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Abstract

We give a direct proof of Atiyah’s theorem relating instantons over the
four-sphere with holomorphic maps from the two-sphere to the loop group.
Our approach uses the non-linear heat flow equation for Hermitian metrics
as used in the study of Kahler manifolds. The proof generalises immedi-
ately to a larger class of four-manifolds.

AMS classification: 81T13, 53C07, 55P10

1 Introduction.

It is interesting to both mathematicians and physicists to relate gauge-
theoretic constructions over four-manifolds to spaces of holomorphic curves
into related manifolds. In physical terms, this amounts to relating the
instantons of four-dimensional and two-dimensional theories. One of the
earliest results of this type is a theorem of Atiyah that relates Yang-Mills
instantons over the four-sphere to holomorphic maps of the two-sphere to
the loop group [2].

Theorem 1 (Atiyah) For any classical group G and positive integer k,
the following two spaces are diffeomorphic:

(1) the parameter space of Yang-Mills k-instantons over S* with group
G, modulo based gauge transformations,

(2) the parameter space of all based holomorphic maps S?> — QG of
degree k.

The purpose of this paper is to describe a new isomorphism between the
spaces (1) and (2) of this theorem. Under any such isomorphism, there are
interesting relationships between the symmetries of the respective spaces.
A description of the particular symmetries that feature in the different
isomorphisms would take us too far from the aims of this paper. We will
instead settle for a brief comparison confined to this paragraph. In both
the isomorphism defined by Atiyah and the one described here, the circular
symmetry given by rotating (around infinity) the $? in based holomorphic



maps S2 — QG induces the same symmetry on the space of instantons
as the circle of isometries of S* given by rotating the first coordinate of
C?2 c S*. An extension of the result described in this paper to include
all holomorphic maps S? — QG allows the circle symmetry of S? to be
enlarged to SO(3). (The space of unbased holomorphic maps S? — QG
of fixed degree is an infinite dimensional space that fibres over the loop
group with fibres isomorphic to the finite-dimensional instanton spaces.)
The space of conformal symmetries of the unit disk {|z| < 1} that fix z = 1
act on the boundary circle and hence on the loop group. This induces an
action on the space of holomorphic maps S? — QG which corresponds
via the isomorphism of this paper to an action on the space of instantons
induced from a family of conformal transformations of S*. Using Atiyah’s
isomorphism the two previous examples of symmetries do not arise from
conformal transformations of S*. Instead, Atiyah’s isomorphism gives rise
to other symmetry comparisons, including an interesting involution on the
space of holomorphic maps S? — QG, induced from the involution on S*
obtained by swapping coordinates in C? C S*. For the analogous study of
a new isomorphism of the moduli space of monopoles with rational maps
and the interesting symmetries that arise see [20, 12, 13].

Atiyah’s proof of his theorem relies on algebraic geometry which uses
the special form of the twistor space of the four-sphere. One can view this
paper as presenting an alternative proof of Atiyah’s theorem more in line
with the direct methods used by Dostoglou and Salamon in their proof of a
relationship between the instantons over a large class of topologically more
interesting four-manifolds and pseudo-holomorphic curves inside particular
Kahler manifolds [9, 10]. We essentially flow directly from the holomorphic
map into the loop group to the instanton over the four-sphere. This method
has the advantage that it generalises to a larger class of four-manifolds and
loop groups. It also fits in with the homotopy theorists’ intuition regarding
the respective configuration spaces.

The map f : S? — QU (n) is holomorphic when f~'9;f extends to a
holomorphic map of the disk to gl(n,C) for each w € S%. Put 7 equal
to this extension. Over S? x D = {(w,2) = (u + v,z + iy)} define the
connection

Ay =ndw — 7" dw (1)

so Ay is flat on each {w} x D. Furthermore,

[0, 03] = 10", 9;]
[0;,0,1=0

which resembles the anti-self-dual equations with respect to the product
Kahler metric on S? x D:

[0}, 0, = 103, 9;]

02,01 = ~10,, 971 (3)
’lt2 ’1)2
[0, 0,7 = (Fatta) 104, 0,1



where we are using the round metric and the hyperbolic metric on S? and
D respectively. It so happens that S? x D = §* — S' and the product
metric is conformally equivalent to the round metric on $*. That means
that (2) also resembles the anti-self-dual equations over S*. Notice that if
we change the product metric non-conformally so that the area of the two-
sphere goes to infinity, or equivalently so that the area of the disk goes to
zero, then the third of the ASD equations tends to the flat third condition
of (2). See the third remark below.

Atiyah remarked that his proof, which uses a result of Donaldson [6],
merely gives existence without a direct means of associating an instanton
to a holomorphic map. In [7], Donaldson suggested that there ought to
be some type of adiabatic limit proof that avoids Atiyah’s roundabout
route. The following theorem addresses these two comments and gives an
alternative proof of Atiyah’s theorem.

Theorem 2 For each based holomorphic map f : S? — QU(n), there
exists a unique gauge equivalence class of anti-self-dual connections on a
framed U(n)-bundle over S* and a canonical representative A that is in
some sense close to Ay. This correspondence defines a diffeomorphism
between the respective moduli spaces.

Remarks. (i) The sense in which the connections are close will be made
clear later. We will not actually prove that the connections are close, rather
it will be sufficient to prove that Hermitian metrics associated to the con-
nections are uniformly close. The precise estimate is given in Lemma 4.7.

(ii) The techniques in this paper generalise to any compact group. For
the orthogonal and symplectic groups, we can deduce the corresponding
result from the unitary case, rather than using the more general construc-
tion. This is because, as subgroups of U(n), the extra structure determined
by O(n) and Sp(n) is quite explicit. The objects we use inherit the extra
structure by their uniqueness properties.

(iii) We can think of the equations (2) as describing the anti-self-dual
equations with respect to a metric that degenerates in the disk factor.
Theorem 2 essentially describes the limit of the moduli space of instantons
as we stretch the metric on S* so that the area of the disk goes to zero.

(iv) The connections invariant under the natural circle action on S*
can be identified with hyperbolic monopoles. The results in this paper
generalise some parts of [13, 14].

The novelty of the decomposition §* = 8' x B3 U §? x D? rather than
the more usual picture of S* as CP? with a divisor collapsed, allows us to
generalise the result. We can replace the loop group and S* in Theorem 2
respectively by LGL(n, C)/L{:GL(n,C) and Xy = S x B?US? x % for a
Riemann surface ¥ with ¥ = S'. Precise definitions are given in Section 5.



Theorem 3 The moduli space of instantons on a framed U(n)-bundle over
Xy, is diffeomorphic to the space of based holomorphic maps from S? to
LGL(n,C)/L{GL(n,C).

2 Metrics on the four-sphere.

In order to define a global metric over S* we shall use the identification
s'~HP' = H?/H*

where the non-zero quaternions H* act on the right of H?. We can cover
HP' with two affine complex coordinate patches

{(@Dlg=a+0bj}U{(L,¢ "¢~ = A+ Bj} .
The round metric is then given by

4s2 — Mdada +dbdb) _ 4(dAdA + dBdB)
(L+fal?+ (6122 (L4 [AP+[BP)?
Consider S2, ¢ HP' given by {b = 0} and S} ¢ HP' given by {a = 0, |b| =
1}. We have notated these two submanifolds with subscripts since we will
refer to them again. The open submanifold S* — S} can be identified with
a trivial disk bundle over S%. We would prefer to work in the coordinate
system that parametrises this disk bundle. Thus, S*— S} = {(w, z)} where
w € C (and w™! € C) parametrises S2 and {z € C | |z| < 1} parametrises
the disk fibres. We can parametrise all of S* by including the over-defined

coordinate {|z| = 1}. With respect to this coordinate system the round
metric is given by
e (1=l ? 4dwdw 4dzdz
S\ A [w)? (42
We will instead work with the conformally equivalent metric
4dwd ddzd
ds* = — UQ) 7 T : ZQ 2 (4)
(T +|w?)? (1 =2

which is the product of the round metric on S2 with the hyperbolic metric
on the disk. In particular, it is a Kahler metric on S? x D.

3 Loop group.

Let E be a framed U(n)-bundle over S$* with ¢y(E) — 5¢1(E)? = k. Let A
be a smooth unitary connection on £. We will show how to associate to
A a smooth map from S? to the loop group, QU (n).

Fix w € $? and consider the associated fibre, D,,. Over D,,, A defines
a holomorphic structure on E. Choose the basepoint over which we frame
E to lie on the S} C S* that gives the common boundary to all of the
disks.



Proposition 3.1 There is a unique frame g, of E over D, satisfying (i)
02 g = 0; (ii) gy is unitary on OD.,,; (iii) g, matches the framing at the
basepoint. Furthermore, for U C S?, gy, is a frame for E over U x D which
18 smooth in w.

This is just a restatement of the factorization theorem for loop groups as
observed by Donaldson [7].

Theorem 3.2 ([17]) Any loop v € LGL(n,C) can be factorized uniquely

Y=Y Y+

with v, € QU(n) and vy € LTGL(n,C), those loops that are boundary
values of holomorphic maps from the disk to GL(n,C). In fact the product
map

QU (n) x LYGL(n,C) = LGL(n, C) (5)
is a diffeomorphism. O

Proof of Proposition 3.1. Choose a frame g of E over U x D satisfying
8;4,6 = 0. That we can do this so that § is smooth in w is proven in
[8]. Also, choose a unitary frame of F along Si C S that agrees with
the framing at the basepoint. Over each disk D,,, Theorem 3.2 enables
us to find a unique 74 (w) that maps D,, holomorphically to GL(n,C)
so that g = gy, is unitary on S} = 9D,, and agrees with the frame at
the basepoint. In fact, since (5) is a diffeomorphism, when restricted to
S} = 0D, 4+ is smooth in w. Since v, (w) is holomorphic in z there is an
exact expression for its values on the interior of D,, via a Cauchy integral
formula. It follows that v, is smooth in w over all of U x D. Since g was
chosen to be smooth in w it follows that g = g4 is also. O

Equip the space of gauge equivalence classes of connections on a bundle
E over S§*, Bga with the smooth topology and likewise for the space of
smooth maps from the two-sphere to the loop group, Map*(S?, QU (n)).

Corollary 3.3 There is a smooth map
F : Bgs — Map*(S*,QU(n)) .

Proof. Given a smooth connection A on E, on each disk in S? x D =
S* — S} restrict the g supplied by Proposition 3.1 to the boundary S} to get
S? unitary frames there. Use the frame defined by the disk corresponding
to oo € S% as a background frame. Comparing this to the other frames
we get a smooth map

F(A):S8* = QU(n)

that sends oo to the constant loop I. Furthermore, the factorisation (5)
which gives the smoothness of F(A) also implies that F is smooth as a
map on Bga. O



Corollary 3.4 If A satisfies the anti-self-dual equations then F(A) is a
holomorphic map.

Proof. We need only two of the three ASD equations to prove this. in
complex coordinates they can be combined to give

0,071 =0 (6)

wr Tz

Associate to A the frame g from Proposition 3.1. Since g = 0 it follows
from (6) that 02(92g) = 0 or equivalently that 92g = gn for a map
n: 5% x D — GL(n,C) that is holomorphic in z. Now choose a unitary
gauge for E in a neighbourhood of S} C S* that extends the backgound
frame on S} determined by A over D,. The map u = F(A) is simply
the restriction of g to each dD,, with respect to the background frame.
With respect to this frame 92 = 9, simply due to the choice of coordinate
system. Thus we have

u 'Opu : S* — LTgl(n,C) .

But this is exactly the statement that u = F(A) is a holomorphic map into
the loop group. We can see this by looking closely at the complex structure
J on QU (n). For £ € Qu(n), J¢ = ié(mod LT gl(n,C)) and in fact this de-
fines J since each element of Lgl(n, C) has a unique unitary representative
in its LTgl(n, C) coset. Put w = x + iy, then u is holomorphic when

0 = u '(Qu/dx + JOu/dy)
= o (Ou/0z + idu/dy) (mod LT gl(n,C)) . O

Remark. In the next section we will show that F defines a diffeomorphism
from the space of instantons to the space of holomorphic maps. This fact
together with the proof of the Atiyah-Jones conjecture and an analogue of
the Atiyah-Jones conjecture for maps into the loop group implies that F
defined in Corollary 3.3 is a homotopy equivalence.

4 Existence and uniqueness.

In this section we will show that when restricted to Mga, gauge equiv-
alence classes of anti-self-dual connections over S%, the map F defines a
diffeomorphism

F: Mgs — Hol*(S%,QU(n)) .
Associate to any instanton A the pair (H,n) consisting of a metric
H = ¢" g using the frame ¢ supplied by Proposition 3.1 and : $? x D —
gl(n, C), the holomorphic (in z) extension of the map F(A) 10;F(A) :
S% — L*gl(n,C). By construction H = I on S} C §*. We can retrieve A
from (H,n) since with respect to the gauge defined by ¢, we get

Ag=mn, A; =0,A, =H '9,H—H '""H, A,=H '9,H (7)



Notice that gauge equivalent connections produce the same H. Associate
to the pair (H,n) the Hermitian-Yang-Mills tensor

B(H,n) = (1—1[2)?0:(H 0. H) + (1 + |w|*)*{0s(H "0, H)
—0p(H "7 H) — dyn + [n.H '0,H — H 'n" H]} .

This vanishes when (H,7) comes from an instanton. Later we will study
more general pairs (H,n) and attempt to solve the equation B(H,n) = 0.
This is elliptic in H away from S} C S%.

4.1 Uniqueness.

Proposition 4.1 Two instantons A1 and As are gauge equivalent if and
only if F(Ar) = F(A2).

Proof. Associate to each instanton the pair (H;,n) (by assumption 7 is
common to both). Set h = H;'H,. This is an endomorphism of the
bundle over S*. So far we have been working gauge invariantly. In order
to compare A; and A we will choose the gauge defined by Proposition 3.1.
Thus we identify g; and go. With respect to this gauge we have

042 = oM 9 = oM L 19N

where we have separated the connections respectively into their (1,0) and
(0,1) parts. This expression is gauge-invariant and in fact it holds in all
gauges. (We have merely used g; and ¢, to specify isomorphisms with the
bundle E.) Since the connections are anti-self-dual we have

Fyu, = 0% 0 0% + 0% 0 0% = Fy, = Fa, + 0 (h7'0"h) .
Thus from B(H;,n) = 0 we get
0= (1 —|2[)?02" ("0 h) + (1 + [w|*)*{05" (b~ D" h) (8)
Lemma 4.2 The function tr(h) is subharmonic.
Proof. With respect to the metric in (4), the Laplacian is given by
A =—(1—12/*)%0;0, — (1 4 |w|*)?*0p0y
)

—Atr(h) = (1—=2))%r {0 h) (K10 h) + ho2 (W~ 921 b))
+(1+ [w)Hr {2 h) (h 02 h) + RO (W10 )}

which we will show to be non-negative. The two right terms vanish by
(8). In order to show that the other two terms are non-negative we will
choose a gauge in which 941 and 041 are adjoints. Use the g; constructed
in Proposition 3.1 to transform from the holomorphic frame to a unitary



frame. With respect to this frame h = (g ) "' Hyg ™! which is self-adjoint.
In fact, since we have the freedom to replace g with ug and thus h with
uhu~! where u is a constant unitary transformation, at any point we can
arrange that h is diagonal. It has positive eigenvalues since Hs is a metric.
So each term is of the form #r(M7ThM) > 0 and the lemma follows. 0

By reversing the roles of H; and H, we see that tr(h~!) is also sub-
harmonic. Put o(h) = tr(h) + tr(h~') — 2n. Since the eigenvalues of h
are all positive, then o(h) > 0 everywhere. We also know that o(h) is
subharmonic and on the boundary o(h) = 0. By the maximum principle
o(h) <0soo(h)=0and h = 1. Thus H; = H, and A; is gauge equivalent
to As. |

4.2 The heat flow.

We will now prove that every based holomorphic map from the two-sphere
to the loop group comes from an instanton over the four-sphere. In order
to do this we will prove the existence theorems for instantons in a standard
way using a heat flow. We closely follow the approach used in [12] to prove
a similar theorem for Euclidean monopoles. Our proof of the long time
existence of the flow on a subset of S* is equivalent to the proof in [19].
It is necessary that we go through this proof in order to get estimates
to extend to S* and since our proof will be necessary when we generalise
to other Riemann surfaces. All of these methods are really variations on
Donaldson’s proof of the existence of anti-self-dual connections on stable
holomorphic bundles over a Kahler surface [5].

Away from |z| = 1, the Hermitian-Yang-Mills tensor B(H,n) is elliptic
in H. We wish to find a solution of the equation B(H,n) = 0 and since 7
encodes the holomorphic map we will be able to retrieve an ASD connection
associated to that map. A solution of the heat flow equation

H '9H/0t = B(H,n), H(w,z,0) =1 (9)

will converge to the required solution as ¢ — co. Later we will explain the
significance of the fact that we can choose the constant metric I for an
initial condition.

It is disappointing that we have not been able to solve (9) on the
compact manifold S* without cutting it open and solving a sequence of
boundary value problems. It seems that the metrics we use are not C*
or W32 as the existing methods require. Probably the metrics are W?P
which makes it seem likely that there is a way around the boundary-value
problem.

A word on existent methods. The round metric on §* — S} is con-
formally equivalent to an infinite volume Kahler metric on $? x D. The



H we use differs from the Hermitian-Yang-Mills H by a complex gauge
transformation, H = p” Hp where p: U x D — GL(n,C), U C S? satisfies

Ozp =0, =Ogp-p=1 .

The existence of p follows from the existence of a universal holomorphic
bundle over QU (n) x S? which requires explicit knowledge of the cell de-
composition of the loop group [17]. By restricting to a compact subset of
5% x D we can use Simpson’s results [19] to get long-time existence of the
heat flow for H. We would still need to go through the proof to get precise
estimates of how far the metric flows from the initial choice in order to
extend to S* as well as interpret the result as in Section 6. For a more
general Riemann surface, we do not have the existence of the complex
gauge transformation p that relates the metrics. For this reason we do
not use Simpson’s results. Still, once we have the anti-self-dual connection
then we can produce the required complex gauge transformation so the
two methods are related. Essentially a corollary of our result is a theo-
rem about holomorphic disks in loop groups related to general Riemann
surfaces. In particular we get an alternative proof of the existence of the
universal holomorphic bundle over the loop group.
Put
X ={(w,2z) € S* x D | |z| <€}

so the X, exhaust S? x D as € — 1.

Proposition 4.3 Over each X, there is a unique solution, Hf, of the
boundary value problem

H'9H/ot = B(H,n)
H(w,z,0) =1 (10)
]J‘a){F = I

defined for all t and converging to a smooth metric HS, that satisfies
B(HS,,n) =0.

Proof. Since we have fixed X, for the moment we will omit the super-
script in Hf during this proof. Short-time existence of a solution of (10)
is automatic since B(H,n) is elliptic in H and we have Dirichlet boundary
conditions. In order to extend this to long-time existence we will take the
approach given by Donaldson [5] and extended by Simpson [19] and show
that a solution on [0, T') gives a limit at T which is a good initial condition
to start the flow again. The lemmas we need to prove on the way use the
details of our particular case and allow us to proceed with Donaldson’s
proof.

Lemma 4.4 If Hi and Hy are two solutions of the heat equation then
oo+ Ao <0 (11)

for o =tr(H; 'Hy) +tr(H Hy ") — 2n.

9



Proof. We can generalise the proof of Proposition 4.1 as follows. So far
we have shown that

Now,
tr(0ih) = tr(hHy '0,Hy) — tr(H, '0;H1h)

so from the flow equation we get dtr(h) + Atr(h) < 0 and by reversing
the roles of Hy and Hs, (11) follows. O

Apply (11) to H; and Hyy,, the flow at two times. Since they obey
the same boundary conditions on X, o vanishes on the boundary. By the
maximum principle sup y_o is a non-increasing function of #. By continuity,
for any p > 0 there exists a ¢ small enough so that

supo(Hy, Hy) < p

€

for 0 < t,t' < 4. It follows from the non-increasing property of o that

supo(Hy, Hy) < p

for T — 9§ < t,t' < T. Since p can be made arbitrarily small, H; is a
Cauchy sequence in the C° norm as ¢t — T'. The metrics take their values
in a complete metric space (described below) and the function o acts like
the metric so there is a continuous limit Hp of the sequence. Notice also
that (11) and the maximum principle show that this short-time solution
to the heat flow equation is unique.

A metric H takes its values in the space GL(n, C)/U(n) which comes
equipped with the complete metric d which is given locally by tr(H '6H)2.
Thus

d(H (w, 2,1), H(w, ,0)) = /Ot|B(Hs,n)|ds

where |B(Hyg,n)|? = tr(B*B) and the adjoint is taken with respect to the
metric Hy. Notice that B* = B so |B(Hy,n)|? = tr(B?).

Lemma 4.5 If H; is a solution of the heat equation then
(d/dt + A)|B(Hy,n)| <0 whenever |B| > 0 (12)

Proof. First notice that it is only 94, the holomorphic part of the con-
nection (7), that depends on ¢, so

O.B(H.n) = (1 - |2*)20]((92) + (1 + |wl*)?05(91(9))
and since 0;(04) = 04(H 10, H) we have

OB(H,n) = {(1—12/%%080 + (1 + |w|*)?0,,0, }(H 'O, H)

w W

= {(1=[21)?0'0 + (1 + |w]*)? 0,0, } B(H, n) .

10



This last expression looks quite like the Laplacian and in fact

|BI? = 0yr(B?) = 2tr(Bo;B)
= 2r{(1— |2*)?B20} + (1 + |w|*)?BaLd, } B
= —Atr(B?) —2(1 — |2*)%r (02 BO2 B)
—2(1 + |w|?)*tr(02 B2 B)

S0
21B|(0c + A)B| = (9 + MBI +2(1 — |2[)*(10:] BII* + 0] BI|*)
+2(1 + [w]*)*(|0w |B|* + 0| BIIP)
is non-positive by Kato’s inequality |0;|f|| < |02 f]. O

It follows from (12) and the maximum principle that if there is a
function f(w,z,t) defined on X, x R that satisfies (0; + A)f = 0 and
|Bo| = |B(I,n)| < f(w, 2,0) then B(H,n)| < f(w,z,t) for all t.

Lemma 4.6 Since 1 is the holomorphic extension of u='0gu, for a given
holomorphic map u : S? — QU(n), there exists a constant M such that
|B(I,n)] < M(1—|z|) on §? x D.

Proof. The map
B(I.n) = =(1+ [w*)*(Qun + 0ant” + [n,7"])

is continuous on S? x D. (Notice that it is invariant under the change
w +— w~'.) Thus, if we can show that B(I,n)/(1 — |z|) is continuous on
S? x D then it must be bounded since its domain is a compact set. Away
from |z| = 1 this is clear. At |z| =1, B(I,n) = 0 since n = u~'0pu there
s0 Oyn + 0pn’ + [n,7'] is the curvature of a flat connection and hence 0.
Thus, a continuous limit of B(I,7n)/(1 — |z|) as |z|] — 1 is the same as a
continuous derivative 9, B(I,n) at |z| = 1. Away from |z| = 1, n satisfies
03n = 0. Thus
|20,.m = —idgn, |2|0),m" = i0gn"

and these derivatives extend continuously to |z| = 1. Therefore

200, B(I,n) = —(1+w])*{0w|2]0.n + 0|210,,n"
+{120m, 0" + [0, 121007 ]}
(1 + [w])*{~i0u0gn + 10 Opn"
i[0gn, 7" ] + i, 0en" 1}

and this last expression extends continuously to the boundary since the
derivatives with respect to 6 exist. O

11



Lemma 4.7 There ezists a function, C(|z|), depending on n but indepen-
dent of €, continuous on [0,1] with C(1) =0, and such that

d(H(w,z,t),I) < C(|z]) .

Proof. Use the maximum principle with f(w, z,0) = M (1 — |z|). Notice
that f(w, z,0) = f(|z|), so f(w, z,t) = f(]z|,t) since the Laplacian reduces
to the one-dimensional Laplacian. From the flow equation (10) we have

t
d(H,, Hy) = /UB(HT)dT

J0
< [ fw,z (13)
0

Now, f(|z|,t) = [ f(s,0)k(|z|,s,t)ds where k is the one-dimensional heat
kernel operator. Since [;° k(|z], s, t)dt = G(|z|, s), the Green’s operator, is
finite, Fubini’s theorem allows us to interchange the order of integration in

(13). So
d(Hy(w, z), Hy(w,2)) < M /06(1 —5)G(|z], s)ds
< M/Ol(l ~9)G(|2], 5)ds .
With respect to the Laplacian A = —(1 — \z|2)28‘2z‘,

G(|2], 5) = —max{In(|2]), In(s)}/(1 — s%)” .

Actually, this Green’s operator is only valid for the entire interval (e = 1)
and Fubini’s theorem doesn’t apply there. There is a monotone property
of heat kernels which means that our choice of G is simply an overestimate
when e < 1 so the calculation is valid.

Thus it remains to estimate the quantity

2| 1
f/ (1— s)In(l2])/(1 — §7)%ds — / (1— ) In(s)/(1 — s2)%ds  (14)

70 /2|
The finite integral — f‘]z‘ In(1 — s)/sds dominates (14) so the lemma fol-
lows. O

The preceding lemmas have shown that there is a solution to the heat
equation that satisfies H; — Hp in C° and B(Hy,n) is uniformly bounded.
These are the conditions required to use Simpson’s extension of Donald-
son’s result to show that H; are bounded in W2 uniformly in £. Hamilton’s
methods [11] then give control of all higher Sobolev norms. Thus we get a
solution, Hy, of (10) for all ¢ that converges to a smooth limit H, defined
on X, and satisfying B(Hs,n) =0 and Hy = I on 0X,. O

12



Proposition 4.8 For each holomorphic map u : S* — QSU(n) there is
an anti-self-dual connection A on S* such that F(A) = u.

Proof. We have proven the existence of a family of metrics H€ respec-
tively defined over X, and satisfying B(H¢,n) = 0. Since o(H¢, H) is
subharmonic its maximum occurs at the boundary of the set on which is
defined. For € < €', the common set is X.. From Lemma, 4.7,

d(H (w, 2), H (w, z)) < C(e)

since the initial value of the flow for H¢ is given by H¢ = I on 8X,. Since
C(e) — 0 as € — 1, the sequence {H} is Cauchy as ¢ — 1. Thus it
converges uniformly to a limit H. Moreover, on each X, the limit satisfies
B(H,n) = 0 so by regularity is smooth. This comes from a remark of
Simpson [19]. The difference between this situation and that in the proof
of Proposition 4.3 is that the metrics no longer satisfy Dirichlet boundary
conditions so we need to work with Wi’f. This argument applies to all
X, so the limit H is smooth on S* — S} and continuous on all of S%,
converging to I on S}. It remains to show that this metric H produces an
anti-self-dual connection using (7). The connection A is defined and anti-
self-dual on S* — S}. By the following lemma, A has finite charge. Since
codimension three singularities of finite charge anti-self-dual connections
can be removed [18], 4 is smooth on all of S%.

Lemma 4.9 The curvature of the limiting connection A has finite L?
norm.

Proof. We will show that on X = lim._,g X, the heat flow decreases the
total charge (which is just an explicit version of the fact that the heat
flow is the same as the Yang-Mills flow), and that the charge of the initial
connection is bounded. Lemmas 4.5 and 4.6 show that the self-dual part of
the curvature decreases. In order to show that the integral of the anti-self-
dual part of the curvature, and hence the charge, decreases it is sufficient
to show that k(E) = c3(E) — 3¢1(E)?, the Chern number of the bundle
restricted to X, is constant throughout the flow. Then any decrease in
the integral of the self-dual part of the curvature will be matched by the
same decrease in the integral of the anti-self-dual part of the curvature.
The fractional part of k(E) is given by the Chern-Simons invariant of
the connection restricted to 0X. Since k(E) varies continuously with ¢
it is sufficient to show that its fractional part remains constant in order
to deduce that it remains constant. The derivative of the Chern-Simons
invariant has quite a simple form.

Ok(E) = o FioNOA = o FyNOAB(H,n) .

Here we have used the fact that ;A = 04 B(H,n), where 9 is the holo-
morphic part of d4. Since B(H,n) vanishes on X then 04B(H,n) = 0
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also vanishes there since it is constant in ¢ and in the limit B(H,n) = 0.
Thus the Chern number is constant.

We will calculate the initial Chern number of the connection and then
together with the estimate of Lemma 4.6 we have a bound on the initial
charge.

1 1
k(E) = — / tr(F3) = —— / tr (00" 0,n)dzdzdwdw
872 Js2xp 872 Js2xp

since only the F,; and Fj,, terms contribute. Since 7 is holomorphic in z,
then on the disk d{tr(n7 0,n)dz} = tr(9,7" 0,n)dzdz so

1
kE(E) = ~2 / / tr(7! 0,m)dzdwdw .
T JS2 J]z|=1

On [z| =1, n = u '0yu so 1 = —u 'duu. Since u is holomorphic, we
can put u~'Ogu = & +iJ¢ where £ = %11,’]8Re(w)u and J is the complex
structure on QSU(n). Therefore

[ "o = i/ (€~ iTE)3p(€ + i) )0
|2|=1

27 J— 27r.,1

- / itr(E0pJE — JEDHE)dO

- / (€09 TE + (JE) Dy T(JE))dH
= ( (&,€) +9(J¢E, JE))
where g is the Kahler metric on QU (n). Thus

dw dw

WE) = - [ (0(6.8) + 976, 1)

which is the charge of w. O

The fact that F(A) = u is immediate and the proof of the proposition
is complete. O

Corollary 4.10
F: Mgs — Hol* (8% QU (n))
s a diffeomorphism.

Proof. We have shown that F is smooth, one-to-one and onto. A lin-
earisation of the uniqueness argument shows that DJF is an isomorphism
at each point. With respect to any topology that makes the two spaces
into Banach manifolds (say, the C* topology), we can invoke the inverse
function theorem to get the required result. O
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5 General >..

The results over S* generalise immediately to a family of four-manifolds
obtained from general Riemann surfaces. Let S be a compact Riemann
surface. Construct the four-manifold X by performing surgery on S? x
{oo} € 8% x ¥ replace a neighbourhood of §? x {oo} with B3 x S'.
When ¥ = 5% X = S%. Label the core of B® x S' by S} C X. The open
manifold X — S} is foliated by a family of Riemann surfaces ¥ = S-D
parametrised by S2 with common boundary 9% = S}. Put a metric on X
that is conformally equivalent to the product Kahler metric on $% x X given
by the round metric on S? and a hyperbolic metric on ¥. Such a conformal
compactification of the product metric exists in general. In fact, there is
a metric with constant scalar curvature in the conformal class. (Since the
ends of a complete hyperbolic two-manifold have been classified this is a
local problem over S' x B3. For our purposes, it is only necessary that
a metric exists locally since then we can use elliptic regularity to remove
singularities. The metric in a neighbourhood of a point on 9% is isometric
to a neighbourhood of a point on the boundary of the hyperbolic disk so
the S* case gives the required local metric.) Theorem 3 follows from the
following proposition combined with the implicit function theorem.

Proposition 5.1 There is a smooth map from Mx, the space of instan-
tons on a framed U(n)-bundle over X, to the space of based holomorphic
maps from S? to LGL(n,C)/L{;GL(n, C) that is one-to-one and onto.

Proof. We have set up the argument for X = S* so that it adapts easily
to this more general situation. In order to define the map

F: Mx — Hol*(S*, LGL(n,C)/L{GL(n,C))

we appeal to a generalisation of the factorisation of Theorem 3.2 due to
Donaldson [7]. When we restrict a connection on E over X to {z} x X,
it defines a holomorphic structure on E there. The restriction is holo-
morphically trivial and Donaldson proves that amongst the holomorphic
trivialisations there is a trivialisation that is unitary when restricted to
0%.. Unlike when Y = D, such a trivialisation is not unique. The frame, u,
it defines on the boundary is well-defined only as a section of a flat U(n)-
bundle over S'. Thus u takes its values inside the twisted loop group. The
frame w is smooth in w and

u tpu s S? — LEGL(n,C) (15)

Notice that (15) is a true map without any of the twisting of a section
because the flat structure on By is independent of w. Let n:S*x ¥ —
GL(n,C) be the holomorphic (in z) extension of (15). As before we wish
to solve the equation B(H,n) = 0 where B is the Hermitian-Yang-Mills
tensor over S? x 3. The Kahler metric and the Laplacian over S? x ¥ are
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the same as those over S? x D since the hyperbolic metric and Laplacian
over D are invariant under SU(1,1). Thus the argument for uniqueness
of instantons with the same holomorphic map goes through as before. We
use H = I for the initial metric in the heat flow equation over X, C X.
The sets X, are obtained by removing neighbourhoods of S}. Short-time
existence of the flow comes from ellipticity again. Except for the use of
the Green’s function, the long-time existence argument goes through as
before. We still get a bound, f, on |B(I,n)| that vanishes like O(1) near
0% so

d(Hy(w, 2), 1) g/zf(s)G(z,s)ds

for the Green’s function G(z,s) over ¥. Away from 0¥ this is finite as
required. We need to know that it vanishes as z approaches the boundary
so that the Cauchy sequence argument of Proposition 4.8 goes through.
This follows from the fact that in a neighbourhood of a point on S} C X,
the situation is isometric to that for S* where we have already proven the
required vanishing as z approaches the boundary. Finally, the limiting
connection on X — S§ has finite charge because the Chern number on each
X is constant throughout the flow as in Lemma 4.9 and the initial charge
is finite because again the interest only lies near S} where the situation
mimics that of S*. Since there is a conformally equivalent metric that
extends over X, regularity gives smoothness of the connection over all of
X. O

Remark. Consider the complete hyperbolic surface 3 that looks like
a punctured unit disk with metric

ds® = dzdz/(|]z|In|z])? .

In terms of the upper-half-space model of the hyperbolic plane, it is ob-
tained by quotienting out by the action ( — ( + 2w. The U(1)-invariant
instantons on S? x ¥ correspond to Euclidean monopoles. More generally,
we get periodic instantons or calorons. The proof in this section does not
apply to punctured Riemann surfaces. It is necessary to generalise the
results here in order to use these methods in the study of calorons [16].

6 Stretching the metric.

In this section we will explain the significance of the fact that we can
choose H = I as an initial condition in the flow equation. It shows that
the connection defined by (I,7) is approximately an instanton and can be
interpreted as an instanton with respect to a very singular metric.

The round metric on S* is conformally equivalent to the metric

, _ dada + (dp)? o, dAdA+ (d|B])?

2
2 BE T

ds
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where b = |ble?, B = |B|e'®. Consider, instead, the metric

, _ dada+ (@dp)* | 5 0  dAdA + (d]B])

d.
’ Bk |BJ2

+ k2dO*  (16)

for £ > 0. This metric is not defined over S2, C S*. Still, we will study
W2 instantons with respect to this metric over §* — S%.. Really we are
working over H® x S' = §1 — §2  We can interpret & as the length of the
circle or the curvature of hyperbolic space.

In a sense, as we let kK — oo, the instantons with respect to the metric
(16) converge to connections of the form

A = ndw — 7 dw

which are the initial values for the heat flow for the round metric over S%.
Since this idea serves only to illuminate the proof of Theorem 1, we are
being rather loose with this notion of convergence. There are four points
on this issue we should note.

(i) It will be clear that the class of instantons over S* — S% that we
consider here lies inside the space of finite energy connections. For the
converse—that we get all finite energy instantons—we rely on a recent
result of Mazzeo and Rade [15].

(ii) In the limit, the connections actually concentrate at S2, so we have
to reparametrise the normal bundle of S2; to allow for this.

(iii) We will prove something weaker than convergence of the connec-
tions. We will prove that the associated metrics H converge in C° rather
than in C.

(iv) Atiyah and Murray [1] studied the non-renormalised zero mass limit
of hyperbolic monopoles and conjectured a relationship with the Yang-
Baxter equations. The results here suggest that one can similarly pursue a
connection between instantons and solutions of the Yang-Baxter equation.

With respect to the parametrisation of S? x D, (16) is

4dwdw

ds? = sinh?(p) —————
< = sinh o)y

+ dp* + K%db*

where p gives the hyperbolic distance from the centre of H3. Previously,
we put z = e P 50 4dzdz/(1—|2|?)? = (dp?® +dB?)/sinh?(p). To rescale,
put p = k7 and z = e 7. Now, (16) is conformally equivalent to the
Kahler metric

4dwdw k%sinh®(7)  4dzdz
(1+w]?)?  sinh?(k7) (1 |2]?)?

ds? = (17)

which makes it clear that the metric degenerates on S% (for x > 1). The
rescaling p = k7, besides exactly compensating for the move of the charge
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towards S2,, is quite natural when we intepret & as the curvature of H3—
the new coordinate 7 gives the distance with respect to to the new hyper-
bolic metric.

The Hermitian-Yang-Mills tensor with respect to the new metric is

sinh? (k)
K2 sinh?(7)
+(1+ [w]*) {0 (H "0y H) — dg(H 7" H) — 3y1)
+[n, H "0, H — H 'y H]} .

B,.(H,n) (1 [2*)*0:(H '0,H)

The equation B, (H,n) = 0 is elliptic away from S} and S2 . For e > ey,
define
Xerero = {(w,2) € 82 x D | 1 > |2] > e2}

so the X, ., exhaust $* — S2 U S].

Proposition 6.1 Over each X, ., there is a unique solution, H;"*, of
the boundary value problem

H'0H/0t = B, (H,n)
H(w,z,0)=1 (18)
Hpox, ., =1

defined for all t and converging to a smooth metric HS "> that satisfies
B (HE ) = 0.

Proof. Since the change in the Laplacian for the new metric mimics the
change in the Hermitian-Yang-Mills tensor, the proof of Proposition 4.3
works for this boundary value problem except that we have to modify the
Green’s function in Lemma 4.7. It is now given by

_max{ln(|z\), In(s)} K2 sinhQ(T) .

G|z, s) = (1 — s2)2 sinh? (k7)

For x > 1 the integral (14) with the new Green’s function is dominated by
the finite integral

/1 In(1 — s’“””)d 1 /] In(1 — s”“)d
— | ————ds=—— ————=ds
\ \

J)z| s K J)z|x s

so we can replace C(|z]) in Lemma 4.7 by C(|z|*)/x. O

We can now state the analogue of Proposition 4.8.

Proposition 6.2 For each holomorphic map u : S? — QSU(n) there is a
unique finite charge connection A on S* — S% that is anti-self-dual with
respect to the metric (17), with

8?:85a 8£:81D+77

and such that its associated metric H, is bounded.
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Proof. We will simply modify the proofs of Propositions 4.1 and 4.8.
For uniqueness, we again use subharmonicity. For any two metrics Hy, Ho
that come from two connections satisfying the properties above, put h =
tr(Hy 'Hy) and o = tr(h) 4+ tr(h~") — 2n. Then o is subharmonic on
S§4— 8% equal to 0 on S} and bounded. For any A > 0, o+ A1n(|z|) is also
subharmonic and 0 on S}, but now negative near S%. By the maximum
principle o + AIn(]z|) < 0 on all of §* — S%. Since this is true for all A,
o < 0. By construction ¢ > 0 so 0 =0 and H; = Hs.

For existence we need to show that the sequence of metrics HS* is
Cauchy as e — 1 and €5 — 0. For ¢; > €2 > €3 > €4, associate o to
the two metrics H ' and HS2®. Again, o is subharmonic so it takes
its maximum on the boundary of the set over which both are defined,
0Xe,,c5. Since the boundary values of H2* give the initial values of
H{ on 0X,,, Proposition 6.1 shows that o is less than a constant
times C(e5)/k and C(€f)/k on the respective boundary components. (The
constant enters since the distance function on GL(n,C)/U(n) dominates
o times a constant.) If we label these two maximum values by My and M3
then the function

My + M3 1In(|z|/e2)/ In(e3/€2) (19)

is harmonic and takes on the values My and M3 on the respective boundary
components. Thus o is less than (19) on all of X, ,. Ases — 1 and e3 — 0,
(19) goes to zero. Hence the sequence is Cauchy and converges in C° to
a limit H,. As before, the convergence is smooth on the S* — S2. U S}
so H, is smooth there also and satisfies B, (H,n) = 0. The anti-self-dual
connection produced by (H,,n) extends across Si by regularity since the
charge is finite as before. The same is not true near S since the metric
degenerates there. O

Corollary 6.3 As k — oo, H, — [ uniformly on compact subsets of
St 52,

Proof. This simply follows from the fact that C'/x — 0 uniformly since C
is bounded. O

We might try to analyse the convergence more closely to see if it remains
true on the level of the connections. Alternatively, we might learn from
this that by using the heat flow without stretching the metric we can avoid
some of the difficult analytic issues involved in similar problems. Dostoglou
and Salamon [9, 10] solved the Atiyah-Floer conjecture for a mapping
cylinder Y = S! x;, 3 by stretching the metric in the S' direction. The
techniques in this paper suggest an alternative approach. In one direction,
associate to an instanton over R X Y a holomorphic curve into M, the
space of flat connections over Y, by taking the unique (up to conjugation)
flat connection over each {(¢,0)} x ¥ that defines the same holomorphic
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structure as the restriction of the instanton there. The Hermitian-Yang-
Mills tensor is very natural in this problem and will give uniqueness. It
will also enable us to use the heat flow to go in the other direction and
obtain an instanton from a holomorphic map.

In another direction, we might hope to use the techniques here to study
hyperbolic monopoles over a general hyperbolic manifold Y [4]. We have
observed here that as the curvature of hyperbolic space tends to —oc, the
instantons concentrate at the boundary. It seems reasonable to guess that
this would occur for general Y, particularly in light of the conjecture of
Austin and Braam [3] that a hyperbolic monopole on Y is determined by
its boundary values. Rather than actually take the limit, we can use this as
intuition for a good initial guess for the heat flow. Since we reparametrise
the normal bundle in the limit, it would mean that the initial metric need
only be defined on infinite tubes at the boundary and set to be trivial on
the interior of Y.
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