
Degenerating metrics and instantons on thefour-sphere.Stuart Jarvis and Paul Norbury.AbstractWe give a direct proof of Atiyah's theorem relating instantons over thefour-sphere with holomorphic maps from the two-sphere to the loop group.Our approach uses the non-linear heat ow equation for Hermitian metricsas used in the study of Kahler manifolds. The proof generalises immedi-ately to a larger class of four-manifolds.AMS classi�cation: 81T13, 53C07, 55P101 Introduction.It is interesting to both mathematicians and physicists to relate gauge-theoretic constructions over four-manifolds to spaces of holomorphic curvesinto related manifolds. In physical terms, this amounts to relating theinstantons of four-dimensional and two-dimensional theories. One of theearliest results of this type is a theorem of Atiyah that relates Yang-Millsinstantons over the four-sphere to holomorphic maps of the two-sphere tothe loop group [2].Theorem 1 (Atiyah) For any classical group G and positive integer k,the following two spaces are di�eomorphic:(1) the parameter space of Yang-Mills k-instantons over S4 with groupG, modulo based gauge transformations,(2) the parameter space of all based holomorphic maps S2 ! 
G ofdegree k.The purpose of this paper is to describe a new isomorphism between thespaces (1) and (2) of this theorem. Under any such isomorphism, there areinteresting relationships between the symmetries of the respective spaces.A description of the particular symmetries that feature in the di�erentisomorphisms would take us too far from the aims of this paper. We willinstead settle for a brief comparison con�ned to this paragraph. In boththe isomorphism de�ned by Atiyah and the one described here, the circularsymmetry given by rotating (around in�nity) the S2 in based holomorphic1



maps S2 ! 
G induces the same symmetry on the space of instantonsas the circle of isometries of S4 given by rotating the �rst coordinate ofC2 � S4. An extension of the result described in this paper to includeall holomorphic maps S2 ! 
G allows the circle symmetry of S2 to beenlarged to SO(3). (The space of unbased holomorphic maps S2 ! 
Gof �xed degree is an in�nite dimensional space that �bres over the loopgroup with �bres isomorphic to the �nite-dimensional instanton spaces.)The space of conformal symmetries of the unit disk fjzj � 1g that �x z = 1act on the boundary circle and hence on the loop group. This induces anaction on the space of holomorphic maps S2 ! 
G which correspondsvia the isomorphism of this paper to an action on the space of instantonsinduced from a family of conformal transformations of S4. Using Atiyah'sisomorphism the two previous examples of symmetries do not arise fromconformal transformations of S4. Instead, Atiyah's isomorphism gives riseto other symmetry comparisons, including an interesting involution on thespace of holomorphic maps S2 ! 
G, induced from the involution on S4obtained by swapping coordinates in C2 � S4. For the analogous study ofa new isomorphism of the moduli space of monopoles with rational mapsand the interesting symmetries that arise see [20, 12, 13].Atiyah's proof of his theorem relies on algebraic geometry which usesthe special form of the twistor space of the four-sphere. One can view thispaper as presenting an alternative proof of Atiyah's theorem more in linewith the direct methods used by Dostoglou and Salamon in their proof of arelationship between the instantons over a large class of topologically moreinteresting four-manifolds and pseudo-holomorphic curves inside particularKahler manifolds [9, 10]. We essentially ow directly from the holomorphicmap into the loop group to the instanton over the four-sphere. This methodhas the advantage that it generalises to a larger class of four-manifolds andloop groups. It also �ts in with the homotopy theorists' intuition regardingthe respective con�guration spaces.The map f : S2 ! 
U(n) is holomorphic when f�1@ �wf extends to aholomorphic map of the disk to gl(n;C) for each w 2 S2. Put � equalto this extension. Over S2 � D = f(w; z) = (u + iv; x + iy)g de�ne theconnection Af = �d �w � ��T dw (1)so Af is at on each fwg �D. Furthermore,[@Au ; @Ax ] = [@Av ; @Ay ][@Au ; @Ay ] = �[@Av ; @Ax ][@Ax ; @Ay ] = 0 9>=>; (2)which resembles the anti-self-dual equations with respect to the productKahler metric on S2 �D:[@Au ; @Ax ] = [@Av ; @Ay ][@Au ; @Ay ] = �[@Av ; @Ax ][@Ax ; @Ay ] = �1+u2+v21�x2�y2�2 [@Au ; @Av ] 9>>=>>; (3)2



where we are using the round metric and the hyperbolic metric on S2 andD respectively. It so happens that S2 � D �= S4 � S1 and the productmetric is conformally equivalent to the round metric on S4. That meansthat (2) also resembles the anti-self-dual equations over S4. Notice that ifwe change the product metric non-conformally so that the area of the two-sphere goes to in�nity, or equivalently so that the area of the disk goes tozero, then the third of the ASD equations tends to the at third conditionof (2). See the third remark below.Atiyah remarked that his proof, which uses a result of Donaldson [6],merely gives existence without a direct means of associating an instantonto a holomorphic map. In [7], Donaldson suggested that there ought tobe some type of adiabatic limit proof that avoids Atiyah's roundaboutroute. The following theorem addresses these two comments and gives analternative proof of Atiyah's theorem.Theorem 2 For each based holomorphic map f : S2 ! 
U(n), thereexists a unique gauge equivalence class of anti-self-dual connections on aframed U(n)-bundle over S4 and a canonical representative A that is insome sense close to Af . This correspondence de�nes a di�eomorphismbetween the respective moduli spaces.Remarks. (i) The sense in which the connections are close will be madeclear later. We will not actually prove that the connections are close, ratherit will be su�cient to prove that Hermitian metrics associated to the con-nections are uniformly close. The precise estimate is given in Lemma 4.7.(ii) The techniques in this paper generalise to any compact group. Forthe orthogonal and symplectic groups, we can deduce the correspondingresult from the unitary case, rather than using the more general construc-tion. This is because, as subgroups of U(n), the extra structure determinedby O(n) and Sp(n) is quite explicit. The objects we use inherit the extrastructure by their uniqueness properties.(iii) We can think of the equations (2) as describing the anti-self-dualequations with respect to a metric that degenerates in the disk factor.Theorem 2 essentially describes the limit of the moduli space of instantonsas we stretch the metric on S4 so that the area of the disk goes to zero.(iv) The connections invariant under the natural circle action on S4can be identi�ed with hyperbolic monopoles. The results in this papergeneralise some parts of [13, 14].The novelty of the decomposition S4 = S1 �B3 [ S2�D2 rather thanthe more usual picture of S4 as CP2 with a divisor collapsed, allows us togeneralise the result. We can replace the loop group and S4 in Theorem 2respectively by LGL(n;C)=L+�GL(n;C) and X� = S1�B3 [S2�� for aRiemann surface � with @� = S1. Precise de�nitions are given in Section 5.
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Theorem 3 The moduli space of instantons on a framed U(n)-bundle overX� is di�eomorphic to the space of based holomorphic maps from S2 toLGL(n;C)=L+�GL(n;C).2 Metrics on the four-sphere.In order to de�ne a global metric over S4 we shall use the identi�cationS4 �= HP1 = H2=H�where the non-zero quaternions H� act on the right of H2. We can coverHP1 with two a�ne complex coordinate patchesf(q; 1)jq = a+ bjg [ f(1; q�1)jq�1 = A+Bjg :The round metric is then given byds2 = 4(d�ada+ d�bdb)(1 + jaj2 + jbj2)2 = 4(d �AdA+ d �BdB)(1 + jAj2 + jBj2)2 :Consider S21 � HP1 given by fb = 0g and S10 � HP1 given by fa = 0; jbj =1g. We have notated these two submanifolds with subscripts since we willrefer to them again. The open submanifold S4� S10 can be identi�ed witha trivial disk bundle over S21. We would prefer to work in the coordinatesystem that parametrises this disk bundle. Thus, S4�S10 = f(w; z)g wherew 2 C (and w�1 2 C) parametrises S21 and fz 2 C j jzj < 1g parametrisesthe disk �bres. We can parametrise all of S4 by including the over-de�nedcoordinate fjzj = 1g. With respect to this coordinate system the roundmetric is given byds2 =  1� jzj21 + jzj2!2 4d �wdw(1 + jwj2)2 + 4d�zdz(1 + jzj2)2 :We will instead work with the conformally equivalent metricds2 = 4d �wdw(1 + jwj2)2 + 4d�zdz(1� jzj2)2 (4)which is the product of the round metric on S21 with the hyperbolic metricon the disk. In particular, it is a Kahler metric on S2 �D.3 Loop group.Let E be a framed U(n)-bundle over S4 with c2(E)� 12c1(E)2 = k. Let Abe a smooth unitary connection on E. We will show how to associate toA a smooth map from S2 to the loop group, 
U(n).Fix w 2 S2 and consider the associated �bre, Dw. Over Dw, A de�nesa holomorphic structure on E. Choose the basepoint over which we frameE to lie on the S10 � S4 that gives the common boundary to all of thedisks. 4



Proposition 3.1 There is a unique frame gw of E over Dw satisfying (i)@A�z gw = 0; (ii) gw is unitary on @Dw; (iii) gw matches the framing at thebasepoint. Furthermore, for U � S2, gw is a frame for E over U�D whichis smooth in w.This is just a restatement of the factorization theorem for loop groups asobserved by Donaldson [7].Theorem 3.2 ([17]) Any loop  2 LGL(n;C) can be factorized uniquely = u � + ;with u 2 
U(n) and + 2 L+GL(n;C), those loops that are boundaryvalues of holomorphic maps from the disk to GL(n;C). In fact the productmap 
U(n)� L+GL(n;C)! LGL(n;C) (5)is a di�eomorphism. 2Proof of Proposition 3.1. Choose a frame ~g of E over U � D satisfying@A�z ~g = 0. That we can do this so that ~g is smooth in w is proven in[8]. Also, choose a unitary frame of E along S10 � S4 that agrees withthe framing at the basepoint. Over each disk Dw, Theorem 3.2 enablesus to �nd a unique +(w) that maps Dw holomorphically to GL(n;C)so that g = ~g+ is unitary on S10 = @Dw and agrees with the frame atthe basepoint. In fact, since (5) is a di�eomorphism, when restricted toS10 = @Dw, + is smooth in w. Since +(w) is holomorphic in z there is anexact expression for its values on the interior of Dw via a Cauchy integralformula. It follows that + is smooth in w over all of U �D. Since ~g waschosen to be smooth in w it follows that g = ~g+ is also. 2Equip the space of gauge equivalence classes of connections on a bundleE over S4, BS4 with the smooth topology and likewise for the space ofsmooth maps from the two-sphere to the loop group, Map�(S2;
U(n)).Corollary 3.3 There is a smooth mapF : BS4 !Map�(S2;
U(n)) :Proof. Given a smooth connection A on E, on each disk in S2 � D �=S4�S10 restrict the g supplied by Proposition 3.1 to the boundary S10 to getS2 unitary frames there. Use the frame de�ned by the disk correspondingto 1 2 S21 as a background frame. Comparing this to the other frameswe get a smooth map F(A) : S2 ! 
U(n)that sends 1 to the constant loop I. Furthermore, the factorisation (5)which gives the smoothness of F(A) also implies that F is smooth as amap on BS4 . 25



Corollary 3.4 If A satis�es the anti-self-dual equations then F(A) is aholomorphic map.Proof. We need only two of the three ASD equations to prove this. incomplex coordinates they can be combined to give[@A�w ; @A�z ] = 0 (6)Associate to A the frame g from Proposition 3.1. Since @A�z g = 0 it followsfrom (6) that @A�z (@A�wg) = 0 or equivalently that @A�wg = g� for a map� : S2 � D ! GL(n;C) that is holomorphic in z. Now choose a unitarygauge for E in a neighbourhood of S10 � S4 that extends the backgoundframe on S10 determined by A over D1. The map u = F(A) is simplythe restriction of g to each @Dw with respect to the background frame.With respect to this frame @A�w = @ �w simply due to the choice of coordinatesystem. Thus we have u�1@ �wu : S2 ! L+gl(n;C) :But this is exactly the statement that u = F(A) is a holomorphic map intothe loop group. We can see this by looking closely at the complex structureJ on 
U(n). For � 2 
u(n), J� � i�(mod L+gl(n;C)) and in fact this de-�nes J since each element of Lgl(n;C) has a unique unitary representativein its L+gl(n;C) coset. Put w = x+ iy, then u is holomorphic when0 = u�1(@u=@x+ J@u=@y)� u�1(@u=@x+ i@u=@y) (mod L+gl(n;C)) : 2Remark. In the next section we will show that F de�nes a di�eomorphismfrom the space of instantons to the space of holomorphic maps. This facttogether with the proof of the Atiyah-Jones conjecture and an analogue ofthe Atiyah-Jones conjecture for maps into the loop group implies that Fde�ned in Corollary 3.3 is a homotopy equivalence.4 Existence and uniqueness.In this section we will show that when restricted to MS4 , gauge equiv-alence classes of anti-self-dual connections over S4, the map F de�nes adi�eomorphism F :MS4 ! Hol�(S2;
U(n)) :Associate to any instanton A the pair (H; �) consisting of a metricH = �gT g using the frame g supplied by Proposition 3.1 and � : S2 �D !gl(n;C), the holomorphic (in z) extension of the map F(A)�1@ �wF(A) :S2 ! L+gl(n;C). By construction H � I on S10 � S4. We can retrieve Afrom (H; �) since with respect to the gauge de�ned by g, we getA �w = �; A�z = 0; Aw = H�1@wH �H�1��TH; Az = H�1@zH (7)6



Notice that gauge equivalent connections produce the same H. Associateto the pair (H; �) the Hermitian-Yang-Mills tensorB(H; �) = (1� jzj2)2@�z(H�1@zH) + (1 + jwj2)2f@ �w(H�1@wH)�@ �w(H�1��TH)� @w� + [�;H�1@wH �H�1��TH]g :This vanishes when (H; �) comes from an instanton. Later we will studymore general pairs (H; �) and attempt to solve the equation B(H; �) = 0.This is elliptic in H away from S10 � S4.4.1 Uniqueness.Proposition 4.1 Two instantons A1 and A2 are gauge equivalent if andonly if F(A1) = F(A2).Proof. Associate to each instanton the pair (Hi; �) (by assumption � iscommon to both). Set h = H�11 H2. This is an endomorphism of thebundle over S4. So far we have been working gauge invariantly. In orderto compare A1 and A2 we will choose the gauge de�ned by Proposition 3.1.Thus we identify g1 and g2. With respect to this gauge we have�@A2 = �@A1 ; @A2 = @A1 + h�1@A1hwhere we have separated the connections respectively into their (1; 0) and(0; 1) parts. This expression is gauge-invariant and in fact it holds in allgauges. (We have merely used g1 and g2 to specify isomorphisms with thebundle E.) Since the connections are anti-self-dual we haveFAi = �@Ai � @Ai + @Ai � �@Ai ) FA2 = FA1 + �@A1(h�1@A1h) :Thus from B(Hi; �) = 0 we get0 = (1� jzj2)2@A1�z (h�1@A1z h) + (1 + jwj2)2f@A1�w (h�1@A1w h) (8)Lemma 4.2 The function tr(h) is subharmonic.Proof. With respect to the metric in (4), the Laplacian is given by� = �(1� jzj2)2@�z@z � (1 + jwj2)2@ �w@wso ��tr(h) = (1� jzj2)2trf(@A1�z h)(h�1@A1z h) + h@A1�z (h�1@A1z h)g+(1 + jwj2)2trf(@A1�w h)(h�1@A1w h) + h@A1�w (h�1@A1w h)gwhich we will show to be non-negative. The two right terms vanish by(8). In order to show that the other two terms are non-negative we willchoose a gauge in which @A1 and �@A1 are adjoints. Use the g1 constructedin Proposition 3.1 to transform from the holomorphic frame to a unitary7



frame. With respect to this frame h = (�gT1 )�1H2g�1 which is self-adjoint.In fact, since we have the freedom to replace g with ug and thus h withuhu�1 where u is a constant unitary transformation, at any point we canarrange that h is diagonal. It has positive eigenvalues since H2 is a metric.So each term is of the form tr( �MThM) � 0 and the lemma follows. 2By reversing the roles of H1 and H2 we see that tr(h�1) is also sub-harmonic. Put �(h) = tr(h) + tr(h�1) � 2n. Since the eigenvalues of hare all positive, then �(h) � 0 everywhere. We also know that �(h) issubharmonic and on the boundary �(h) = 0. By the maximum principle�(h) � 0 so �(h) � 0 and h � I. ThusH1 = H2 and A1 is gauge equivalentto A2. 24.2 The heat ow.We will now prove that every based holomorphic map from the two-sphereto the loop group comes from an instanton over the four-sphere. In orderto do this we will prove the existence theorems for instantons in a standardway using a heat ow. We closely follow the approach used in [12] to provea similar theorem for Euclidean monopoles. Our proof of the long timeexistence of the ow on a subset of S4 is equivalent to the proof in [19].It is necessary that we go through this proof in order to get estimatesto extend to S4 and since our proof will be necessary when we generaliseto other Riemann surfaces. All of these methods are really variations onDonaldson's proof of the existence of anti-self-dual connections on stableholomorphic bundles over a Kahler surface [5].Away from jzj = 1, the Hermitian-Yang-Mills tensor B(H; �) is ellipticin H. We wish to �nd a solution of the equation B(H; �) = 0 and since �encodes the holomorphic map we will be able to retrieve an ASD connectionassociated to that map. A solution of the heat ow equationH�1@H=@t = B(H; �); H(w; z; 0) = I (9)will converge to the required solution as t!1. Later we will explain thesigni�cance of the fact that we can choose the constant metric I for aninitial condition.It is disappointing that we have not been able to solve (9) on thecompact manifold S4 without cutting it open and solving a sequence ofboundary value problems. It seems that the metrics we use are not C2;�or W 3;2 as the existing methods require. Probably the metrics are W 2;pwhich makes it seem likely that there is a way around the boundary-valueproblem.A word on existent methods. The round metric on S4 � S10 is con-formally equivalent to an in�nite volume Kahler metric on S2 � D. The8



H we use di�ers from the Hermitian-Yang-Mills ~H by a complex gaugetransformation, ~H = �pTHp where p : U �D ! GL(n;C); U � S2 satis�es@�zp = 0; �@ �wp � p = � :The existence of p follows from the existence of a universal holomorphicbundle over 
U(n) � S2 which requires explicit knowledge of the cell de-composition of the loop group [17]. By restricting to a compact subset ofS2 �D we can use Simpson's results [19] to get long-time existence of theheat ow for ~H. We would still need to go through the proof to get preciseestimates of how far the metric ows from the initial choice in order toextend to S4 as well as interpret the result as in Section 6. For a moregeneral Riemann surface, we do not have the existence of the complexgauge transformation p that relates the metrics. For this reason we donot use Simpson's results. Still, once we have the anti-self-dual connectionthen we can produce the required complex gauge transformation so thetwo methods are related. Essentially a corollary of our result is a theo-rem about holomorphic disks in loop groups related to general Riemannsurfaces. In particular we get an alternative proof of the existence of theuniversal holomorphic bundle over the loop group.Put X� = f(w; z) 2 S2 �D j jzj � �gso the X� exhaust S2 �D as �! 1.Proposition 4.3 Over each X� there is a unique solution, H�t , of theboundary value problem H�1@H=@t = B(H; �)H(w; z; 0) = IHj@X� = I 9>=>; (10)de�ned for all t and converging to a smooth metric H�1 that satis�esB(H�1; �) = 0.Proof. Since we have �xed X� for the moment we will omit the super-script in H�t during this proof. Short-time existence of a solution of (10)is automatic since B(H; �) is elliptic in H and we have Dirichlet boundaryconditions. In order to extend this to long-time existence we will take theapproach given by Donaldson [5] and extended by Simpson [19] and showthat a solution on [0; T ) gives a limit at T which is a good initial conditionto start the ow again. The lemmas we need to prove on the way use thedetails of our particular case and allow us to proceed with Donaldson'sproof.Lemma 4.4 If H1 and H2 are two solutions of the heat equation then@t� +�� � 0 (11)for � = tr(H�11 H2) + tr(H1H�12 )� 2n.9



Proof. We can generalise the proof of Proposition 4.1 as follows. So farwe have shown thattrfhB(H2; �)� hB(H1; �)g � ��tr(h) :Now, tr(@th) = tr(hH�12 @tH2)� tr(H�11 @tH1h)so from the ow equation we get @ttr(h) + �tr(h) � 0 and by reversingthe roles of H1 and H2, (11) follows. 2Apply (11) to Ht and Ht+� , the ow at two times. Since they obeythe same boundary conditions on X�, � vanishes on the boundary. By themaximum principle supX� � is a non-increasing function of t. By continuity,for any � > 0 there exists a � small enough so thatsupX� �(Ht;Ht0) < �for 0 < t; t0 < �. It follows from the non-increasing property of � thatsupX� �(Ht;Ht0) < �for T � � < t; t0 < T . Since � can be made arbitrarily small, Ht is aCauchy sequence in the C0 norm as t! T . The metrics take their valuesin a complete metric space (described below) and the function � acts likethe metric so there is a continuous limit HT of the sequence. Notice alsothat (11) and the maximum principle show that this short-time solutionto the heat ow equation is unique.A metric H takes its values in the space GL(n;C)=U(n) which comesequipped with the complete metric d which is given locally by tr(H�1�H)2.Thus d(H(w; z; t);H(w; z; 0)) = Z t0 jB(Hs; �)jdswhere jB(Hs; �)j2 = tr(B�B) and the adjoint is taken with respect to themetric Hs. Notice that B� = B so jB(Hs; �)j2 = tr(B2).Lemma 4.5 If Ht is a solution of the heat equation then(d=dt+�)jB(Ht; �)j � 0 whenever jBj > 0 (12)Proof. First notice that it is only @A, the holomorphic part of the con-nection (7), that depends on t, so@tB(H; �) = (1� jzj2)2@A�z (@t(@Az )) + (1 + jwj2)2@A�w (@t(@Aw ))and since @t(@A) = @A(H�1@tH) we have@tB(H; �) = f(1 � jzj2)2@A�z @Az + (1 + jwj2)2@A�w@Awg(H�1@tH)= f(1 � jzj2)2@A�z @Az + (1 + jwj2)2@A�w@AwgB(H; �) :10



This last expression looks quite like the Laplacian and in fact@tjBj2 = @ttr(B2) = 2tr(B@tB)= 2trf(1� jzj2)2B@A�z @Az + (1 + jwj2)2B@A�w@AwgB= ��tr(B2)� 2(1 � jzj2)2tr(@A�z B@Az B)�2(1 + jwj2)2tr(@A�wB@AwB)so 2jBj(@t +�)jBj = (@t +�)jBj2 + 2(1� jzj2)2(j@z jBjj2 + j@�zjBjj2)+2(1 + jwj2)2(j@wjBjj2 + j@ �wjBjj2)is non-positive by Kato's inequality j@xjf jj � j@Ax f j. 2It follows from (12) and the maximum principle that if there is afunction f(w; z; t) de�ned on X� � R that satis�es (@t + �)f = 0 andjB0j = jB(I; �)j � f(w; z; 0) then B(Ht; �)j � f(w; z; t) for all t.Lemma 4.6 Since � is the holomorphic extension of u�1@ �wu, for a givenholomorphic map u : S2 ! 
U(n), there exists a constant M such thatjB(I; �)j �M(1� jzj) on S2 �D.Proof. The mapB(I; �) = �(1 + jwj2)2(@w� + @ �w��T + [�; ��T ])is continuous on S2 � D. (Notice that it is invariant under the changew 7! w�1.) Thus, if we can show that B(I; �)=(1 � jzj) is continuous onS2 �D then it must be bounded since its domain is a compact set. Awayfrom jzj = 1 this is clear. At jzj = 1, B(I; �) = 0 since � = u�1@ �wu thereso @w� + @ �w��T + [�; ��T ] is the curvature of a at connection and hence 0.Thus, a continuous limit of B(I; �)=(1 � jzj) as jzj ! 1 is the same as acontinuous derivative @jzjB(I; �) at jzj = 1. Away from jzj = 1, � satis�es@�z� = 0. Thus jzj@jzj� = �i@��; jzj@jzj��T = i@���Tand these derivatives extend continuously to jzj = 1. Thereforejzj@jzjB(I; �) = �(1 + jwj)2f@wjzj@jzj� + @ �wjzj@jzj��T+[jzj@jzj�; ��T ] + [�; jzj@jzj��T ]g= �(1 + jwj)2f�i@w@�� + i@ �w@���T�i[@��; ��T ] + i[�; @� ��T ]gand this last expression extends continuously to the boundary since thederivatives with respect to � exist. 211



Lemma 4.7 There exists a function, C(jzj), depending on � but indepen-dent of �, continuous on [0; 1] with C(1) = 0, and such thatd(H(w; z; t); I) � C(jzj) :Proof. Use the maximum principle with f(w; z; 0) = M(1 � jzj). Noticethat f(w; z; 0) = f(jzj), so f(w; z; t) = f(jzj; t) since the Laplacian reducesto the one-dimensional Laplacian. From the ow equation (10) we haved(Ht;H0) = Z t0 B(H� )d�� Z t0 f(w; z; �)d�� Z 10 f(w; z; �)d� (13)Now, f(jzj; t) = R f(s; 0)k(jzj; s; t)ds where k is the one-dimensional heatkernel operator. Since R10 k(jzj; s; t)dt = G(jzj; s), the Green's operator, is�nite, Fubini's theorem allows us to interchange the order of integration in(13). So d(Ht(w; z);H0(w; z)) � M Z �0 (1� s)G(jzj; s)ds� M Z 10 (1� s)G(jzj; s)ds :With respect to the Laplacian � = �(1� jzj2)2@2jzj,G(jzj; s) = �maxfln(jzj); ln(s)g=(1 � s2)2 :Actually, this Green's operator is only valid for the entire interval (� = 1)and Fubini's theorem doesn't apply there. There is a monotone propertyof heat kernels which means that our choice of G is simply an overestimatewhen � < 1 so the calculation is valid.Thus it remains to estimate the quantity� Z jzj0 (1� s) ln(jzj)=(1 � s2)2ds� Z 1jzj(1� s) ln(s)=(1 � s2)2ds (14)The �nite integral � R 1jzj ln(1 � s)=sds dominates (14) so the lemma fol-lows. 2The preceding lemmas have shown that there is a solution to the heatequation that satis�es Ht ! HT in C0 and B(Ht; �) is uniformly bounded.These are the conditions required to use Simpson's extension of Donald-son's result to show thatHt are bounded inW 2;p uniformly in t. Hamilton'smethods [11] then give control of all higher Sobolev norms. Thus we get asolution, Ht, of (10) for all t that converges to a smooth limit H1 de�nedon X� and satisfying B(H1; �) = 0 and H1 = I on @X�. 212



Proposition 4.8 For each holomorphic map u : S2 ! 
SU(n) there isan anti-self-dual connection A on S4 such that F(A) = u.Proof. We have proven the existence of a family of metrics H� respec-tively de�ned over X� and satisfying B(H�; �) = 0. Since �(H�;H�0) issubharmonic its maximum occurs at the boundary of the set on which isde�ned. For � < �0, the common set is X�. From Lemma 4.7,d(H�0(w; z);H�(w; z)) � C(�)since the initial value of the ow for H�0 is given by H� = I on @X�. SinceC(�) ! 0 as � ! 1, the sequence fH�g is Cauchy as � ! 1. Thus itconverges uniformly to a limit H. Moreover, on each X� the limit satis�esB(H; �) = 0 so by regularity is smooth. This comes from a remark ofSimpson [19]. The di�erence between this situation and that in the proofof Proposition 4.3 is that the metrics no longer satisfy Dirichlet boundaryconditions so we need to work with W 2;ploc . This argument applies to allX� so the limit H is smooth on S4 � S10 and continuous on all of S4,converging to I on S10 . It remains to show that this metric H produces ananti-self-dual connection using (7). The connection A is de�ned and anti-self-dual on S4 � S10 . By the following lemma, A has �nite charge. Sincecodimension three singularities of �nite charge anti-self-dual connectionscan be removed [18], A is smooth on all of S4.Lemma 4.9 The curvature of the limiting connection A has �nite L2norm.Proof. We will show that on X = lim�!0X� the heat ow decreases thetotal charge (which is just an explicit version of the fact that the heatow is the same as the Yang-Mills ow), and that the charge of the initialconnection is bounded. Lemmas 4.5 and 4.6 show that the self-dual part ofthe curvature decreases. In order to show that the integral of the anti-self-dual part of the curvature, and hence the charge, decreases it is su�cientto show that k(E) = c2(E) � 12c1(E)2, the Chern number of the bundlerestricted to X, is constant throughout the ow. Then any decrease inthe integral of the self-dual part of the curvature will be matched by thesame decrease in the integral of the anti-self-dual part of the curvature.The fractional part of k(E) is given by the Chern-Simons invariant ofthe connection restricted to @X. Since k(E) varies continuously with tit is su�cient to show that its fractional part remains constant in orderto deduce that it remains constant. The derivative of the Chern-Simonsinvariant has quite a simple form.@tk(E) = Z@X FA ^ @tA = Z@X FA ^ @AB(H; �) :Here we have used the fact that @tA = @AB(H; �), where @A is the holo-morphic part of dA. Since B(H; �) vanishes on @X then @AB(H; �) = 013



also vanishes there since it is constant in t and in the limit B(H; �) � 0.Thus the Chern number is constant.We will calculate the initial Chern number of the connection and thentogether with the estimate of Lemma 4.6 we have a bound on the initialcharge.k(E) = 18�2 ZS2�D tr(F 2A) = � 18�2 ZS2�D tr(@�z��T@z�)d�zdzd �wdwsince only the Fz �w and F�zw terms contribute. Since � is holomorphic in z,then on the disk dftr(��T @z�)dzg = tr(@�z��T @z�)d�zdz sok(E) = � 18�2 ZS2 Zjzj=1 tr(��T@z�)dzd �wdw :On jzj = 1, � = u�1@ �wu so ��T = �u�1@wu. Since u is holomorphic, wecan put u�1@ �wu = � + iJ� where � = 12u�1@Re(w)u and J is the complexstructure on 
SU(n). Therefore12� Zjzj=1 tr(��T@z�)dz = �12� ZS1 trf(� � iJ�)@�(� + iJ�)gd�= �12� ZS1 itr(�@�J� � J�@��)d�= i2� ZS1 �tr(�@�J� + (J�)@�J(J�))d�= i(g(�; �) + g(J�; J�))where g is the Kahler metric on 
U(n). Thusk(E) = 14� ZS2(g(�; �) + g(J�; J�))d �wdwiwhich is the charge of u. 2The fact that F(A) = u is immediate and the proof of the propositionis complete. 2Corollary 4.10 F :MS4 ! Hol�(S2;
U(n))is a di�eomorphism.Proof. We have shown that F is smooth, one-to-one and onto. A lin-earisation of the uniqueness argument shows that DF is an isomorphismat each point. With respect to any topology that makes the two spacesinto Banach manifolds (say, the Ck topology), we can invoke the inversefunction theorem to get the required result. 214



5 General �.The results over S4 generalise immediately to a family of four-manifoldsobtained from general Riemann surfaces. Let e� be a compact Riemannsurface. Construct the four-manifold X by performing surgery on S2 �f1g � S2 � e�|replace a neighbourhood of S2 � f1g with B3 � S1.When e� = S2, X = S4. Label the core of B3 � S1 by S10 � X. The openmanifold X � S10 is foliated by a family of Riemann surfaces � = e� �Dparametrised by S2 with common boundary @� = S10 . Put a metric on Xthat is conformally equivalent to the product Kahler metric on S2�� givenby the round metric on S2 and a hyperbolic metric on �. Such a conformalcompacti�cation of the product metric exists in general. In fact, there isa metric with constant scalar curvature in the conformal class. (Since theends of a complete hyperbolic two-manifold have been classi�ed this is alocal problem over S1 � B3. For our purposes, it is only necessary thata metric exists locally since then we can use elliptic regularity to removesingularities. The metric in a neighbourhood of a point on @� is isometricto a neighbourhood of a point on the boundary of the hyperbolic disk sothe S4 case gives the required local metric.) Theorem 3 follows from thefollowing proposition combined with the implicit function theorem.Proposition 5.1 There is a smooth map from MX , the space of instan-tons on a framed U(n)-bundle over X, to the space of based holomorphicmaps from S2 to LGL(n;C)=L+�GL(n;C) that is one-to-one and onto.Proof. We have set up the argument for X = S4 so that it adapts easilyto this more general situation. In order to de�ne the mapF :MX ! Hol�(S2; LGL(n;C)=L+�GL(n;C))we appeal to a generalisation of the factorisation of Theorem 3.2 due toDonaldson [7]. When we restrict a connection on E over X to fxg � �,it de�nes a holomorphic structure on E there. The restriction is holo-morphically trivial and Donaldson proves that amongst the holomorphictrivialisations there is a trivialisation that is unitary when restricted to@�. Unlike when � = D, such a trivialisation is not unique. The frame, u,it de�nes on the boundary is well-de�ned only as a section of a at U(n)-bundle over S1. Thus u takes its values inside the twisted loop group. Theframe u is smooth in w andu�1@ �wu : S2 ! L+�GL(n;C) (15)Notice that (15) is a true map without any of the twisting of a sectionbecause the at structure on EjS10 is independent of w. Let � : S2 � � !GL(n;C) be the holomorphic (in z) extension of (15). As before we wishto solve the equation B(H; �) = 0 where B is the Hermitian-Yang-Millstensor over S2 ��. The Kahler metric and the Laplacian over S2 �� are15



the same as those over S2 �D since the hyperbolic metric and Laplacianover D are invariant under SU(1; 1). Thus the argument for uniquenessof instantons with the same holomorphic map goes through as before. Weuse H � I for the initial metric in the heat ow equation over X� � X.The sets X� are obtained by removing neighbourhoods of S10 . Short-timeexistence of the ow comes from ellipticity again. Except for the use ofthe Green's function, the long-time existence argument goes through asbefore. We still get a bound, f , on jB(I; �)j that vanishes like O(1) near@� so d(Ht(w; z); I) � Z� f(s)G(z; s)dsfor the Green's function G(z; s) over �. Away from @� this is �nite asrequired. We need to know that it vanishes as z approaches the boundaryso that the Cauchy sequence argument of Proposition 4.8 goes through.This follows from the fact that in a neighbourhood of a point on S10 � X,the situation is isometric to that for S4 where we have already proven therequired vanishing as z approaches the boundary. Finally, the limitingconnection on X�S10 has �nite charge because the Chern number on eachX� is constant throughout the ow as in Lemma 4.9 and the initial chargeis �nite because again the interest only lies near S10 where the situationmimics that of S4. Since there is a conformally equivalent metric thatextends over X, regularity gives smoothness of the connection over all ofX. 2Remark. Consider the complete hyperbolic surface � that looks likea punctured unit disk with metricds2 = d�zdz=(jzj ln jzj)2 :In terms of the upper-half-space model of the hyperbolic plane, it is ob-tained by quotienting out by the action � 7! � + 2�. The U(1)-invariantinstantons on S2�� correspond to Euclidean monopoles. More generally,we get periodic instantons or calorons. The proof in this section does notapply to punctured Riemann surfaces. It is necessary to generalise theresults here in order to use these methods in the study of calorons [16].6 Stretching the metric.In this section we will explain the signi�cance of the fact that we canchoose H � I as an initial condition in the ow equation. It shows thatthe connection de�ned by (I; �) is approximately an instanton and can beinterpreted as an instanton with respect to a very singular metric.The round metric on S4 is conformally equivalent to the metricds2 = d�ada+ (djbj)2jbj2 + d�2 = d �AdA+ (djBj)2jBj2 + d�216



where b = jbjei�; B = jBjei�. Consider, instead, the metricds2 = d�ada+ (djbj)2jbj2 + �2d�2 = d �AdA+ (djBj)2jBj2 + �2d�2 (16)for � > 0. This metric is not de�ned over S21 � S4. Still, we will studyW 1;2 instantons with respect to this metric over S4 � S21. Really we areworking over H3 � S1 �= S4 � S21. We can interpret � as the length of thecircle or the curvature of hyperbolic space.In a sense, as we let �!1, the instantons with respect to the metric(16) converge to connections of the formA = �d �w � ��Tdwwhich are the initial values for the heat ow for the round metric over S4.Since this idea serves only to illuminate the proof of Theorem 1, we arebeing rather loose with this notion of convergence. There are four pointson this issue we should note.(i) It will be clear that the class of instantons over S4 � S21 that weconsider here lies inside the space of �nite energy connections. For theconverse|that we get all �nite energy instantons|we rely on a recentresult of Mazzeo and Rade [15].(ii) In the limit, the connections actually concentrate at S21 so we haveto reparametrise the normal bundle of S21 to allow for this.(iii) We will prove something weaker than convergence of the connec-tions. We will prove that the associated metrics H converge in C0 ratherthan in C1.(iv) Atiyah and Murray [1] studied the non-renormalised zero mass limitof hyperbolic monopoles and conjectured a relationship with the Yang-Baxter equations. The results here suggest that one can similarly pursue aconnection between instantons and solutions of the Yang-Baxter equation.With respect to the parametrisation of S2 �D, (16) isds2 = sinh2(�) 4d �wdw(1 + jwj2)2 + d�2 + �2d�2where � gives the hyperbolic distance from the centre of H3. Previously,we put z = e��+i�, so 4d�zdz=(1�jzj2)2 = (d�2+d�2)= sinh2(�). To rescale,put � = �� and z = e��+i�. Now, (16) is conformally equivalent to theKahler metric ds2 = 4d �wdw(1 + jwj2)2 + �2 sinh2(�)sinh2(��) 4d�zdz(1� jzj2)2 (17)which makes it clear that the metric degenerates on S21 (for � > 1). Therescaling � = �� , besides exactly compensating for the move of the charge17



towards S21, is quite natural when we intepret � as the curvature of H3|the new coordinate � gives the distance with respect to to the new hyper-bolic metric.The Hermitian-Yang-Mills tensor with respect to the new metric isB�(H; �) = sinh2(��)�2 sinh2(�)(1� jzj2)2@�z(H�1@zH)+(1 + jwj2)2f@ �w(H�1@wH)� @ �w(H�1��TH)� @w�+[�;H�1@wH �H�1��TH]g :The equation B�(H; �) = 0 is elliptic away from S10 and S21. For �1 > �2,de�ne X�1;�2 = f(w; z) 2 S2 �D j �1 � jzj � �2gso the X�1;�2 exhaust S4 � S21 [ S10 .Proposition 6.1 Over each X�1;�2 there is a unique solution, H�1;�2t , ofthe boundary value problemH�1@H=@t = B�(H; �)H(w; z; 0) = IHj@X�1;�2 = I 9>=>; (18)de�ned for all t and converging to a smooth metric H�1;�21 that satis�esB�(H�1;�21 ; �) = 0.Proof. Since the change in the Laplacian for the new metric mimics thechange in the Hermitian-Yang-Mills tensor, the proof of Proposition 4.3works for this boundary value problem except that we have to modify theGreen's function in Lemma 4.7. It is now given byG(jzj; s) = �maxfln(jzj); ln(s)g(1� s2)2 �2 sinh2(�)sinh2(��) :For � > 1 the integral (14) with the new Green's function is dominated bythe �nite integral� Z 1jzj ln(1 � s�)s ds = �1� Z 1jzj� ln(1� s�)s dsso we can replace C(jzj) in Lemma 4.7 by C(jzj�)=�. 2We can now state the analogue of Proposition 4.8.Proposition 6.2 For each holomorphic map u : S2 ! 
SU(n) there is aunique �nite charge connection A on S4 � S21 that is anti-self-dual withrespect to the metric (17), with@A�z = @�z; @A�w = @ �w + �and such that its associated metric H� is bounded.18



Proof. We will simply modify the proofs of Propositions 4.1 and 4.8.For uniqueness, we again use subharmonicity. For any two metrics H1;H2that come from two connections satisfying the properties above, put h =tr(H�11 H2) and � = tr(h) + tr(h�1) � 2n. Then � is subharmonic onS4�S21, equal to 0 on S10 and bounded. For any � > 0, �+� ln(jzj) is alsosubharmonic and 0 on S10 , but now negative near S21. By the maximumprinciple � + � ln(jzj) � 0 on all of S4 � S21. Since this is true for all �,� � 0. By construction � � 0 so � � 0 and H1 = H2.For existence we need to show that the sequence of metrics H�1;�21 isCauchy as �1 ! 1 and �2 ! 0. For �1 > �2 > �3 > �4, associate � tothe two metrics H�1;�41 and H�2;�31 . Again, � is subharmonic so it takesits maximum on the boundary of the set over which both are de�ned,@X�2;�3. Since the boundary values of H�2;�31 give the initial values ofH�1;�41 on @X�2;�3 , Proposition 6.1 shows that � is less than a constanttimes C(��2)=� and C(��3)=� on the respective boundary components. (Theconstant enters since the distance function on GL(n;C)=U(n) dominates� times a constant.) If we label these two maximum values by M2 and M3then the function M2 +M3 ln(jzj=�2)= ln(�3=�2) (19)is harmonic and takes on the valuesM2 andM3 on the respective boundarycomponents. Thus � is less than (19) on all ofX�2;�3 . As �2 ! 1 and �3 ! 0,(19) goes to zero. Hence the sequence is Cauchy and converges in C0 toa limit H�. As before, the convergence is smooth on the S4 � S21 [ S10so H� is smooth there also and satis�es B�(H; �) = 0. The anti-self-dualconnection produced by (H�; �) extends across S10 by regularity since thecharge is �nite as before. The same is not true near S21 since the metricdegenerates there. 2Corollary 6.3 As � ! 1, H� ! I uniformly on compact subsets ofS4 � S21.Proof. This simply follows from the fact that C=�! 0 uniformly since Cis bounded. 2We might try to analyse the convergence more closely to see if it remainstrue on the level of the connections. Alternatively, we might learn fromthis that by using the heat ow without stretching the metric we can avoidsome of the di�cult analytic issues involved in similar problems. Dostoglouand Salamon [9, 10] solved the Atiyah-Floer conjecture for a mappingcylinder Y = S1 �h � by stretching the metric in the S1 direction. Thetechniques in this paper suggest an alternative approach. In one direction,associate to an instanton over R � Y a holomorphic curve into M, thespace of at connections over �, by taking the unique (up to conjugation)at connection over each f(t; �)g � � that de�nes the same holomorphic19
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