For example, consider S*, CP? and B?—different compactifica-
tions of R* obtained by respectively adding a point, S? and S3. A
neighbourhood of the point at infinity in S* is given by a ball which
intersects R* in the complement of a ball. A neighbourhood of the
sphere at infinity in CP? is given by a non-trivial complex line bundle
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over §2. Given a point z in S?, nearby points in R* = C? are pairs
of complex numbers (wy, ws) lying in the complement of a ball in R*
satisfying w; /wy = z. A neighbourhood of the boundary of B* is the
product of §% with an interval. A point in the complement of a ball
in R* represents a vector and it is close to that point in S3 which
describes the direction of the vector. These three examples give a no-
tion of a “larger” compactification. There are sequences in R* that
converge to the same point in CP? but different points in B* whereas
the converse cannot be true. In this sense B* is a larger compactifi-
cation than CP? and both of these are larger than S*. We will see
that the compactification of the moduli space of graph flows is quite
large indeed. This is reflected by a gluing map from broken flows to
real flows leading to a uniqueness property of the ends of the moduli
space.

To describe the ends of the moduli space M, (T, M;a) we will
set up the following notation. For n-tuples of critical points @ and b
associated to the structure o, consider the oriented spaces of flow lines

M; = My, (b, a;) for incoming FE;
M; = My, (a;, b;) for outgoing E;.

Theorem 13 There exist “gluing” maps

-,

t My (D, M;@) x J[ Mix[0,1) = M, (I, M;b),
a;7#b;

)

ab

that are orientation preserving homeomorphisms onto disjoint images.
Moreover the complement of the images,

HG(F’M,Z_).)*U@

a

St

(_1:7
1§ compact.

Proof. We will begin with this result for a single Morse function on a
graph with no vertices. In this case the broken flow consists of a single
parametrised flow v € M(I', M;a®,a') together with a collection of
unparametrised flows [y/] € M(a’,a*!) where —k < i < I. Our
strategy will be to use these flows to construct an approximate flow
between a % and a! and show that there is a true flow nearby.
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For a path v running between «, 8 € M define
1 o0
) = 5 [ (dv/di) + Vo (1)P)ds
1 o0
= H@)—1B)+5 [ (/i) + V() )ds

where the first expression shows that £ is non-negative and the second
expression shows that £ is minimised by the gradient flow. For £ to
make sense we must restrict the paths to satisfy [°0_|dvy/dt(s)>ds <
00.

A broken flow yields a path with small energy—an approximate
flow. The implicit function theorem shows that there is a unique true
flow nearby. Details can be found in [7]. The same argument goes
through for the external edges of graph flows. O

We will be concerned with the moduli spaces of dimension zero
and one, MY(T, M;a) and M/ (T, M;@). These theorems tell us that
MU(T, M;a) = HS(F, M; @) is a finite set of points with signs (orien-
tation). Moreover if an end of one of these isolated I'-flows glues to an
isolated flow line, then the pair forms one end of a compact interval
of I'-flows. The other end of this interval is modeled by another such
pair.

6 Chain complexes.
A chain complex is a sequence of abelian groups

0o o1 On—2 On—1
Co - Ci — ... = C,1 — O,

satisfying Ogy1 0 Oy = 0. We wish to consider the the chain complex
generated by the critical points of a Morse function on a compact
manifold.

By considering the moduli space of solutions to the gradient flow
equation converging to critical points of consecutive degrees we can
define a boundary operator on the space of critical points graded by
their degree. The boundary operator is defined by counting points
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in the moduli space. We can show that the moduli space is a zero-
dimensional compact manifold which ensures that the notion of count-
ing is well-defined. What is startling is that this operator has square
zero and thus defines a complex. The uniqueness in the gluing con-
struction lies behind the fact that 92 = 0.

Let a and b be critical points of f of index k41 and k respectively.
We have shown that M(a,b) is a zero-dimensional oriented compact
manifold. Thus it makes sense to count the points, with sign, in
M(a,b). Put n(a,b) = #M(a,b) and define the linear operator

da = ¥n(a,b)b

where the sum is over all critical points b of index k.

Lemma 14
& =0.
Proof. By linearity
00a = ¥n(a,b)0b = Xn(a,b)n(b, c)c

where the sum is over all critical points b of index & and ¢ of index
k—1. We will show that for fixed ¢ the sum Xn(a, b)n(b, c)c over all in-
termediate critical points b vanishes. By Theorem 13 the compactified
one-dimensional moduli space M(a,c¢) is a manifold with boundary.
That is the boundary points, which are piecewise flows, each corre-
spond to a unique edge. Since one-dimensional compact manifolds can
only be a finite collection of closed intervals this means that the ends
come in pairs. Thus the contributions to 9(a) come in pairs. This
immediately gives the vanishing of each component modulo two. O

7 Cohomology Operations.

Fix a generic structure o € S(—, M) as above. Given the Morse-
Smale function f;, let Cy(M, f;) be the associated Morse-Smale chain
complex generated by the critical points, and let C*(M, f;) be the dual
cochain complex.

We define a class ¢(I', M) to be an element of the complex

1<i<ng ni1+1<i<n
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in the following manner. Consider those n-tuples of critical points
a such that dim(M,(T',M;a)) = 0. These spaces contain a finite
number of oriented points which can be counted with sign (if M is
oriented otherwise this is well defined mod 2, and we take coefficients
to be Zs).

Definition 3

g, M) =Y #Ms(D,M:@)al e K C* (M, fi)) QK C.M,f).

1<i<ny n1+1<i<n

Using the gluing theorem above and the definition of the boundary
and coboundary operators in the Morse-Smale complex, we will show
the following.

Lemma 15
dq = 0.

Proof. Extend the boundary operator to products as a derivation.

9: Q) C(M, f;) =~ @ C*(M,f)

1<i<k 1<i<k
(@1, .y an) — Xi(ar, ..., 0i(a;), ..., ag)

where 0; is defined using f;. Then if we think of ¢ as a map

1<i<ng ni1+1<i<n

the requirement that dg = 0 is equivalent to the requirement that g
and 0 commute: dg = g0. Choose a@ = (5, ¢) so that dim M, (", M;a) =
1. We have divided @ into critical points gcorresponding to incoming
flows and ¢ corresponding to outgoing flows. Notice that for ob = X
dim M, (T, M; (96, ¢)) = 0 so q(0b) € @, +1<i<n Cx(M, fi) makes
sense and we can compare it with dq(b) € Qnr1<i<n C«(M, f;). The
one-dimensional manifold M, (T, M; @) is compact with boundary so
it is a finite collection of closed intervals. Each boundary point of an
interval corresponds to a piecewise graph flow with only one external
edge not a true gradient flow. This is the key fact behind the proof.
If more than one external edge were to break then the true graph flow
inside this piecewise graph flow would lie in a moduli space of negative
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dimension, thus contradicting its existence. These boundary piecewise
graph flows are paired by the interval they bound. There are three
types of components of the one-dimensional manifold M, (T", M;d)
and thus three types of pairings of piecewise flows. The first type
of component consists of an interval whose two ends correspond to
incoming piecewise gradient flows. These two piecewise graph flows
contribute 1 — 1 = 0 to ¢(da). The second type of component consists
of an interval whose two ends correspond to an incoming and outgo-
ing piecewise gradient flow, respectively. These two piecewise graph
flows contribute, respectively, 1 to ¢(dd) and 1 to dg(a). The third
type of component consists of an interval whose two ends correspond
to outgoing piecewise gradient flows. These two piecewise graph flows
contribute 1 — 1 = 0 to d¢(a@). Thus ¢(da) = 9q(a@) and the lemma is
proven. O

We shall therefore view ¢(I', M) as an element of the associated
homology,

q(T,M) € H*(M)®™ ® H,(M)®".

We shall now describe four basic examples of these invariants.

Example 1. T' =

In this case M, (I", M; @) has dimension zero if and only if @ = (a)
is a maximum. Thus ¢(I', M) € Hy(M), and it can easily be seen to
be the fundamental class. (Coefficients should be taken in Zs if M is
not orientable).

Example 2. T' =

In this case M, (I", M; @) has dimension ind(a;)+ind(as)—d, where
@ = (a1,as). Thus ¢(T, M) € ®,HI(M)® HY (M), which defines an
element in ®;Hom(HY(M), Hq_,(M)). This is the Poincare duality
isomorphism, given by taking the cap product with the fundamental
class.
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Example 3. I' =

In this case M, (I, M; @) has dimension ind(a)—ind(az) —ind(as),
where @ = (a1, a9, a3). Thus

q(T, M) € @, < H*(M) ® H,(M) ® Hy_,(M)

and defines an element in ®,<,Hom(H" (M) @ H* (M), H*(M)).
This is the cup product operation.

Example 4. T' =

In this case M, (I', M; @) has dimension ind(a) — d, where @ = (a).
Thus ¢(I', M) € H(M). Tt is easily seen to be the Euler class (or
Stiefel - Whitney class wy if M is not orientable).

We end this section by discussing some basic structure properties
of the invariants ¢(I', M). In particular the following results say that
the four examples above can be used to compute the invariant for any
graph and these invariants are independent of the choice of metric and
M-structure.

Proposition 16 If I'1 and I's are homotopy equivalent via a ho-
motopy that preserves orientations on their end, then q(T'y, M) =
q(FQaM)

Proof. By varying the length of a single edge of I' and showing the
invariance of ¢ under this homotopy the general result follows. Also
notice that solutions to a graph flow equation with one edge of zero
length are the same as solutions to the graph flow equation for the
graph with that edge contracted to a point.

Denote by {0} the path of M-structures where a single internal
edge takes on the variable length [;. Define

Mos(T,M;a) ={7:[0,1] xI' =5 M | 4(s,-) € Mys(I', M;a)} .
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By setting up the appropriate Banach spaces we can show that for
a generic choice of M-structure the path described above is regular.
We find that M = M (I, M; @) is a smooth oriented manifold with
boundary. It has dimension one greater than the dimension of the
boundary components My = Mo (T, M; @) and My = M. (', M; Q).

In the case that M is a compact 1-manifold, it forms an oriented
cobordism between My and M. This gives an isomorphism, on the
level of chains, between the two invariants gy and ¢; corresponding,
respectively, to the zero dimensional moduli spaces M and M. This
is because a compact 1-manifold must have two endpoints. Either a
point in My is matched with a point in M; or two points in My,
respectively My, are matched with opposite orientations and thus
cancel.

In general M will not be compact. In this case the equivalence of
the invariants occurs only at the level of homology. We will construct
a chain homotopy equivalence

o: Q) C'(Mfi) Q CuM,fi)— @Q C(M,fi) Q CuM,fi)

1<i<n, n1+1<i<n 1<i<n1 n1+1<i<n

where gg — g1 = o ® — 0 0.

The compactness properties of the space of solutions to the time-
dependent graph flow equations mimic those of the time-independent
flows which we have already studied. We saw that by including piece-
wise graph flows the moduli space became compact. In the case at
hand again we find that a the boundary of the one-dimensional moduli
space consists of the zero-dimensional moduli spaces as well as piece-
wise graph flows. If we fix an s € [0,1] then the formal dimension
of My is zero. This, we would expect, should prohibit a sequence
of graph flows (and thus a boundary point of the 1-manifold) from
degenerating to a piecewise flow since the piecewise flow will consist
of a graph flow in a formally negative dimensional space. However,
since it is the path of M-structures that is regular so there might be
an s for which the M-structure is not regular, at such an s a formal
negative dimension does not obstruct the existence of a solution. Thus
compactness fails precisely at the M-structures that are not regular.
(Note that the Morse functions can be chosen to be regular since we
are changing only a length. Thus any broken graph flows can only
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contain true gradient flows.) Define

o: @ C'(Mfi) Q CuM,fi)— Q C(M,fi)) Q CuM,fi)

1<i<n, n1+1<i<n 1<i<ny n1+1<i<n

by summing over all moduli spaces of formal dimension negative one at
the M-structures that are not regular. So (®(a1,...,an, ), (Gn,+1, .-, Gn))
equals the number of solutions of the graph flow equations when

dim(M,s (T, M;a)) = Z[index(ai)] - Z[index(anl+i)] —d-m
i=1 i=1
+d - dim(Hy (T, R)) — d- dim(H; (T, R))
- 1

and we sum over all o® that are not regular. Strictly we need to prove
that these moduli spaces consist of a finite number of points. Really
we need only be concerned with ® defined on those chains that repre-
sent an end of the one-dimensional moduli space defined above. Using
this persepctive we can also introduce an orientation, or sign, in the
definition of ®. Then we see that gy and ¢; fail to be the same when
these new endpoints are introduced. We have g —q1 = 0o ® — ® 0 0.
This requires a gluing theorem to show that each end is used only
once. A codimension argument should show that the moduli spaces
of formal dimension less than negative one are never non-empty for a
good choice of path. O

Now let I'; and I'y be oriented graphs. Let Fﬁgj be the oriented
graph obtained by gluing incoming edge ¢ of I'y to outgoing edge j of
Is.

Proposition 17
g(T7 . M) = (', M)OMg (s, M),

where O™ denotes tensorial contraction of cohomology in the ith co-
ordinate with homology in the jth coordinate.

Proof. We mean to combine the respective M-structures in the ob-
vious way—assume that the Morse functions associated to the glued
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edges are the same. The length we assign to this edge is arbitrary. By
Proposition 16 this does not affect the invariant. The reason that we
have not included the M-structures in the statement of the proposition
is that we will see in Theorem 21 (which uses the conclusion of this
proposition) that the invariant associated to the graph is independent
of the choice of M-structure.

We first notice that for large enough I, the length of the internal
edge of Flf?;] obtained by the gluing, there is a one-to-one correspon-
dence between solutions of the graph flow equation for I'*#/ and pairs
of solutions for the graphs I'j and I'y with common critical point at
the 7th and jth edges, respectively. But this exactly describes the de-
sired contraction. By the homotopy invariance proven above we can
replace a large | with any [. O

Corollary 18 Changing the orientation of a non-compact edge in-
duces the Poincare duality isomorphism on the relevent tensor coordi-
nate of the invariant q(T', M).

Proof. Let I' be a given graph with outgoing edge E. Glue the
graph of Example 2 to I at F to get I''. By Proposition 17 gr is the
composition of gr with the Poincare duality isomorphism. Contract
the internal glued edge to a point. By Proposition 16 this does not
change the invariant. O

Proposition 19 The graph I' consisting of an incoming edge a vertez,
an outgoing edge and no other edges defines a canonical isomorphism
between Morse homologies for different Morse functions.

Proof. Given two Morse functions f and g, we will show that the
map
gr : H — HY

is an isomorphism by constructing an inverse. Use the same graph to
get
qr : HY — H/ .

By Proposition 17 the composition
groqr: H,{ — H,{
coincides with the map

qr : Hf — HI
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where I' is the graph obtained by gluing the outgoing edge of one copy
of I' with the incoming edge of another copy. By Proposition 16 we
can homotope the length of the internal edge of I to zero and remove
it so we are left with I once more but now the same Morse function
f is associated to each edge. Clearly this map is the identity. O

Corollary 20 The Morse homology Hf(M) of a generic Morse func-
tion f : M — R s isomorphic to the simplicial homology of M,

Proof. By Proposition 19 we need only confirm Hf(M) =~ H,(M)
for a single generic Morse function f. Triangulate M and choose f to
have a critical point of index(k) in the centre of each k-simplex and no
other critical points. Make the choice also so that there is exactly one
gradient flow line from each centre of a simplex to the centre of each
face of the simplex. It is easy to see that such an f exists and that
it satisfies the Morse-Smale condition of transversality. The Morse
complex based on critical points and boundary operator supplied by
gradient flows coincides precisely with the cell complex based on sim-
plices and the boundary operator. Thus the homologies coincide. O

The following says that ¢(I', M) is indeed an invariant of M.

Theorem 21 The homology class q(I', M) does not depend on the
choice of structure o € S(—, M).

Proof. If f is a Morse function associated to the external edge F
of I' then we can replace it by the Morse function g by first gluing
the graph of Proposition 19 to I' at . We then contract the internal
glued edge to a point. By Propositions 16, 17 and 19 the new invariant
is related to the old by the isomorphism of Proposition 19. One by
one we can change the Morse functions associated to external edges
in this way to pass from one M-structure to another. For the internal
edges we simply use the homotopy invariance result to contract these
to points and thus demonstrating independence. O

Proposition 22 The homology class q(T', M) does not depend on the
choice of metric g.

Proof. Since the space of metrics is connected we can find curves
connecting any two generic metrics that induce chain homotopy equiv-
alences that preserve the ¢(I', M)’s.
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For a path of metrics {g®}, define

Mo(T', M, gs;@) = {7 :[0,1] x ' = M | ¥(s,-) € My(I', M, g5;a)}

where the latter moduli space is taken with respect to the fixed metric
gs.

As with the argument in Proposition 16 we wish to sum over all the
bad metrics to get a chain homotopy equivalence. There is a further
complication here in that the boundary operator changes as the metric
changes. Thus first we must show that a path of metrics induces
an isomorphism between the different homologies obtained from the
different boundary operators. In the case of varying M-structure the
Morse functions associated to external edges remained Morse-Smale.
Since this is not the case here we have two types of “irregular” graph
flows to consider. These are broken flows where either the gradient
flow or the graph flow lies in a formally negative dimensional space.
In Proposition 16 the gradient flow had to be true. There is much
analysis needed for this argument. O

8 Graphs and Symmetry.

The cohomology operations defined by considering solutions to many
gradient equations with the same initial data can be thought of as
arising from a graph where each edge of a graph is a gradient flow
of a Morse function. We can exploit any symmetries of the graph to
obtain higher order cohomology operations.

Ezamples.
(i) Stiefel-Whitney classes.
(ii) Steenrod squares.

9 Current Research.

More generally than using the critical points of a Morse function to
describe homology and its algebraic structures we can add other ob-
jects in the set of critical points to obtain further structure. On a
symplectic manifold we can include periodic orbits of a family of sym-
plectomorphisms with critical points of Hamiltonians and obtain the
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“quantum” cohomology of the symplectic manifold. This is isomorphic
to the usual homology as a vector space though not as an algebra.

10 Physics

In [8] Witten treats the space of differential forms on a Riemannian

manifold as a model for supersymmetric quantum mechanics. In this

section we will follow his treatment of Morse theory in this context

and generalise it to the case of a multiplet of Morse functions.
Acting on forms we have the operators

Q1 =d+d, Qy=i(d—d"), H=dd" +d'd
so H is the Laplacian. These satisfy the supersymmetry relations.

1=Q3=H, QiQ2+Q:Q1=0 (7)

We interpret p-forms as being bosonic or fermionic depending on
whether p is even or odd so the (); are supersymmetry operators which
swap bosons and fermions.

Let f = (f1,..., fn) be an n-tuple of Morse functions over the Rie-
mannian manifold M and let t = (¢1,...,%,) be a vector in R". Put

dt — eff-tdef-t’ d: — eff-td*ef-t
and consider the operators
Qlt = dt + d:, QQt = 7(dt — d:), Ht = (]t(ftk + d:(]t .

These still satisfy the algebra (7) for any t.

Witten showed that for each critical point of each Morse function f;
there is a corresponding differential form. This is the differential form
whose energy remains finite as ¢; is sent to infinity. Using this corre-
spondence we will show the relationship between the algebra induced
by the graph moduli spaces and the algebra of differential forms.

The gradient flow lines which define the boundary operator for the
Morse complex have two physical interpretations. One is that they
minimise the action of the Lagrangian and the other is that they con-
tribute most to certain s-matrix elements. This latter interpretation,
the WKB approximation, should generalise to the case of graphs and
multiplets of Morse functions.
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A  Finite-dimensional methods.

In this appendix we will describe the more intuitive finite-dimensional
approach to proving the results. First we will start with a description
of the stable and unstable manifolds a Morse function associates to
its critical points.

Define the stable manifold of a critical point a of f to be the set
of points W; C M which lie on a flow line of f that converges to a.
Similarly, the unstable manifold of a is the set of points W C M
that lie on a flow line of f that originates at a or converges to a for
negative time.

Proposition 23 The stable and unstable manifolds of a critical point
are diffeomorphic to disks.

W; o Ddfindex(a)’ Wg o Dindex(a) ]

Proof. We will consider only the unstable manifold since by negat-
ing the Morse function we can include the stable manifold. As in
Section 4.1 define the Banach manifold

PL2 = fexp(s) € CU([0,00],R?) | s € W'2([0,0), h* D),
h € C>([0,00], M), h(x) = a} .

Then as before we find that F4 is a Fredholm operator with index
given by the index of the critical point a. The boundary condition on
elements of the cokernel now ensures that F4 is surjective. It follows
that W, is a manifold of dimension index a. In particular, a € W is
a manifold point. using the R-action on WY given by reparametrising,
we see that WY = pindex(a)

Before describing the alternative approach to the proof of Theo-
rem 2 we shall give a short description of the Morse theory of a single
function f. In this case the graph I' has no vertices and one edge
which is both incoming and outgoing. For the critical points a¢ and
b of f the theorem states that M, (T, M;a,b) is a manifold and its
dimension is given by index(a) — index(b).

A flow of f is determined uniquely by a point on the flow so the
space M, (T, M; a,b) is the subset of M given by the intersection of the
unstable manifold of a, W}, with the stable manifold of b, W;. When
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these two submanifolds are transverse their intersection is a manifold
of dimension index(a) — index(b). This transversality condition known
as the “Morse-Smale transversality property” is the generic condition
that we will require in the theorem.

The tangent space at a critical point a possesses a subspace V,
corresponding to the unstable manifold of that point. To orient the
moduli spaces we first choose orientations, at each critical point, for
each of these vector spaces. Using f we can compare these orienta-
tions. We choose the orientation on the moduli space M(a,b) which
combines with the orientation of Vj; to give the orientation of V,. Our
use of these moduli spaces will be independent of the choices of orien-
tation at each critical point.

Proof of Theorem 2. The argument we give is intuitive though
not open to generalisation. It uses the fact that we can identify the
moduli space as a submanifold of M.

First consider a graph without internal edges. Since the graph
is connected we may assume that there is exactly one vertex. The
case of no vertices is the standard Morse theory described above. By
putting a Riemannian metric on M, the vertex uniquely determines
the graph since for each Morse function there is a unique gradient flow
containing the vertex. The vertex is characterised by the fact that it
lies inside the intersection of the stable and unstable manifolds of the
critical points. Since the intersection of these manifolds is transverse
then it is a manifold with the stated dimension.

The gradient flow of a Morse function produces diffeomorphisms on
the manifold. If we introduce an internal edge to a graph then rather
than considering the intersection of stable and unstable manifolds we
consider the intersection of diffeomorphic copies of stable and unstable
manifolds.

We require that the diffeomorphic copies be transverse so the in-
tersection, and thus the moduli space of graphs, is a manifold. The
dimension remains the same unless the new edge introduces a cycle.
In this case the moduli space is cut down by dimension d. We can see
this as follows. Now

Mo (T, M; @) = Wi x Wi, x..xWE x . xF(W; )x..NA(M) C M"h

where F is a diffeomorphism corresponding to an edge of the graph,
A(M) is the diagonal in M"*+h1 and hy = dim(H,(T,R)). The prod-
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uct in this expression has dimension

ni n2

Z[index(ai)] — Z[index(an1+i)] +d-ngy

i=1 i=1

and since A(M) has codimension d + h; — 1 and the intersection is
transverse the theorem follows. The key new feature introduced by
a cycle is that the product involves graphs of diffeomorphisms which
have relatively small dimension, i.e. dimU x F(U) = 2dim U whereas
dimT'z = dim U where 'z denotes the graph of F|;;. The orientation
is induced by the orientation on M"+M O

Remark. In this proof, the generic condition on the structure
o is that the labeling functions f; are Morse, and satisfy the Morse-
Smale transversality properties the stable and unstable manifolds of
the critical points all intersect transversally. Also we require that
stable and unstable manifolds for different Morse functions intersect
transversally and that diffeomorphisms induced by gradient flows yield
transversal intersections.
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