
Morse Theory and Cohomology Operations.
AbstractThere is a chain complex generated by the critical points of anyMorse function on a manifold M whose homology is isomorphic tothat of M . When we use more than one Morse function we can obtainoperations which coincide with the natural cohomology operations onM .1 Course Outline.In this course we will study the Morse theory of many functions overa manifold. By associating a Morse function over a �xed manifold toeach edge of a given graph we can obtain an invariant of the manifold,de�ned by Betz [1]. The invariant is obtained by counting solutions tothe graph 
ow equations. We will consider the moduli space of suchsolutions as lying in an appropriate Banach space. We will follow thetreatment Schwarz gave of Morse theory for a single function [7]. Hismethods are based on those of Floer [3, 4]. We will study analysis overa graph, observing when the existent methods over the real line surviveand when changes need to be made to these methods. There will betwo main di�erences between the approach here and that of Schwarz(besides his being more thorough). We will consider a generic per-turbation of the Morse functions rather than the metric. Also, ratherthan use a homotopy between Morse functions to obtain a canonicalisomorphism between their homologies and homology invariants, wewill use the graph invariants. In a sense this approach correspondsto a discontinuous homotopy between functions. Interspersed in thelectures will be course outlines, or updates. Hopefully these will serveas motivation, particularly for the earlier material.1



2 Morse Functions.Let M be a compact manifold and consider a smooth functionf : M ! Rwith derivative given by Df : TM ! R :A critical point of f is a point p 2 M such that (Df)p = 0. We cande�ne a symmetric bilinear form B, the Hessian of f , at the criticalpoint p by B(X;Y ) = ~Xp( ~Y (f))where X;Y 2 TpM and ~X; ~Y are respective extensions of X and Y tolocal vector �elds. This is symmetric since~Xp( ~Y (f))� ~Yp( ~X(f)) = [ ~X; ~Y ]p(f)and the right hand side vanishes since p is a critical point. Noticethat ~Xp( ~Y (f)) = X( ~Y (f)) is independent of the extension ~X while~Yp( ~X(f)) = Y ( ~X(f)) is independent of ~Y so B(X;Y ) depends onlyon the two vectors as notated. A Morse function is a function whoseHessian, de�ned at each critical point, is non-degenerate.Examples.(i) The height function on the torus.(ii) Embed a manifold into a real vector space then project onto a�xed vector. Generically this will be Morse.The following fundamental result whose proof can be found in [5]underlies the good behaviour of Morse functions.Lemma 1 (Morse) Let p 2M be a critical point of the Morse func-tion f . Then there is a local parametrisation of M around p given byf(x1; :::; xd)g where p = (0; :::; 0), so that f is of the formf(x1; :::; xd) = �x21 � :::� x2d 2
2



3 The Moduli Space of Graph FlowsLet M be a closed, compact, smooth Riemannian manifold of dimen-sion d, and let � be an oriented, �nite, possibly non-compact, graphwith m edges parametrized by [0; 1], (�1; 0], and [0;1). We callthese edges \internal", incoming", and \outgoing" respectively. Letthese edges be indexed fE1; :::; Emg such that the �rst n are noncom-pact, and the rest are internal. Among the n noncompact edges the�rst n1 are assumed to be incoming, the next n2 = n�n1 are assumedto be outgoing. In this section we de�ne the moduli space M(�;M)of \graph 
ows".We begin by de�ning the notion of an M -structure for the graph�. The space of all such M -structures will play a signi�cant role inour constructions.De�nition 1 Fix an oriented, parameterized graph � and a closedRiemannian manifold M as above. An M -structure � on � consistsof the following:1. A real number `i associated to each internal edge Ei of �. Wethink of `i as the length of Ei, even though we allow `i � 0.2. A function fi 2 C1(M) associated to each edge Ei of �. Weassume the fi's are distinct.The space of all M -structures will be denoted S(�;M). Noticethat there is a homeomorphismS(�;M) �= Rm�n � Fm(C1(M))where Fm(X) � Xm is the con�guration space of m distinct points inX. For �xed choice of such a structure �, we are now ready to de�nethe moduli space M�(�;M) of \�-
ows in M".Let 
 : � ! M be a continuous map, smooth on the edges. Foreach internal edge Ei let 
i : [0; 1] ! M be the restriction of 
 toEi composed with the parameterization of Ei by [0; 1] given as partof the data of �. For the incoming and outgoing edges we de�ne
i : (�1; 0]!M or 
i : [0;1)!M similarly.De�nition 2 The map 
 lies in M�(�;M) if and only if for eachedge Ei it satis�es the di�erential equationd
i=dt+ `irfi = 0:3



For the noncompact edges (i.e the incoming and outgoing edges) inthis equation set `i = 1. Here rfi is the gradient vector �eld. Thespace M�(�;M) is topologized as a subspace of C0(�;M).We let M(�;M) be the union of the spaces M�(�;M) where thestructures � vary in S(�;M). The space M(�;M) is topologized sothat the natural projection map� :M(�;M)! S(�;M) (1)is continuous.Given P � S(�;M), let MP (�;M) = ��1(P ). These spaces willbe important in general, but we will restrict ourselves to studyingM�(�;M), the moduli space associated to a single structure. We willnow describe some basic properties of these moduli spaces.Again, �x a structure � 2 S(�;M). This de�nes a vector oflabeling functions of the edges. Let f = (f1; :::; fn) be the n-tupleof functions labeling the noncompact edges. Observe that every 
 2M�(�;M) has the property that its restriction to each noncompactedge 
i is a gradient 
ow line, so it therefore converges to a criticalpoint, say ai, of the function fi. Thus 
 can be associated to an n-tuple ~a = (a1; � � � ; an) where ai is a critical point of fi. For a �xedn-tuple ~a, let M�(�;M ;~a) �M�(�;M)be the subspace of those 
 2 M�(�;M) which converge on the ithedge to the critical point ai.Theorem 2 For a generic choice of structure � 2 S(�;M), themoduli spaces M�(�;M ;~a) are manifolds for every n-tuple of criti-cal points ~a. The dimension of M�(�;M ;~a) is given by the formuladim(M�(�;M ;~a)) = n1Xi=1[index(ai)]� n2Xi=1[index(an1+i)]� d � n1+d � dim(H0(�;R)) � d � dim(H1(�;R))where, as above, n1 and n2 are the number of incoming and outgoingedges of � respectively. Furthermore an orientation on the manifoldM induces orientations on the moduli spaces M�(�;M ;~a).4



To prove that a point in the solution set is a manifold point we mustshow that it possesses a neighbourhood of solutions homeomorphic toEuclidean space. As a �rst approximation we can consider only the�rst order di�erences between nearby solutions to a given solution.This amounts to linearising the non-linear ode given by the gradient
ow equation. In local coordinates around a point in the interior ofan edge of � the 
ow equation is given byd~x=dt+ g(~x)rf(~x) = 0where f is the Morse function associated to the edge of � and themetric is given byhw; vi = wT gT (~x)v; w; v 2 T~xM :Consider the nearby path given by ~x(t) + �v(t) where v(t) is a vector�eld along ~x(t). The nearby path satis�es the 
ow equation whendv(t)=dt +rg(~x)v(t)rf(~x) + g(~x)rrf(~x)v(t) = 0equivalently dv(t)=dt +A(t)v(t) = 0 (2)By rg(~x)v(t) we mean that each entry in the matrix g should be sentto its gradient vector then via its inner product with v returned toa scalar. Similarly we di�erentiate each term in the vector rf thisway. If we choose the trivialisation of the tangent bundle so that atthe critical point g = I then at the critical point A coincides with theHessian of the Morse function.Equation (2) is the linearised 
ow equation. The dimension of itsspace of solutions depends on the limiting values of A(t) along eachedge of � together with the particular choice of Morse functions. In asense that we will describe later for a generic choice of Morse functionsthe dimension of the space of solutions of (2) depends only on thelimiting values of A(t). Once we have found the space of solutionsto (2) we would like to understand if these integrate to solutions ofthe 
ow equation, thus showing that we have a manifold point in themoduli space of solutions. Both these issues require the appropriatesetup of Banach spaces. The next few sections will be devoted to thissetup. 5



4 Analysis on a graph.Given a parametrised graph �, de�neC1(�;Rn) � C0(�;Rn)to be the subspace of continuous functions that are smooth on theedges of �. At vertices the functions should have one-sided derivativesto all orders. De�ne L2(�;Rn) to be the completion of C1(�;Rn)with respect to the norm de�ned by integrating the square of thefunction along �. Similarly, de�ne W 1;2(�;Rn) using the norm givenby the sum of the L2 norm of the function with the L2 norm of itsderivative. It does not matter that the derivative is not continuous atthe vertices.Lemma 3 (Sobolev embedding.) W 1;2(�;Rn) � C0(�;Rn).Proof. Let f�ig � C1(�) be a Cauchy sequence in theW 1;2(�) norm.We will show that the convergence is uniform. First notice thatj�i(s)� �i(t)j = j Z st _�i(�)d� j� k _�ik2(s� t) 12 �M(s� t) 12where M is a bound on the W 1;2(�) norm of f�ig. This gives botha uniform bound on the constant of continuity and the maximum ofthe function on any compact subset of �. The latter bound followsfrom the former together with the uniform L2(�) bound. Thus, thesequence f�ig is equicontinuous on compact subsets so converges to acontinuous limit. 2Denote by ~� � � a compact subset obtained by cutting the externaledges of � o� a �nite distance from a vertex.Lemma 4 (Rellich.) The inclusion mapW 1;2(~�;Rn) ,! L2(~�;Rn)is compact.Proof. It follows from the proof of the previous lemma that an el-ement of W 1;2(~�) of norm 1 has constant of continuity less than 2,6



say, and supremum norm bounded by a constant depending only on~�. Thus, a sequence of such functions is equicontinuous and so has auniformly convergent subsequence. Sincek�kL2(~�) � ck�k1where c depends only on ~�, the uniformly convergent subsequenceconverges in the L2 norm as well. 24.1 The trajectory spaces.Consider R with the di�erentiable structure obtained by requiringthat h : ( R ! [�1; 1]t 7! t=p1 + t2be a di�eomorphism. Similarly, we wish to put this di�erentiablestructure on the external edges of any parametrised graph � so that� is compact.De�neP1;2�;~a = P1;2�;~a(�;M)= fexp(s) 2 C0(�;Rn)js 2W 1;2(�; h�D); h 2 C1~a (�;M)g :This is a Banach manifold modeled on W 1;2(�;Rn). In [7] it is shownthat this Banach manifold contains all of the solutions to the 
owequation that we require. It involves showing that the solutions decayrapidly enough along the non-compact edges of �.4.2 Proof of Theorem 2.Let X =W 1;2(�;Rn) ; Y = L2(�;Rn) ;S = fA 2 GL(n;R) j AT = Ag ;A = fA : �! End(Rn) j A 2 C0(Ei) for Ei 2 �; A(@�) 2 Sg :Consider F : A ! L(X ;Y) given by(FAs)(t) = _s(t) +A(t)s(t) :7



It is easy to see that F is continuous:k(FA � FB)(s)k2 = (Z jA�B)sj2dt) 12� kA�Bk1ksk2 � kA�Bk1ksk1;2hence kFA � FBkL(X ;Y) � kA�Bk1 :Before stating the next proposition we need to prove a rather stan-dard lemma.Lemma 5 Let X , Y and Z be Banach spaces and F 2 L(X ;Y),K 2 K(X ;Z), the space of compact operators and c > 0 withkxkX � c(kFxkY + kKxkZ); for all x 2 X (3)Then F is a semi-Fredholm operator.Proof. By semi-Fredholm we mean that F has �nite-dimensional ker-nel and closed range. Notice that the image under K of any boundedsequence in the kernel has a convergent subsequence which is neces-sarily Cauchy. The inequality (3) then implies that the subsequence isCauchy in X. Thus the unit ball in the kernel of F is compact, show-ing that the kernel is �nite-dimensional. Now, consider a boundedsequence fxig � X such that fFxig is Cauchy in Y. Choose a sub-sequence fxijg such that fKxijg is Cauchy in Z. It follows from (3)that fxijg is Cauchy thus converging to x, say. Since F is continuouswe have that fFxig converges to Fx. In fact, the sequence fxig canbe arranged to be bounded as follows. By the Hahn-Banach theoremthere exists a closed subspace X0 � X satisfyingkerF �X0 = X :Project fxig onto f~xig � X0. This has to be bounded since otherwisea subsequence of f~xi=k~xikg converges to x 2 X0 with kxk = 1 andFx = 0 in contradiction to the construction of X0. Thus F has closedrange. 2Proposition 6 For each A 2 A the map FA is Fredholm.8



Proof. First we will use a result whose proof can be found in [7].Given A 2 A there are constants T > 0, c(T ) > 0 such thatksk1;2 � c(T )kFAsk2 for all s 2 X ; sj~� = 0where ~� � � is the compact subset obtained by cutting � o� at theparameter T on outgoing edges and �T on incoming edges. Now,given any A 2 A, there is a Banach space Z and a K 2 K(X ;Z) withc > 0 satisfyingkxkX � c(kFAkY + kKxkZ) for all x 2 X :Let T (A) be as provided above. ThenZ~� j _s+Asj2dt � Z~�(12 j _sj2 � jAsj2)dt :Thus using jA(t) � s(t)j � kA(t)k � js(t)j and setting ~c = max~�kA(t)k,we have Z~� j _s+Asj2dt � 12 Z~� j _sj2 � ~c Z~� jsj2dt :Hence there is a c > 0 satisfyingZ~�(jsj2 + j _sj2)dt � c Z~�(jsj2 + j _s+Asj2)dt :De�ning a cut-o� function � 2 C1(�; [0; 1]) with the properties�j~� = 1; �(t) = 0 for jtj � T + 1;and _�(t) 6= 0 for jtj 2 (T; T + 1)we achieveksk1;2 = k�s+ (1� �)sk1;2 � k�sk1;2 + k(1 � �)sk1;2� c(k�sk2 + kFA(�s)k2 + kFA((1� �)s)k2)for a c > 0 large enough. That isksk1;2 � c(k�sk2 + 2k _�sk2 + k�FAsk2 + k(1� �)FAsk2)� c1(kskL2(~�) + kFAsk0) :9



By Lemma 4 the operatorK : W 1;2(�) rest! W 1;2(~�) cpt:,! L2(~�) = Zis compact so we are in the situation of Lemma 5 and FA is semi-Fredholm.In order to show that FA is Fredholm we must study its cokernel.Since L2(�) is a Hilbert space we can identify the cokernel of FA withthe orthogonal complement of its image. Thuscoker FA = fr 2 L2(�)jhr; _� +A�i = 0 for all � 2 C10 (�)g :We will study the local behaviour of an element of the cokernel. LetI � � be an open interval in the interior of an edge. Notice that A(t)is di�erentiable on I = (t0; t1), say. If r lies in the cokernel of FA thenit satis�es hr; _�+A�i = 0 for all � 2 C10 (I) :Now �(t) = R tt0 _�(�)d� soZIhr(t); _�(t)idt + ZIhAT (t)r(t); Z tt0 _�(�)d�idt = 0and by Fubini's theoremZIhr(�); _�(�)id� + ZI Z t1� hAT (t)r(t); _�(�)idtd� = 0Thus ZIhr(�)� Z �t1 AT (t)r(t)dt; _�(�)id� = 0 for all � 2 C10 (I) :Since _� has mean zero and the set of such functions is dense in L2(I)we have r(�)� Z �t1 AT (t)r(t)dt = constant :This integral equation supplies us with information about the be-haviour of r in I. For a start it says that r is absolutely continuouswith derivative equal to the integrand almost everywhere. At points10



of continuity of A the derivative of r is equal to the integrand. Fur-thermore, regularity of A gives regularity of r. This can be seen asfollows. At a point �0 of continuity of A����� 12� Z �0+��0�� AT (t)r(t)dt�AT (�0)r(�0)����� � �Mwhere � = sup(�0��;�0+�)fjA(t)j; jr(t)jg tends to zero as � tends to zerosince A(t) and r(t) are continuous at �0. This shows that the derivativeof r exists there and _r(�0) = AT (�0)r(�0) (4)If A is di�erentiable in a neighbourhood of �0 then by (4)�r(�) = ( _AT (�) +AT (�)2)r(�)in that neighbourhood, and so on. Notice that (4) impliesk _rk2 � kAk1krk2 <1 :Since r need not be continuous at the vertices it doesn't lie inW 1;2(�).Rather than de�ning C1(�) to be functions smooth on the edges of� and continuous at the vertices we could have dropped the continuitycondition at the edges. (Except for the Sobolev embedding theorem)the analysis goes through as before. We showd above that we canidentify the cokernel of FA with the kernel of F�AT where the domainconsists of W 1;2 functions not necessarily continuous at the vertices.The same proof now applies to show that the dimension of this kernelis �nite. Hence FA is Fredholm. 24.3 Index calculation.In order to calculate the index of FA we will �rst show that the indexdepends only on the asymptotic values of A. This will enable usto choose a speci�c A where the kernel and cokernel can be studieddirectly.Following Schwarz [7] de�ne� = F (A) = fFA 2 L(X ;Y) j A 2 Ag � F(X ;Y)and consider the equivalence class of operators�FA = fFB 2 � j B(@�) = A(@�)g; A 2 A :11



Lemma 7 Given any F 2 �, the class �F is contractible within �as a subspace of F(X ;Y).Proof. [7] 2Proposition 8 For A 2 A we haveindex FA = n1Xi=1 index ai � nX1=n1+1 index ai + dn1+ d � dim(H0(�;R)) � d � dim(H1(�;R))where index ai is the number of negative eigenvalues of A on the endof Ei.Proof. From Lemma 7 the index map is constant on �FA. Thuswe may assume that A is diagonal, zero on a compact subset ~� � �containing all vertices and internal edges, and constant outside of acompact subset of � that contains ~�. So for A = diag(�1(t); :::; �d(t))we have _si = ��i(t)s(t); i = 1; :::; d :We can explicitly solve this system. Since �i(t) = �ji is constant nearin�nity along Ej � � then s(t) � e��it near in�nity. Thus, s 2W 1;2(R+;R) only when �ji is negative (respectively, positive) whenEj is incoming (respectively, outgoing). Thus, if the ith eigenvaluedoes not satisfy this condition for a single j then the solution mustvanish on Ej and hence on all of �. We see then that the dimension ofthe kernel is given by the number of �i(t) with �ji > 0 for 1 � j � n1(labels for incoming edges) and �ji < 0 for n1 � j � n (labels foroutgoing edges).In the previous section we saw that an element r of the cokernelsatis�es _r �AT (t)r = 0by considering smooth functions with support away from the vertices.Now consider � 2 C10 (�) whose support lies in a neighbourhood ofthe vertex v 2 �. We have0 = Z�hr; _� +A�idt 12



= Xfi:v2Eig �iri(v)�(v) � Z�h _r; �idt+ Z�hAT r; �idt= Xfi:v2Eig �iri(v)�(v)where ri(v) is the limiting value of r along Ei and �i = 1 when Eiis incoming and �1 for outgoing. Thus at each vertex v we havePfi:v2Eig �iri(v). This means that r is free to be discontinuous up toa codimension 1 condition at each vertex.Along each edge Ej, in considering �AT we negate �ji and ri 2W 1;2(R+;R) when �ji is positive (respectively, negative) when Ej isincoming (respectively, outgoing). It is no longer true that if ri van-ishes along one edge then it vanishes on all of �. For each i we geta contribution to the cokernel from each edge Ej that is compatiblein the sense just described with �ji . The dimension of the cokernel isgiven by the number of compatible external edges minus 1 for each i.In order to calculateindex FA = dimkerFA � dimcoker FAwe will change the sign of �ji and observe the change in the index. Onan incoming edge Ei if �ji contributes to the kernel, so it is negative,then ��ji cannot contribute to the cokernel and we lose 1 from theindex. If �ji < 0 and does not contribute to the kernel then ��jicontributes to the cokernel and we again lose 1 from the index. Similararguments apply to positive �ji and outgoing edges. Thusindex FA = n1Xi=1 index ai � nX1=n1+1 index ai + constant (5)Assume there is at least one incoming edge. If �ji > 0 for all i; j thenthe kernel is trivial and the cokernel gets a contribution from eachincoming edge minus the codimension one condition from the vertices.In fact, each component of � imposes a codimension one condition. (If� consists of only outgoing edges then all positive eigenvalues will leadto a contribution of d to the kernel so in a sense contributing �d tothe cokernel. In other words we can proceed as if there is an incomingedge.) The values that a function in the cokernel takes on the interiorof the graph are completeley determined by the the exterior values13



when there are no cycles. Each cycle contributes one dimension to thecokernel. This is because the ambiguity in extending a solution fromthe exterior to the interior can be seen by subtracting two di�erentextensions, or equivalently setting the functions to be zero on theexternal edges. Then a lone cycle contributes a one-dimensional familyof functions in the cokernel obtained by �xing the (constant) valueon one internal edge and reading o� the values on the other edgesby traveling around the cycle. For more than one cycle we set thefunction to be zero on all edges except those in a particular cycle.Thusdimcoker FA = dn1 � d � dim(H0(�;R)) + d � dim(H1(�;R))and this supplies us with the constant in (5) soindex FA = n1Xi=1 index ai � nX1=n1+1 index ai + dn1+ d � dim(H0(�;R)) � d � dim(H1(�;R))and the proposition follows. 24.4 Regularity.Let S� be the submanifold of the Banach manifoldS(�;M) �= Rm�n � Fm(C2(M))obtained by requiring that the functions be Morse. In this section wewill show that 0 is a regular value of FA for a generic subset of theBanach manifold S�.Now consider the map� : S� �P1;2�;~a ! P2�;~agiven by associating to an M -structure, � its 
ow equations. Theproof that �(b)�1(0) is generically a manifold consists of four steps.1. Show that 0 is a regular value of � so Z = ��1(0) is a manifold.2. The map � : Z ! S�is Fredholm with the same index as �(�).14



3. Sard-Smale then gives us a generic set � � S� of regular valuesof �.4. Show that for a regular value � 2 � the map�(�) : P1;2�;~a ! P2�;~ahas zero as a regular value.Lemma 9 For all (�; 
) 2 Z, we have D�(�;
) is onto. In other words0 is a regular value of �.Proof. PutD� = D1 +D2 : Rm�n � C2(M)m �W 1;2(�;Rd)! L2(�;Rd) :We have shown already that the complement of the image of D2is �nite-dimensional and that functions in the complement satisfy adi�erential equation. By showing that this �nite-dimensional spacecannot be orthogonal to the image of D1 we will have shown thatD� is onto. For � 2 Rm�n � C2(M)m and r 2 R(FA)? we havehD1�; ri = d�(r) = 0. We have shown that r must be continuousalong an edge so pick a point where it does not vanish then choose �so that r� is a bump function in the neighbourhood where r does notchange sign. This shows that r must vanish there so the complementis trivial and D� is onto. 2.The other three steps are given by Proposition 2.24 in [7]. Thiscompletes the proof of Theorem 2. 2Remarks.(i) In the single Morse function case where there is an R-actionobtained by 
owing along the solutions of the gradient equation putM(a; b) =M�(�;M ; a; b)=R (6)We will call this the moduli space of gradient 
ows of f running froma to b.(ii) We are interested only in connected graphs so dim(H0(�;R)) =1. The more general formula, which follows by additivity, hides thefact that often a moduli space is empty.(iii) Orientation uses the determinant line bundle over the spaceof Fredholm operators. This might have to wait.15



5 Compacti�cation.Fix a structure � satisfying the generic property. We will now con-struct a natural compacti�cation of the space M�(�;M ;~a). To dothis we �rst recall the natural compacti�cation of the space of gra-dient 
ow lines of a Morse function converging to two �xed criticalpoints. We will refer to the space of 
ow-lines from critical point aito critical point bi by M�(ai; bi). The following is a standard resultin classical Morse theory.Proposition 10 LetM(a; b) denote the space of \piecewise 
ow lines"connecting critical points a and b. That isM(a; b) = [a=a0>a1>:::>aj=bM(a; a1)� :::�M(aj�1; b) ;where the union is taken over decreasing �nite sequences of criticalpoints. (The partial ordering is de�ned by � � � i� M(�; �) isnonempty.) Then M(a; b) is compact and contains M(a; b) as anopen dense subspace.Proof. Consider a sequence of unparametrised gradient 
ows f[
j ]gof f , de�ned on M , running between the critical points a and b. Thesquare brackets denote the fact that we are considering equivalencesclasses of parametrised gradient 
ows. Choose a point xj on each 
ow.Since M is compact there is a subsequence of fxjg that convergesto x 2 M , say. Choose parametrisations for each 
ow by putting
j(0) = xj. We drop the square brackets since we are working withparametrised 
ows. Any point on 
(t), the gradient 
ow of f satisfying
(0) = x = limj!1
j(0) is also a limit point limj!1
j(t). This isbecause if we take a path p : [0; 1] ! M satisfying p(0) = 
i(0)and p(1) = 
(t0) then the di�eomorphism de�ned by the 
ow of fproduces a continuous map F : [0; 1] � [0; t0] ! M with F (1; t) = 
and F (xi; t) = 
i(t) for some fxig. Alternatively, the gradient vector�eld rf is bounded and uniformly continuous since M is compact.Since d
j=dt = �rf the derivatives fd
j=dtg are uniformly boundedso f
jg is an equicontinuous family and thus has a continuous limit
(t). By di�erentiating rf we can get a uniform C2 bound on thef
j(t)g and thus show that 
(t) satis�es the gradient equation. It isnot necessarily true that limt!�1
(t) = a or limt!1
(t) = b. Setc = limt!�1
(t), a critical point of f .16



Lemma 11 If c 6= a then there exists a 
ow [�] that lies in the limitpoint set of the sequence f[
j ]g satisfying limt!1�(t) = a.We will assume this for the moment to prove the theorem. Applythe lemma �rst to 
(t) at c then to �(t) at c1 = limt!�1�(t) andso on. This forms a strictly increasing sequence of critical points off since M(ck+1; ck) = � if index(ck+1) � index(ck). As f has only�nitely many critical points we must have ck = a for some k. Thesame argument works in traveling down towards b. Alternatively, wecan canonically parametrise f[
j ]g by s = f(
j(t)). In this case theyeach satisfy d
j(s)=ds+rf=jrf j = 0. Using a uniform C1 bound weget a continuous limit. This gets around the use of Lemma 11. Wesee that the limit of f[
j ]g is an unparametrised piecewise 
ow. 2Proof of Lemma 11. Since c 6= a it cannot be a local maximum.This is because there is a neighbourhood of a local maximum whichlies entirely inside the unstable manifold of that critical point thusprohibiting 
(t) to lie in the limit point set of the f[
j ]g. Also, byconstruction, c is not a local minimum. Thus when we invoke theMorse lemma that expresses f in local coordinates around c we seethat there are both negative and positive coe�cients:f(x1; x2; :::; xd) = x21 � x22 � :::� x2d :Assume that the �rst l coe�cients are positive and the rest negative.We will require that the path 
(t) corresponds to x1 = 0 = x2 = ::: =xd�1. Locally, solutions to the gradient equation are of the form�(t) = (C1e�2t + C2e�2t + :::+ Cde2t) :(This assumes that the metric is Euclidean. In general by taking asmall enough neighbourhood we can get close enough to a Euclideanmetric so that the present argument works.) If we �x t and allow theCi to depend on a sequence fsjg that converges to 0 and satisfying�sj (t) = [
j ] then limj!1Ci = 0 for i 6= d and limj!1Cd is non-zero.Now choose t = t(sj) so that limj!1 t(sj) = �1 and each Cie�2tconverges, with at least one of these expressions tending to a non-zerolimit. By passing to a subsequence we can be assured of doing thissince (C1e�2t + C2e�2t + ::: + Cle�2t) lies in the compact manifoldRPl�1 and thus this converges projectively. Clearly we can choose17



t = t(sj) to decrease at the right rate to guarantee convergence in Rl,moreover in a small enough disk so that the Morse lemma still applies.Thus there is a point in the stable manifold of c that lies in thelimit point set of f[
j ]g. The gradient 
ow that passes through thispoint we will call �. 2There is a similar compacti�cation for the moduli spaces of �-
ows.Namely, letM�(�;M ;~a) =[~b M�(�;M ;~b)�M�(b1; a1)� � � � �M�(an; bn):Whether we use M�(bi; ai) or M�(ai; bi) in the above union dependson whether the ith edge is incoming or outgoing. The spaceM�(�;M ;~a)consists of �-
ows that are allowed to be piecewise 
ows on the non-compact edges. We refer to these as \piecewise �-
ows". There is anobvious way to topologize M�(�;M ;~a).Theorem 12 The space M�(�;M ;~a) is compact and contains thespace M�(�;M ;~a) as an open dense subspace.Proof. As above the non-compact edges converge to piece-wise 
ows.The internal edges remain as true 
ows since by looking at the limitof a single point on an edge we can reconstruct the limiting edge by
owing according to the prescribed equation. Since the parameterruns from 0 to 1 no critical point will be met. (Unless the entire pathis a single critical point.) Again by continuity of the limiting map ofthe graph, the limit is a map of the graph. 2We would like to be more precise about this compacti�cation. Fur-ther than describing the limit point of each sequence we can describeall sequences that converge to a given limit point. Equivalently wewill describe the subset of the moduli space given by a deleted neigh-bourhood of the points added, or the \ends" of the moduli space.For example, consider S4, CP2 and B4|di�erent compacti�ca-tions of R4 obtained by respectively adding a point, S2 and S3. Aneighbourhood of the point at in�nity in S4 is given by a ball whichintersects R4 in the complement of a ball. A neighbourhood of thesphere at in�nity in CP2 is given by a non-trivial complex line bundle18



over S2. Given a point z in S2, nearby points in R4 = C2 are pairsof complex numbers (w1; w2) lying in the complement of a ball in R4satisfying w1=w2 = z. A neighbourhood of the boundary of B4 is theproduct of S3 with an interval. A point in the complement of a ballin R4 represents a vector and it is close to that point in S3 whichdescribes the direction of the vector. These three examples give a no-tion of a \larger" compacti�cation. There are sequences in R4 thatconverge to the same point in CP2 but di�erent points in B4 whereasthe converse cannot be true. In this sense B4 is a larger compacti�-cation than CP2 and both of these are larger than S4. We will seethat the compacti�cation of the moduli space of graph 
ows is quitelarge indeed. This is re
ected by a gluing map from broken 
ows toreal 
ows leading to a uniqueness property of the ends of the modulispace.To describe the ends of the moduli space M�(�;M ;~a) we willset up the following notation. For n-tuples of critical points ~a and ~bassociated to the structure �, consider the oriented spaces of 
ow linesMi =Mfi(bi; ai) for incoming EiMi =Mfi(ai; bi) for outgoing Ei.Theorem 13 There exist \gluing" maps�~a;~b :M�(�;M ;~a)� Yai 6=biMi � [0; 1)!M�(�;M ;~b);that are orientation preserving homeomorphisms onto disjoint images.Moreover the complement of the images,M�(�;M ;~b)�[~a �~a;~bis compact.Proof. We will begin with this result for a single Morse function on agraph with no vertices. In this case the broken 
ow consists of a singleparametrised 
ow 
 2 M(�;M ; a0; a1) together with a collection ofunparametrised 
ows [
i] 2 M(ai; ai+1) where �k � i � l. Ourstrategy will be to use these 
ows to construct an approximate 
owbetween a�k and al and show that there is a true 
ow nearby.19



For a path 
 running between �; � 2M de�neE(
) = 12 Z 1�1(jd
=dt(s)j2 + jr
(s)(f)j2)ds= f(�)� f(�) + 12 Z 1�1(jd
=dt(s) +r
(s)(f)j2)dswhere the �rst expression shows that E is non-negative and the secondexpression shows that E is minimised by the gradient 
ow. For E tomake sense we must restrict the paths to satisfy R1�1 jd
=dt(s)j2ds <1. A broken 
ow yields a path with small energy|an approximate
ow. The implicit function theorem shows that there is a unique true
ow nearby. Details can be found in [7]. The same argument goesthrough for the external edges of graph 
ows. 2We will be concerned with the moduli spaces of dimension zeroand one, M0�(�;M ;~a) and M1�(�;M ;~a). These theorems tell us thatM0�(�;M ;~a) =M0�(�;M ;~a) is a �nite set of points with signs (orien-tation). Moreover if an end of one of these isolated �-
ows glues to anisolated 
ow line, then the pair forms one end of a compact intervalof �-
ows. The other end of this interval is modeled by another suchpair.6 Chain complexes.A chain complex is a sequence of abelian groupsC0 @0! C1 @1! ::: @n�2! Cn�1 @n�1! Cnsatisfying @k+1 � @k = 0. We wish to consider the the chain complexgenerated by the critical points of a Morse function on a compactmanifold.By considering the moduli space of solutions to the gradient 
owequation converging to critical points of consecutive degrees we cande�ne a boundary operator on the space of critical points graded bytheir degree. The boundary operator is de�ned by counting points20



in the moduli space. We can show that the moduli space is a zero-dimensional compact manifold which ensures that the notion of count-ing is well-de�ned. What is startling is that this operator has squarezero and thus de�nes a complex. The uniqueness in the gluing con-struction lies behind the fact that @2 = 0.Let a and b be critical points of f of index k+1 and k respectively.We have shown that M(a; b) is a zero-dimensional oriented compactmanifold. Thus it makes sense to count the points, with sign, inM(a; b). Put n(a; b) = #M(a; b) and de�ne the linear operator@a = �n(a; b)bwhere the sum is over all critical points b of index k.Lemma 14 @2 = 0 :Proof. By linearity@@a = �n(a; b)@b = �n(a; b)n(b; c)cwhere the sum is over all critical points b of index k and c of indexk�1. We will show that for �xed c the sum �n(a; b)n(b; c)c over all in-termediate critical points b vanishes. By Theorem 13 the compacti�edone-dimensional moduli space M(a; c) is a manifold with boundary.That is the boundary points, which are piecewise 
ows, each corre-spond to a unique edge. Since one-dimensional compact manifolds canonly be a �nite collection of closed intervals this means that the endscome in pairs. Thus the contributions to @2(a) come in pairs. Thisimmediately gives the vanishing of each component modulo two. 27 Cohomology Operations.Fix a generic structure � 2 S(�;M) as above. Given the Morse-Smale function fi, let C�(M;fi) be the associated Morse-Smale chaincomplex generated by the critical points, and let C�(M;fi) be the dualcochain complex.We de�ne a class q(�;M) to be an element of the complexO1�i�n1 C�(M;fi) On1+1�i�nC�(M;fi)21



in the following manner. Consider those n-tuples of critical points~a such that dim(M�(�;M ;~a)) = 0. These spaces contain a �nitenumber of oriented points which can be counted with sign (if M isoriented|otherwise this is well de�ned mod 2, and we take coe�cientsto be Z2).De�nition 3q(�;M) =X#M�(�;M ;~a)[~a] 2 O1�i�n1 C�(M;fi) On1+1�i�nC�(M;fi):Using the gluing theorem above and the de�nition of the boundaryand coboundary operators in the Morse-Smale complex, we will showthe following.Lemma 15 dq = 0:Proof. Extend the boundary operator to products as a derivation.@ : O1�i�kC�(M;fi)! O1�i�kC�(M;fi)(a1; :::; an) 7! �i(a1; :::; @i(ai); :::; ak)where @i is de�ned using fi. Then if we think of q as a mapq : O1�i�n1 C�(M;fi)! On1+1�i�nC�(M;fi) ;the requirement that dq = 0 is equivalent to the requirement that qand @ commute: @q = q@. Choose ~a = (~b;~c) so that dimM�(�;M ;~a) =1. We have divided ~a into critical points ~b corresponding to incoming
ows and ~c corresponding to outgoing 
ows. Notice that for @~b = �~bjdimM�(�;M ; (@~bj ;~c)) = 0 so q(@~b) 2 Nn1+1�i�n C�(M;fi) makessense and we can compare it with @q(~b) 2Nn1+1�i�nC�(M;fi). Theone-dimensional manifold M�(�;M ;~a) is compact with boundary soit is a �nite collection of closed intervals. Each boundary point of aninterval corresponds to a piecewise graph 
ow with only one externaledge not a true gradient 
ow. This is the key fact behind the proof.If more than one external edge were to break then the true graph 
owinside this piecewise graph 
ow would lie in a moduli space of negative22



dimension, thus contradicting its existence. These boundary piecewisegraph 
ows are paired by the interval they bound. There are threetypes of components of the one-dimensional manifold M�(�;M ;~a)and thus three types of pairings of piecewise 
ows. The �rst typeof component consists of an interval whose two ends correspond toincoming piecewise gradient 
ows. These two piecewise graph 
owscontribute 1� 1 = 0 to q(@~a). The second type of component consistsof an interval whose two ends correspond to an incoming and outgo-ing piecewise gradient 
ow, respectively. These two piecewise graph
ows contribute, respectively, 1 to q(@~a) and 1 to @q(~a). The thirdtype of component consists of an interval whose two ends correspondto outgoing piecewise gradient 
ows. These two piecewise graph 
owscontribute 1� 1 = 0 to @q(~a). Thus q(@~a) = @q(~a) and the lemma isproven. 2We shall therefore view q(�;M) as an element of the associatedhomology, q(�;M) 2 H�(M)
n1 
H�(M)
n2 :We shall now describe four basic examples of these invariants.Example 1. � =In this case M�(�;M ;~a) has dimension zero if and only if ~a = (a)is a maximum. Thus q(�;M) 2 Hd(M), and it can easily be seen tobe the fundamental class. (Coe�cients should be taken in Z2 if M isnot orientable).Example 2. � =In this caseM�(�;M ;~a) has dimension ind(a1)+ind(a2)�d, where~a = (a1; a2). Thus q(�;M) 2 �qHq(M)
Hd�q(M), which de�nes anelement in �qHom(Hq(M);Hd�q(M)). This is the Poincare dualityisomorphism, given by taking the cap product with the fundamentalclass. 23



Example 3. � =In this caseM�(�;M ;~a) has dimension ind(a1)�ind(a2)�ind(a3),where ~a = (a1; a2; a3). Thusq(�;M) 2 �r�kHk(M)
Hr(M)
Hk�r(M)and de�nes an element in �r�kHom(Hr(M) 
 Hk�r(M);Hk(M)):This is the cup product operation.Example 4. � =In this caseM�(�;M ;~a) has dimension ind(a)�d, where ~a = (a):Thus q(�;M) 2 Hd(M). It is easily seen to be the Euler class (orStiefel - Whitney class wd if M is not orientable).We end this section by discussing some basic structure propertiesof the invariants q(�;M). In particular the following results say thatthe four examples above can be used to compute the invariant for anygraph and these invariants are independent of the choice of metric andM -structure.Proposition 16 If �1 and �2 are homotopy equivalent via a ho-motopy that preserves orientations on their end, then q(�1;M) =q(�2;M).Proof. By varying the length of a single edge of � and showing theinvariance of q under this homotopy the general result follows. Alsonotice that solutions to a graph 
ow equation with one edge of zerolength are the same as solutions to the graph 
ow equation for thegraph with that edge contracted to a point.Denote by f�sg the path of M -structures where a single internaledge takes on the variable length ls. De�ne~M�s(�;M ;~a) = f~
 : [0; 1] � �!M j ~
(s; �) 2M�s(�;M ;~a)g :24



By setting up the appropriate Banach spaces we can show that fora generic choice of M -structure the path described above is regular.We �nd that ~M = ~M�s(�;M ;~a) is a smooth oriented manifold withboundary. It has dimension one greater than the dimension of theboundary componentsM0 =M�0(�;M ;~a) andM1 =M�1(�;M ;~a).In the case that ~M is a compact 1-manifold, it forms an orientedcobordism between M0 and M1. This gives an isomorphism, on thelevel of chains, between the two invariants q0 and q1 corresponding,respectively, to the zero dimensional moduli spacesM0 andM1. Thisis because a compact 1-manifold must have two endpoints. Either apoint in M0 is matched with a point in M1 or two points in M0,respectively M1, are matched with opposite orientations and thuscancel.In general ~M will not be compact. In this case the equivalence ofthe invariants occurs only at the level of homology. We will constructa chain homotopy equivalence� : O1�i�n1 C�(M;fi) On1+1�i�nC�(M;fi)! O1�i�n1C�(M;fi) On1+1�i�nC�(M;fi)where q0 � q1 = @ � �� � � @.The compactness properties of the space of solutions to the time-dependent graph 
ow equations mimic those of the time-independent
ows which we have already studied. We saw that by including piece-wise graph 
ows the moduli space became compact. In the case athand again we �nd that a the boundary of the one-dimensional modulispace consists of the zero-dimensional moduli spaces as well as piece-wise graph 
ows. If we �x an s 2 [0; 1] then the formal dimensionof Ms is zero. This, we would expect, should prohibit a sequenceof graph 
ows (and thus a boundary point of the 1-manifold) fromdegenerating to a piecewise 
ow since the piecewise 
ow will consistof a graph 
ow in a formally negative dimensional space. However,since it is the path of M -structures that is regular so there might bean s for which the M -structure is not regular, at such an s a formalnegative dimension does not obstruct the existence of a solution. Thuscompactness fails precisely at the M -structures that are not regular.(Note that the Morse functions can be chosen to be regular since weare changing only a length. Thus any broken graph 
ows can only25



contain true gradient 
ows.) De�ne� : O1�i�n1 C�(M;fi) On1+1�i�nC�(M;fi)! O1�i�n1C�(M;fi) On1+1�i�nC�(M;fi)by summing over all moduli spaces of formal dimension negative one attheM -structures that are not regular. So h�(a1; :::; an1); (an1+1; :::; an)iequals the number of solutions of the graph 
ow equations whendim(M�s(�;M ;~a)) = n1Xi=1[index(ai)]� n2Xi=1[index(an1+i)]� d � n1+d � dim(H0(�;R)) � d � dim(H1(�;R))= �1and we sum over all �s that are not regular. Strictly we need to provethat these moduli spaces consist of a �nite number of points. Reallywe need only be concerned with � de�ned on those chains that repre-sent an end of the one-dimensional moduli space de�ned above. Usingthis persepctive we can also introduce an orientation, or sign, in thede�nition of �. Then we see that q0 and q1 fail to be the same whenthese new endpoints are introduced. We have q0� q1 = @ ���� � @.This requires a gluing theorem to show that each end is used onlyonce. A codimension argument should show that the moduli spacesof formal dimension less than negative one are never non-empty for agood choice of path. 2Now let �1 and �2 be oriented graphs. Let �i#j1;2 be the orientedgraph obtained by gluing incoming edge i of �1 to outgoing edge j of�2.Proposition 17q(�i#j1;2 ;M) = q(�1;M)3i;jq(�2;M);where 3i;j denotes tensorial contraction of cohomology in the ith co-ordinate with homology in the jth coordinate.Proof. We mean to combine the respective M -structures in the ob-vious way|assume that the Morse functions associated to the glued26



edges are the same. The length we assign to this edge is arbitrary. ByProposition 16 this does not a�ect the invariant. The reason that wehave not included theM -structures in the statement of the propositionis that we will see in Theorem 21 (which uses the conclusion of thisproposition) that the invariant associated to the graph is independentof the choice of M -structure.We �rst notice that for large enough l, the length of the internaledge of �i#j1;2 obtained by the gluing, there is a one-to-one correspon-dence between solutions of the graph 
ow equation for �i#j and pairsof solutions for the graphs �1 and �2 with common critical point atthe ith and jth edges, respectively. But this exactly describes the de-sired contraction. By the homotopy invariance proven above we canreplace a large l with any l. 2Corollary 18 Changing the orientation of a non-compact edge in-duces the Poincare duality isomorphism on the relevent tensor coordi-nate of the invariant q(�;M).Proof. Let � be a given graph with outgoing edge E. Glue thegraph of Example 2 to � at E to get �0. By Proposition 17 q�0 is thecomposition of q� with the Poincare duality isomorphism. Contractthe internal glued edge to a point. By Proposition 16 this does notchange the invariant. 2Proposition 19 The graph � consisting of an incoming edge a vertex,an outgoing edge and no other edges de�nes a canonical isomorphismbetween Morse homologies for di�erent Morse functions.Proof. Given two Morse functions f and g, we will show that themap q� : Hf� ! Hg�is an isomorphism by constructing an inverse. Use the same graph toget q� : Hg� ! Hf� :By Proposition 17 the compositionq� � q� : Hf� ! Hf�coincides with the map q�0 : Hf� ! Hf�27



where �0 is the graph obtained by gluing the outgoing edge of one copyof � with the incoming edge of another copy. By Proposition 16 wecan homotope the length of the internal edge of �0 to zero and removeit so we are left with � once more but now the same Morse functionf is associated to each edge. Clearly this map is the identity. 2Corollary 20 The Morse homology Hf� (M) of a generic Morse func-tion f : M ! R is isomorphic to the simplicial homology of M ,H�(M).Proof. By Proposition 19 we need only con�rm Hf� (M) �= H�(M)for a single generic Morse function f . Triangulate M and choose f tohave a critical point of index(k) in the centre of each k-simplex and noother critical points. Make the choice also so that there is exactly onegradient 
ow line from each centre of a simplex to the centre of eachface of the simplex. It is easy to see that such an f exists and thatit satis�es the Morse-Smale condition of transversality. The Morsecomplex based on critical points and boundary operator supplied bygradient 
ows coincides precisely with the cell complex based on sim-plices and the boundary operator. Thus the homologies coincide. 2The following says that q(�;M) is indeed an invariant of M .Theorem 21 The homology class q(�;M) does not depend on thechoice of structure � 2 S(�;M).Proof. If f is a Morse function associated to the external edge Eof � then we can replace it by the Morse function g by �rst gluingthe graph of Proposition 19 to � at E. We then contract the internalglued edge to a point. By Propositions 16, 17 and 19 the new invariantis related to the old by the isomorphism of Proposition 19. One byone we can change the Morse functions associated to external edgesin this way to pass from one M -structure to another. For the internaledges we simply use the homotopy invariance result to contract theseto points and thus demonstrating independence. 2Proposition 22 The homology class q(�;M) does not depend on thechoice of metric g.Proof. Since the space of metrics is connected we can �nd curvesconnecting any two generic metrics that induce chain homotopy equiv-alences that preserve the q(�;M)'s.28



For a path of metrics fgsg, de�ne~M�(�;M; gs;~a) = f~
 : [0; 1] � �!M j ~
(s; �) 2M�(�;M; gs;~a)gwhere the latter moduli space is taken with respect to the �xed metricgs. As with the argument in Proposition 16 we wish to sum over all thebad metrics to get a chain homotopy equivalence. There is a furthercomplication here in that the boundary operator changes as the metricchanges. Thus �rst we must show that a path of metrics inducesan isomorphism between the di�erent homologies obtained from thedi�erent boundary operators. In the case of varying M -structure theMorse functions associated to external edges remained Morse-Smale.Since this is not the case here we have two types of \irregular" graph
ows to consider. These are broken 
ows where either the gradient
ow or the graph 
ow lies in a formally negative dimensional space.In Proposition 16 the gradient 
ow had to be true. There is muchanalysis needed for this argument. 28 Graphs and Symmetry.The cohomology operations de�ned by considering solutions to manygradient equations with the same initial data can be thought of asarising from a graph where each edge of a graph is a gradient 
owof a Morse function. We can exploit any symmetries of the graph toobtain higher order cohomology operations.Examples.(i) Stiefel-Whitney classes.(ii) Steenrod squares.9 Current Research.More generally than using the critical points of a Morse function todescribe homology and its algebraic structures we can add other ob-jects in the set of critical points to obtain further structure. On asymplectic manifold we can include periodic orbits of a family of sym-plectomorphisms with critical points of Hamiltonians and obtain the29



\quantum" cohomology of the symplectic manifold. This is isomorphicto the usual homology as a vector space though not as an algebra.10 PhysicsIn [8] Witten treats the space of di�erential forms on a Riemannianmanifold as a model for supersymmetric quantum mechanics. In thissection we will follow his treatment of Morse theory in this contextand generalise it to the case of a multiplet of Morse functions.Acting on forms we have the operatorsQ1 = d+ d�; Q2 = i(d� d�); H = dd� + d�dso H is the Laplacian. These satisfy the supersymmetry relations.Q21 = Q22 = H; Q1Q2 +Q2Q1 = 0 (7)We interpret p-forms as being bosonic or fermionic depending onwhether p is even or odd so the Qi are supersymmetry operators whichswap bosons and fermions.Let f = (f1; :::; fn) be an n-tuple of Morse functions over the Rie-mannian manifold M and let t = (t1; :::; tn) be a vector in Rn. Putdt = e�f �tdef �t; d�t = e�f �td�ef �tand consider the operatorsQ1t = dt + d�t; Q2t = i(dt � d�t); Ht = dtd�t + d�tdt :These still satisfy the algebra (7) for any t.Witten showed that for each critical point of each Morse function fithere is a corresponding di�erential form. This is the di�erential formwhose energy remains �nite as ti is sent to in�nity. Using this corre-spondence we will show the relationship between the algebra inducedby the graph moduli spaces and the algebra of di�erential forms.The gradient 
ow lines which de�ne the boundary operator for theMorse complex have two physical interpretations. One is that theyminimise the action of the Lagrangian and the other is that they con-tribute most to certain s-matrix elements. This latter interpretation,the WKB approximation, should generalise to the case of graphs andmultiplets of Morse functions. 30



A Finite-dimensional methods.In this appendix we will describe the more intuitive �nite-dimensionalapproach to proving the results. First we will start with a descriptionof the stable and unstable manifolds a Morse function associates toits critical points.De�ne the stable manifold of a critical point a of f to be the setof points Wsa � M which lie on a 
ow line of f that converges to a.Similarly, the unstable manifold of a is the set of points Wua � Mthat lie on a 
ow line of f that originates at a or converges to a fornegative time.Proposition 23 The stable and unstable manifolds of a critical pointare di�eomorphic to disks.Wsa �= Dd�index(a); Wua �= Dindex(a) :Proof. We will consider only the unstable manifold since by negat-ing the Morse function we can include the stable manifold. As inSection 4.1 de�ne the Banach manifoldP1;2a = fexp(s) 2 C0([0;1];Rn) j s 2W 1;2([0;1); h�D);h 2 C1([0;1];M); h(1) = ag :Then as before we �nd that FA is a Fredholm operator with indexgiven by the index of the critical point a. The boundary condition onelements of the cokernel now ensures that FA is surjective. It followsthat Wua is a manifold of dimension index a. In particular, a 2 Wua isa manifold point. using the R-action onWua given by reparametrising,we see that Wua �= Dindex(a). 2Before describing the alternative approach to the proof of Theo-rem 2 we shall give a short description of the Morse theory of a singlefunction f . In this case the graph � has no vertices and one edgewhich is both incoming and outgoing. For the critical points a andb of f the theorem states that M�(�;M ; a; b) is a manifold and itsdimension is given by index(a)� index(b).A 
ow of f is determined uniquely by a point on the 
ow so thespaceM�(�;M ; a; b) is the subset ofM given by the intersection of theunstable manifold of a, Wua , with the stable manifold of b, Wsb . When31



these two submanifolds are transverse their intersection is a manifoldof dimension index(a)� index(b). This transversality condition knownas the \Morse-Smale transversality property" is the generic conditionthat we will require in the theorem.The tangent space at a critical point a possesses a subspace Vacorresponding to the unstable manifold of that point. To orient themoduli spaces we �rst choose orientations, at each critical point, foreach of these vector spaces. Using f we can compare these orienta-tions. We choose the orientation on the moduli space M(a; b) whichcombines with the orientation of Vb to give the orientation of Va. Ouruse of these moduli spaces will be independent of the choices of orien-tation at each critical point.Proof of Theorem 2. The argument we give is intuitive thoughnot open to generalisation. It uses the fact that we can identify themoduli space as a submanifold of M .First consider a graph without internal edges. Since the graphis connected we may assume that there is exactly one vertex. Thecase of no vertices is the standard Morse theory described above. Byputting a Riemannian metric on M , the vertex uniquely determinesthe graph since for each Morse function there is a unique gradient 
owcontaining the vertex. The vertex is characterised by the fact that itlies inside the intersection of the stable and unstable manifolds of thecritical points. Since the intersection of these manifolds is transversethen it is a manifold with the stated dimension.The gradient 
ow of a Morse function produces di�eomorphisms onthe manifold. If we introduce an internal edge to a graph then ratherthan considering the intersection of stable and unstable manifolds weconsider the intersection of di�eomorphic copies of stable and unstablemanifolds.We require that the di�eomorphic copies be transverse so the in-tersection, and thus the moduli space of graphs, is a manifold. Thedimension remains the same unless the new edge introduces a cycle.In this case the moduli space is cut down by dimension d. We can seethis as follows. NowM�(�;M ;~a) =Wsa1�Wsa2�:::�Wuak�:::�F(Wsam)�:::\�(M) �Mn+h1where F is a di�eomorphism corresponding to an edge of the graph,�(M) is the diagonal in Mn+h1 and h1 = dim(H1(�;R)). The prod-32



uct in this expression has dimensionn1Xi=1[index(ai)]� n2Xi=1[index(an1+i)] + d � n2and since �(M) has codimension d + h1 � 1 and the intersection istransverse the theorem follows. The key new feature introduced bya cycle is that the product involves graphs of di�eomorphisms whichhave relatively small dimension, i.e. dimU �F(U) = 2dimU whereasdim�F = dimU where �F denotes the graph of FjU . The orientationis induced by the orientation on Mn+h1 . 2Remark. In this proof, the generic condition on the structure� is that the labeling functions fi are Morse, and satisfy the Morse-Smale transversality properties|the stable and unstable manifolds ofthe critical points all intersect transversally. Also we require thatstable and unstable manifolds for di�erent Morse functions intersecttransversally and that di�eomorphisms induced by gradient 
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